1.2 不可控器件—电力二极管

晶闸管二极管主要参数及其含义

晶闸管二极管主要参数及其含义 IEC标准中用来表征晶闸管二极管性能特点的参数有数十项但用户经常用到的有十项左右本文就晶闸管二极管的主要参数做一简单介绍 1、正向平均电流I F(AV) (整流 管) 通态平均电流I T(AV) (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大正弦半 波电流平均值此时器件的结温已达到其最高允许温度T jm 仪元公司产品手册中均 给出了相应通态电流对应的散热器温度T HS 或管壳温度 T C 值用户使用中应根据实 际通态电流和散热条件来选择合适型号的器件 2、正向方均根电流I FRMS (整流管) 通态方均根电流I TRMS (晶闸管) 是指在规定的散热器温度T HS 或管壳温度 T C 时,允许流过器件的最大有效电 流值用户在使用中须保证在任何条件下流过器件的电流有效值不超过对应壳温下的方均根电流值 3、浪涌电流I FSM (整流管)I TSM (晶闸管) 表示工作在异常情况下器件能承受的瞬时最大过载电流值用10ms底宽正弦半波峰值表示仪元公司在产品手册中给出的浪涌电流值是在器件处于最高允许 结温下施加80% V RRM 条件下的测试值器件在寿命期内能承受浪涌电流的次数是有限的用户在使用中应尽量避免出现过载现象

4、断态不重复峰值电压V DSM 反向不重复峰值电压V RSM 指晶闸管或整流二极管处于阻断状态时能承受的最大转折电压一般用单脉冲测试防止器件损坏用户在测试或使用中应禁止给器件施加该电压值以免损坏器件 5、断态重复峰值电压V DRM 反向重复峰值电压V RRM 是指器件处于阻断状态时断态和反向所能承受的最大重复峰值电压一般取器件不重复电压的90%标注高压器件取不重复电压减100V标注用户在使用中须保证在任何情况下均不应让器件承受的实际电压超过其断态和反向重复峰值电压 6、断态重复峰值漏电流I DRM 反向重复峰值漏电流I RRM 为晶闸管在阻断状态下承受断态重复峰值电压V DRM 和反向重复峰值电压V RRM 时流过 元件的正反向峰值漏电流该参数在器件允许工作的最高结温Tjm下测出 7、通态峰值电压V TM (晶闸管) 正向峰值电压V FM (整流管)

二极管种类及应用

二极管 一、二极管的种类 二极管有多种类型:按材料分,有锗二极管、硅二极管、砷化镓二极管等;按制作工艺可分为面接触二极管和点接触二极管;按用途不同又可分为整流二极管、检波二极管、稳压二极管、变容二极管、光电二极管、发光二极管、开关二极管、快速恢复二极管等;接构类型来分,又可分为半导体结型二极管,金属半导体接触二极管等;按照封装形式则可分为常规封装二极管、特殊封装二极管等。下面以用途为例,介绍不同种类二极管的特性。 1.整流二极管 整流二极管的作用是将交流电源整流成脉动直流电,它是利用二极管的单向导电特性工作的。 因为整流二极管正向工作电流较大,工艺上多采用面接触结构。南于这种结构的二极管结电容较大,因此整流二极管工作频率一般小于3kHz。 整流二极管主要有全密封金属结构封装和塑料封装两种封装形式。通常情况下额定正向T作电流LF在l A以上的整流二极管采用金属壳封装,以利于散热;额定正向工作电流在lA以下的采用全塑料封装。另外,由于T艺技术的不断提高,也有不少较大功率的整流二极管采用塑料封装,在使用中应予以区别。 由于整流电路通常为桥式整流电路(如图1所示),故一些生产厂家将4个整流二极管封 装在一起,这种冗件通常称为整流桥或者整流全桥(简称全桥)。常见整流二极管的外形如图2所示。 选用整流二极管时,主要应考虑其最大整流电流、最大反向丁作电流、截止频率及反向恢复时间等参数。 普通串联稳压电源电路中使用的整流二极管,对截止频率的反向恢复时间要求不高,只要根据电路的要求选择最大整流电流和最大反向工作电流符合要求的整流二极管(例如l N 系列、2CZ系列、RLR系列等)即可。 开关稳压电源的整流电路及脉冲整流电路中使用的整流二极管,应选用工作频率较高、

电力题全答案

电力电子技术复习题 题型 一. 填空题(每空2分,共20分) 二. 判断题(5小题,每小题2分,共10分) 三. 选择题(5小题,每小题2分,共10分) 四. 简答题(3小题,每小题10分,共30分) 五. 分析题(15分) 电路分析,电压电流波形,整流电路+续流二极管/二象限斩波电路+直流电机负载 六. 计算(15分) 整流电路电压电流/晶闸管的额定参数计算 总成绩: 平时(作业+练习+考勤)15%+实验(考勤+报告)15%+期终70% . 复习题 一,填空/判断/选择 1, 电力电子器件一般工作在_开关_状态。 2, 在通常情况下,电力电子器件功率损耗主要有_通态损耗_,而当器件开关频率较高时,功率损耗主要为开关损耗。 3, 电力二极管的主要类型有普通二极管、快恢复二极管、肖特基二极管。 4, 肖特基二极管的开关损耗明显低于快恢复二极管的开关损耗。 5, 晶闸管的基本工作特性可概括为门极正向有触发则导通、反向截止。 6, 对同一晶闸管,维持电流I H与擎住电流I L在数值大小上的关系是I L约为I H的2–4倍。7, 晶闸管断态不重复电压U DRM与转折电压U bo数值大小上的关系是U DRM

电力二极管的电流参数理解

1.电力二极管的电流参数:正向平均电流)(AV F I (额定电流) 指电力二极管长期运行时,在指定的管壳温度和散热条件下,其允许流过的最大工频正弦半波电流的平均值。但是在实际的变流电路中,流过器件的电流不可能正好是正弦半波电流,因此在设计电路,选取器件的时候,要按照实际电路中电流的有效值与正弦半波有效值相等的原则,再换算成平均值计算得出器件的额定电流。 具体的工频正弦半波电流在一个周期内的波形如图1所示 I 图1 正弦半波电流波形图 该波形在一个周期内的表达式为 ???≤≤≤≤=πππ20 0sin t t t I I m F 该波形的平均值为 πππππππm m m av F I t I dt dt t I I =-=???? ??+=??0)cos (20sin 2120)( 该波形的有效值为 222cos 12sin 2102022 )(m m m eff F I dt t I tdt I I =-==??ππ ππ 因此,该波形的平均值和有效值之间的关系为 )()()(57.12av F av F eff F I I I == π 2.课堂练习

图2中阴影部分为流过二极管的电流波形,计算电流的平均值d I 与电流有效值I 。如果不考虑安全裕量,问A 100的电力二极管能送出平均电流d I 为多少,相应的电流最大值m I 为多少? Im 图2 电流波形图 解:该电流的平均值为 402122/2/0m m d I dt dt I I =???? ??+=??ππππ 该电流的有效值为 2 21 2 /02m m I dt I I ==?ππ 由题可知,电力二极管的额定电流为A 100,因此流过它的电流有效值为A 157。图2的电流流过电力二极管,要满足器件的电流额定要求,必须根据有效值相等原则,使该电流的有效值 A I 157= 由它与最大值之间的关系,可得 A I I m 3142== 从而得到该电流的平均值为 A I I m d 5.784==

第9章 电力二极管、电力晶体管和晶闸管的应用简介

目录 目录............................................................................................................................................................................. I 第9章电力二极管、电力晶体管和晶闸管的应用简介 . (1) 9.1 电力二极管的应用简介 (1) 9.1.1 电力二极管的种类 (1) 9.1.2 各种常用的电力二极管结构、特点和用途 (1) 9.1.3 电力二极管的主要参数 (1) 9.1.4 电力二极管的选型原则 (2) 9.2 电力晶体管的应用简介 (3) 9.2.1 电力晶体管的主要参数 (3) 9.2.2 电力晶体管的选型原则 (3) 9.3 晶闸管的应用简介 (4) 9.3.1 晶闸管的种类 (4) 9.3.2 各种常用的晶体管结构、特点和用途 (4) 9.3.3 晶闸管的主要参数 (5) 9.3.4 晶闸管的选型原则 (6) 9.4 总结 (7)

第9章电力二极管、电力晶体管和晶闸管的应用简介 9.1 电力二极管的应用简介 电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。 9.1.1 电力二极管的种类 电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。 9.1.2 各种常用的电力二极管结构、特点和用途 名称结构特点、用途实例图片 整流二极管 多用于开关频率不高(1kHz以下)的整流电路中。其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。 快速恢复二极管 恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。快恢复外延二极管,采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。 肖特基二极管 优点:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点:(1)当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合.(2)反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 9.1.3 电力二极管的主要参数 1.正向平均电流I F(AV)。 正向平均电流指电力二极管长期运行时,在指定的管壳温度(简称壳温,用T C表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。其是按照电流的发热效应来定义的,使用时应按有效值相

第2章 电力电子器件1 概述 电力二极管

引言 ?信息电子电路的基础——电子器件 ?电力电子电路的基础——电力电子器件 ?本章主要内容 ?电力电子器件的概念、特点、分类 ?常用电力电子器件的工作原理、基本特性、主要参数、选型 方法

第2章电力电子器件 ?2.1 电力电子器件概述 ?2.1.1 电力电子器件的概念和特征 ?2.1.2 应用电力电子器件的系统组成 ?2.1.3 电力电子器件的分类 ?2.1.4 本章内容和学习要点 ?2.2 不可控器件——电力二极管 ?2.3 半控型器件——晶闸管 ?2.4 典型全控器件 ?2.5 其他新型电力电子器件 ?2.6 功率集成电路与集成电力电子模块

?电力电子器件的概念 ?电力电子器件:应用用于处理电能的主电路中,实现电能变换的电子器件,本质上是一个电力开关 ?广义上电力电子器件:可分为电真空器件和半导体器件两类,目前往往专指电力半导体器件 一个简单的电力电子电路 u , i t o E 平均电压 u S 通 S 断 S 通 S 断 i R E S u i u S

?电力电子器件的特点 ?处理电功率的大小,也就是其承受电压和电流的能力,远大于信 息电子器件 ?为了减小本身的损耗,提高效率,都工作在开关状态 ?由信息电子电路来控制,而且需要驱动电路 ?功率损耗远大于信息电子器件,工作时需要安装散热器 ?理想器件:开关瞬间完成,通态压降为零,断态电流为零 ?实际器件:开关速度和通态压降之间存在矛盾 ?以开关方式工作的电力半导体器件,是电力电子技术的基础和核 心

电力电子器件的功率损耗 通态损耗:U F I F 断态损耗:U R I R ,I R 很小,忽略 U F :导通压降 I F :导通电流,I F =E /R U R :反向压降 I R :反向漏电流,很小,忽略 电力电子器件的静态特性 R E S u i u S u i 正向特性 反向特性 理想器件 实际器件I F U F I R U R

第9章--电力二极管、电力晶体管和晶闸管的应用简介讲解学习

目录目录 第9章电力二极管、电力晶体管和晶闸管的应用简介 0 9.1 电力二极管的应用简介 0 9.1.1 电力二极管的种类 0 9.1.2 各种常用的电力二极管结构、特点和用途 0 9.1.3 电力二极管的主要参数 0 9.1.4 电力二极管的选型原则 (1) 9.2 电力晶体管的应用简介 (2) 9.2.1 电力晶体管的主要参数 (2) 9.2.2 电力晶体管的选型原则 (2) 9.3 晶闸管的应用简介 (3) 9.3.1 晶闸管的种类 (3) 9.3.2 各种常用的晶体管结构、特点和用途 (3) 9.3.3 晶闸管的主要参数 (4) 9.3.4 晶闸管的选型原则 (5) 9.4 总结 (6)

第9章电力二极管、电力晶体管和晶闸管的应用简介 9.1 电力二极管的应用简介 电力二极管(Power Diode)在20世纪50年代初期就获得应用,当时也被称为半导体整流器;它的基本结构和工作原理与信息电子电路中的二极管相同,都以半导体PN结为基础,实现正向导通、反向截止的功能。电力二极管是不可控器件,其导通和关断完全是由其在主电路中承受的电压和电流决定的。电力二极管实际上是由一个面积较大的PN结和两端引线以及封装组成的。 9.1.1 电力二极管的种类 电力二极管主要有普通二极管、快速恢复二极管和肖特基二极管。 9.1.2 各种常用的电力二极管结构、特点和用途 名称结构特点、用途实例图片 整流二极管 多用于开关频率不高(1kHz以下)的整流电路中。其反向恢复时间较长,一般在5s以上,其正向电流定额和反向电压定额可以达到很高。 快速恢复二极管 恢复过程很短,特别是反向恢复过程很短(一般在5s以下)。快恢复外延二极管,采用外延型P-i-N结构,其反向恢复时间更短(可低于50ns),正向压降也很低(0.9V左右)。从性能上可分为快速恢复和超快速恢复两个等级。前者反向恢复时间为数百纳秒或更长,后者则在100ns以下,甚至达到20~30ns。 肖特基二极管 优点:反向恢复时间很短(10~40ns),正向恢复过程中也不会有明显的电压过冲;在反向耐压较低的情况下其正向压降也很小,明显低于快恢复二极管;因此,其开关损耗和正向导通损耗都比快速二极管还要小,效率高。 弱点:(1)当所能承受的反向耐压提高时其正向压降也会高得不能满足要求,因此多用于200V以下的低压场合.(2)反向漏电流较大且对温度敏感,因此反向稳态损耗不能忽略,而且必须更严格地限制其工作温度。 9.1.3 电力二极管的主要参数 1.正向平均电流I F(AV)。 正向平均电流指电力二极管长期运行时,在指定的管壳温度(简称壳温,用T C表示)和散热条件下,其允许流过的最大工频正弦半波电流的平均值。其是按照电流的发热效应来定义的,使用时应按有效值相

二极管及其应用(DOC)

++++++++++++++++++++++++++++第一章 二极管及其应用 教学重点 1.了解二极管的伏安特性和主要参数。 2.了解硅稳压二极管、变容二极管、发光二极管、光电二极管等各种二极管的外形特征、功能和应用。 3.能用万用表检测二极管。 4.掌握单相半波、桥式全波整流电路的组成、性能特点和电路估算。 5.了解电容滤波电路的工作原理和估算。 教学难点 1.PN结的单向导电特性。 2.整流电路和滤波电路的工作原理。 学时分配

1.1 二极管 1.1.1 半导体的奇妙特性 导电能力介于导体和绝缘体之间的物质称为半导体,如硅、锗等,其导电能力受多种因素影响。 热敏特性——温度升高,导电能力明显增强。 光敏特性——光照越强,导电性能越好。 掺杂特性——掺入杂质后会改善导电性。 1.1.2 二极管结构与电路图形符号 通过实物认识各类二极管 动画:PN 结的形成 1.1.3 二极管的单向导电特性 做一做:二极管的单向导电特性 1.二极管的单向导电特性 (1)加正向电压二极管导通 (2)加反向电压二极管截止 2.二极管特性曲线 二极管两端的电压、电流变化的关系曲线,即二极管的伏安特性曲线。 演示实验:利用晶体管特性图示仪测出二极管伏安特性曲线 正极+ VD 正极+ 负极 -

(1)正向特性 正向电压较小,这个区域常称为正向特性的“死区”。一般硅二极管的“死区”电压约为0.5V,锗二极管约为0.2V。 正向电压超过“死区”电压后,电流随电压按指数规律增长。此时,两端电压降基本保持不变,硅二极管约为0.7V,锗二极管约为0.3V。 (2)反向特性 二极管加反向电压,此时流过二极管的反向电流称为漏电流。 当加到二极管两端的反向电压超过某一规定数值时,反向电流突然急剧增大,这种现象称为反向击穿现象,该反向电压称为反向击穿电压,用U(BR)表示。 实际应用时,普通二极管应避免工作在击穿范围,否则会因电流过大而损坏管子失去单向导电性。 1.1.4二极管的使用常识 1.二极管的型号 国产二极管的型号命名规定由五部分组成(部分二极管无第五部分),国外产品依各国标准而确定。 2.二极管的主要参数 (1)最大整流电流I FM (2)反向饱和电流I R (3)最高反向工作电压U RM (4)最高工作频率f M 例:利用二极管的单向导电性和导通后两端电压基本不变的特点,可以构成限幅(削波)电路来限制输出电压的幅度。图(a)所示为一单向限幅电路。

相关文档
最新文档