风荷载例题

风荷载例题
风荷载例题

风荷载例题

下面以高层建筑为例,说明顺风向结构风效应计算。

由0k z s z W W βμμ=知,结构顺风向总风压为4个参数的乘积,即基本风压0W 、风压高度变化系数z μ、风荷载体型系数s μ、风振系数z β。因基本风压与风压高

度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数的确定,然后通过实例说明高层建筑顺风向风效应的计算。

1.高层建筑体型系数

高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎风面体型系数为+0.8(压力),背风面体型系数为-0.5(吸力),顺风向总体型系数为 1.3s μ=。

根据《高层建筑混凝土结构技术规程》JGJ 3-2002第3.2.5条:

2.高层建筑风振系数

高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ 3-2002进行计算,也可参考《建筑结构荷载规范》。

3.实例

【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。100H m =,33B m =,地面粗糙度指数s α=0.22,基本风

压按粗糙度指数为0.16s α=的地貌上离地面高度s z =10m 处的风速确定,基本风

压值为200.44/w kN m =。结构的基本自振周期1 2.5T s =。求风产生的建筑底部弯矩。

解:

(1) 为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m 高,取其中点位置的风载值作为该区段的平均风载值,。

(2) 体型系数 1.3s μ=。

(3) 本例风压高度变化系数

在各区段中点高度处的风压高度变化系数值分别为

10.62z μ= 21z μ= 3 1.25z μ=

4 1.45z μ=

5 1.62z μ=

(4) 风振系数的确定,由

201a w T =0.62×0.44×2.52=221.71/kN s m ?

查表得脉动增大系数 1.51ξ=

计算各区段中点高度处的第1振型相对位移

11?=0.10 12?=0.30 13?=0.50 14?=0.70 15?=0.90

因建筑的高度比/3H B =,查表得脉动影响系数0.49ν=。

将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数: 1β=1.12 2β=1.22 3β=1.30 4β=1.36 5β=1.41

(5) 计算各区段中点高度处的风压值

21 1.12 1.30.620.440.40/w kN m =???=

22 1.22 1.3 1.000.440.70/w kN m =???=

23 1.30 1.3 1.250.440.93/w kN m =???=

24 1.36 1.3 1.450.44 1.13/w kN m =???=

25 1.41 1.3 1.620.44 1.31/w kN m =???=

(6) 由风产生的建筑底部弯矩为

5(0.40100.70300.9350 1.1370 1.3190)2033 1.77210M kN m =?+?+?+?+???=??

【例2】某城市郊区有一30层的一般钢筋混凝土高层建筑,如图所示。地面以上高度为100M ,迎风面宽度为25米,按100年重现期的基本风压200.55/w KN m =,风荷载体型系数为1.3。

1.假定结构基本自振周期1 1.8T s =,试问,高度为80米处的风振系数与下列何项数值接近?

A 1.276

B 1.315

C 1.381

D 1.499

2.试确定高度100米处围护结构的风荷载标准值(2/KN m )与下列何项数值最为接近?

A 1.616

B 1.945

C 2.256

D 2.505

3.假定作用于100m 高度处的风荷载标准值22/k w KN m =,又已知突出屋面小塔楼风剪力标准值500n P KN ?=及风弯矩标准值2000n M kN m ?=?,作用于

100m 高度的屋面处。设风压沿高度的变化为倒三角形(地面处为0)。试问,在地面(z=0)处,风荷载产生倾覆力矩的标准值(kN m ?)与下列何项数值接近?

A 218760

B 233333

C 303333

D 306133

4.若建筑物位于一高度为45m 的山坡顶部,如图。试问,建筑屋面D 处的风压高度变化系数与下列何项数值最为接近?

A 1.997

B 2.290

C 2.351

D 2.616

解:

1.城市郊区,B 类粗糙度,80z m =时,0.8z ?=, 1.95z μ=。201 1.782w T =, 1.54 1.441.44(1.7821) 1.518221

ξ-=+?-=- 100H m = , /4H B = , 所以0.505ν= 1.51820.5050.811 1.3151.95

z z z ξν?βμ??=+=+= 2.已知 1.51gz β= , 1.3s μ= , 2.09z μ=

0 2.256k gz s z w w βμμ==

3. 12200050010050100100218666.723

k M kN m =+?+????=? 1.4306133k M M kN m ==?

4.由《建筑结构荷载规范》第7.2.2条,

tan 0.450.3α=>,取tan 0.3α=。100z mm =, 2.22 2.5z H

=<, 1.4k =

修正系数

2

100

1 1.40.31 1.0955

2.545

B

η

??

??

=+??-=

?

??

?

??

??

所以 1.0955 2.09 2.290

z

μ=?=

风荷载计算

4.2风荷载 当空气的流动受到建筑物的阻碍时,会在建筑物表面形成压力或吸力,这些压力或吸力即为建筑所受的风荷载。 4.2.1单位面积上的风荷载标准值 建筑结构所受风荷载的大小与建筑地点的地貌、离地面或海平面高度、风的性质、风速、风向以高层建筑结构自振特性、体型、平面尺寸、表面状况等因素有关。 垂直作用于建筑物表面单位面积上的风荷载标准值按下式计算:(-1) 式中: 1.基本风压值Wo 按当地空旷平坦地面上10米高度处10分钟平均的风速观测数据,经概率统计得出50年一遇的 值确定的风速V0(m/s)按公式确定。但不得小于0.3kN/m2。 对于特别重要或对风荷载比较敏感的高层建筑,基本风压采用100年重现期的风压值;对风荷载是否敏感主要与高层建筑的自振特性有关,目前还没有实用的标准。一般当房屋高度大于60米时,采用100年一风压。 《建筑结构荷载规范》(GB50009-2001)给出全国各个地方的设计基本风压。 2.风压高度变化系数μs 《荷载规范》把地面粗糙度分为A、B、C、D四类。 A类:指近海海面、海岸、湖岸、海岛及沙漠地区; B类:指田野、乡村、丛林、丘陵及房屋比较稀疏的城镇及城市郊区; C类:指有密集建筑群的城市市区; D类:指有密集建筑群且房屋较高的城市市区; 书P55页表4.2给出了各类地区风压沿高度变化系数。位于山峰和山坡地的高层建筑,其风压高系数还要进行修正,可查阅《荷载规范》。 3.风载体型系数μz 风荷载体型系数是指建筑物表面实际风压与基本风压的比值,它表示不同体型建筑物表面风力的小。一般取决于建筑建筑物的平面形状等。 计算主体结构的风荷载效应时风荷载体型系数可按书中P57表4.2-2确定各个表面的风载体型或由风洞试验确定。几种常用结构形式的风载体型系数如下图

多层钢筋混凝土框架设计(7 风荷载内力计算)

七风荷载内力计算 基本风压w0=0.4kN/m2,地面粗糙度为B类。本章计算以左风为例。(一)风荷载计算 w k=βzμsμz w0,建筑物高度<30m,故βz=1.0 迎风时μs1=+0.8,背风时μs2=-0.5,则μs=0.8+0.5=1.3 计算过程见下表 计算简图(单位:kN) 14.60 15.44 16.85 13.98 17.04

(二)内力计算 1.抗侧刚度和反弯点高度确定 计算过程见下表 2.剪力在各层分配(单位:kN ) ∑ == 5 n i i Pi P V ,Pi k ik V D D V ?= ∑ V P5V P4V P3V P2V P1

3.柱端弯矩计算(单位:kN?m ) 4.风荷载作用下的内力图 M 图(单位:kN ?m ) 62.98 51.34 32.5132.51 24.71 24.71 14.826.27 19.12 8.67 7.77 4.73 3.95 2.181.11 42.16 41.69 28.77 28.45 19.88 19.65 12.77 12.624.36 4.3157.21 57.21 57.23 34.9522.2837.9 15.6222.289.2818.26 27.54 16.98 3.69 13.296.536.5357.23 22.28 15.62 27.5416.9837.99.283.6934.95 22.28 18.26 6.53 13.29 6.53

V N V ,N 图(单位:kN ) 5.梁端柱边弯矩(单位:kN?m ) 28.11 19.18 13.25 8.51 2.91 35.13 36.8321.39 22.46 12.17 12.5 5.62 5.8 13.74 21.57 9.22 18.06 6.55 13.73 4.11 9.43 1.51 1.4 4.15 17.39 12.38 1.51 2.84 6.27 9.41

风荷载例题

风荷载例题 下面以高层建筑为例,说明顺风向结构风效应计算。 由0k z s z W W βμμ=知,结构顺风向总风压为4个参数的乘积,即基本风压0W 、风压高度变化系数z μ、风荷载体型系数s μ、风振系数z β。因基本风压与风压高度变化系数与结构类型和体型无关,以下主要讨论高层建筑体型系数和风振系数的确定,然后通过实例说明高层建筑顺风向风效应的计算。 1.高层建筑体型系数 高层建筑平面沿高度一般变化不大,可近似为等截面,且平面以矩形为多。根据风洞试验及实验结果,并考虑到工程应用方便,一般取矩形平面高层建筑迎风面体型系数为+(压力),背风面体型系数为(吸力),顺风向总体型系数为1.3s μ=。 根据《高层建筑混凝土结构技术规程》JGJ 3-2002第3.2.5条:

2.高层建筑风振系数 高层建筑风振系数可根据《高层建筑混凝土结构技术规程》JGJ 3-2002进行计算,也可参考《建筑结构荷载规范》。 3.实例 【例1】已知一矩形平面钢筋混凝土高层建筑,平面沿高度保持不变,质量和刚度沿竖向均匀分布。100H m =,33B m =,地面粗糙度指数s α=,基本风压按粗糙度指数为0.16s α=的地貌上离地面高度s z =10m 处的风速确定,基本风压值为200.44/w kN m =。结构的基本自振周期1 2.5T s =。求风产生的建筑底部弯矩。 解: (1) 为简化计算,将建筑沿高度划分为5个计算区段,每个区段20m 高,取其中点位置的风载值作为该区段的平均风载值,。 (2) 体型系数 1.3s μ=。 (3) 本例风压高度变化系数 在各区段中点高度处的风压高度变化系数值分别为 10.62z μ= 21z μ= 3 1.25z μ= 4 1.45z μ= 5 1.62z μ= (4) 风振系数的确定,由 201a w T =××2=221.71/kN s m ? 查表得脉动增大系数 1.51ξ= 计算各区段中点高度处的第1振型相对位移 11?= 12?= 13?= 14?= 15?= 因建筑的高度比/3H B =,查表得脉动影响系数0.49ν=。 将上式数据代入风振系数的计算公式,得到各区段中点高度处的风振系数: 1β= 2β= 3β= 4β= 5β= (5) 计算各区段中点高度处的风压值 21 1.12 1.30.620.440.40/w kN m =???=

哈工大结构风工程课后习题答案

结构风工程课后思考题参考答案 二、大气边界层风特性 1 对地表粗糙度的两种描述方式:指数律和对数律(将公式写上)。 2 非标准地貌下的风速换算原则(P)和方法(P公式)。1514 3 脉动风的生成: 近地风在流动过程中由于受到地表因素的干扰,产生大小不同的涡旋,这些涡旋的迭加作用在宏观上表现为速度的随机脉动。在接近地面时,由于受到地表阻力的影响,导致风速减慢并逐步发展为混乱无规则的湍流。 脉动风的能量及耗散机制:而湍流运动可以看做是能量由低频脉动向高频脉动过渡,并最终被流体粘性所耗散的过程。在低频区漩涡尺度较大,向中频区(惯性子区)、高频区(耗散区)漩涡尺度逐渐减小,小尺度涡吸收由惯性子区传递过来的能量,能量最终被流体粘性所耗散。 4 Davenport谱的特点:先写出公式 通过不同水平脉动风速谱的比较: (1)D谱不随高度变化,而其他谱(如Kaimal谱、Solari谱、Karman谱)则考虑了近地湍流随高度变化的特点;(D谱不随高度变化,在高频区符合-5/3律,没有考虑近地湍流随高度变化的特点;) (2)D谱的谱值比其它谱值偏大,会高估结构的动力反应,计算结果偏于保守。(3)S(0)=0,意味着L=0,与实际不符。uu5 湍流度随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而增大,随高度的增加而减小。 积分尺度随高度及地面粗糙程度的变化规律:大量观测结果表明,大气边界层中的湍流积分尺度是地面粗糙度的减函数,而且随着高度的增加而增加。 功率谱随高度及地面粗糙程度的变化规律:随着高度增大和粗糙度的减小,能量在频率上的分布趋于集中,谱形显得高瘦;随着高度减小和粗糙度的增大,能量在频率上的分布趋于分散,谱形显得扁平。 相干函数随高度及地面粗糙程度的变化规律:随地面粗糙度的增大而减小,随高度的增加而增大。 6 阵风因子与峰值因子的区别:阵风因子G=U'/U,是最大风速与平均风速的比/ σ是最大脉动风速与脉动风速均方根的比值。g=u 值;峰值因子umax联系:二者可以相互换算:G=(U'+gσ)/U'=1+gσ/U'=1+gI。Uuu 三、钝体空气动力学理论 1 钝体绕流的主要特征有: )粘性效应:气体粘性随温度升高而增大,液体粘性随温度升高而减小。1((2)边界层的形成:由于粘性效应,使靠近物体表面的空气流动速度减慢,形 成气流速度从表面等于零逐渐增大到与外层气流速度相等,形成近壁面流动现象。 (3)边界层分离:如果边界层内的流体微粒速度因惯性力减小到使靠近表面的气流倒流,便出现了边界层分离。 (4)再附:在一定条件下,自建筑物前缘分离的边界层会偶然再附到建筑物表面,这时附面层下会形成不通气的空腔,即分离泡。每隔一段时间分离泡破裂产生较大的风吸值,产生一个风压脉冲。 (5)钝体尾流:对于细长钝体,漩涡脱落是在其两侧交替形成的。漩涡脱落时导致建筑物出现横向振动的主要原因。

等效风荷载计算方法分析

等效静力风荷载的物理意义 从风洞试验获取屋面风荷载气动力信息,到得到结构的风振响应整个过程来看,计算过程中涉及到风洞试验和随机振动分析等复杂过程,不易为工程设计人员所掌握,因此迫切需要研究简便的建筑结构抗风设计方法。 等效静力风荷载理论 就是在这一背景下提出的。其基本思想是将脉动风的 动力效应以其等效的静力形式表达出来,从而将复杂的动力分析问题转化为易于被设计人员所接受的静力分析问题。等效静力风荷载是联系风工程研究和结构设计的纽带[3] ,是结构抗风设计理论的 核心内容,近年来一直是结构风工程师研究的热点之一。 等效静力风荷载的物理意义可以用单自由度体系的简谐振动来说明 [45, 108] 。 k c P(t) x(t) 图1.3 气动力作用下的单自由度体系 对如图1.3的单自由度体系,在气动力 P t 作用下的振动方程为: mx cx kx P t (1.4.1) 考虑粘滞阻尼系统,则振动方程可简化为: 2 00 2 22P t x f x f x m (1.4.2) 式中 12 f k m 为该系统的自振频率, 2c km 为振动系统的临界阻尼比。 假设气动力为频率为 f 的简谐荷载,即 20i ft P t F e ,那么其稳态响应为: 202 00 1 2i ft F k x t e f f i f f (1.4.3) 进一步化简有: 2 i ft x t Ae (1.4.4) 其中 02 2 2 1 2F k A f f f f , 2 2arctan 1 f f f f , A 为振幅, 为气动力和 位移响应之间的相位角。 现在假设该系统在某静力 F 作用下产生幅值为A 的静力响应,那么该静力应该为:

工程中风压-风荷载理论定义和计算方法

第一章风、风速、风压和风荷载 第一节风的基本概念 风是空气从气压大的地方向气压小的地方流动而形成的。气流一遇到结构的阻塞,就形成高压气幕。风速愈大,对结构产生的压力也愈大,从而使结构产生大的变形和振动。结构物如果抗风设计不当,或者产生过大的变形会使结构不能正常地工作,或者使结构产生局部破坏,甚至整体破坏。 风引起对结构作用的风荷载,是各种工程结构的重要设计荷载。风荷载对于高耸结构(如塔、烟囱、桅杆等)、高层房屋、桥梁、起重机、冷却塔、输电线塔、屋盖等高、细、长、大结构,常常起着主要的作用。因而,风力的研究,对工程结构,特别对上述工程结构,是设计计算中必不可少的一部分。 对结构安全产生影响的是强风,可分为热带低压、热带风暴、台风或飓风、寒潮风暴、飑风、龙卷风等。 不同的季节和时日,町以有不同的风向,给结构带来不同的影响。每年强度最大的风对结构影响最大,此时的风向常称为主导风向,可从该城市(地区)的风玫瑰图得出。由于风玫瑰图是由气象台得出的,建筑所在地的实际风向可能与此不同,因而在结构风丁程上,除了某些参数需考虑风向外,一般都可假定最大风速出现在各个方向上的概率相同,以较偏于安全地进行结构设计。关于需考虑风向的参数将在下面有关章节中加以说明。 风可以有一定的倾角,相对于水平一般最大可在±10°到—10°内变化。这样,结构上除水平分风力外,还存在上下作用的竖向分风力。竖向分风力对细长的竖向结构,例如烟囱等,一般只引起竖向轴力的变化,对这类工程来讲并不重要,因而只有像大跨度屋盖和桥梁结构,竖向分风力才应该引起我们的注意。但其值也较水平风力为小,但属于同一数量级。 根据大量风的实测资料可以看出,在风的时程曲线中,瞬时风速。包含两种成分:一种是长周期部分,其值常在10min以上;另一种是短周期部分,常只有几秒左右。图1—1是风从开始缓慢上升至稳定值后的一个时程曲线示意图。根据上述两种成分,实用上常把风分为平均风(即稳定风)和脉动风(即阵风脉动)来加以分析。平均风是在给定的时间间隔内,把风对建筑物的作用力的速度、方向以及其他物理量都看成不随时间而改变的量,考虑到风的长周期远远地大于一般结构的自振周期,因而这部分风 虽然其本质是动力的,但其作用与静力作用相近,因此可认为,其作用性质相当于静力。脉动风是由于风的不规则性引起的,它的强度是随时间按随机规律变化的。由于它周期较短,因而应按动力来分析,其作用性质完全是动力的。 研究表明,脉动风的影响与结构周期、风压、受风面积等有直接影响,这些参数愈大,影响也愈大,兼之结构上还有平均风作用,因而对于高、细、长、大等柔性结构,风的影响起着很大的、甚至决定性的作用。 第二节风力强度表示法 不同的风有不同的特征,但它的强度常用风速来表达。最常用的风速分类有两种,即范围风速和工程风速。 一、范围风速 将风的强度划分为等级,用一般风速范围来表达。常用的有:蒲福风速表;福基达龙卷风风力等级表。 (一)蒲福风速表

建筑结构复习题(答案)16428

1.建筑结构作用力的类型有哪些?各举一些例子。 答:作用力与作用的关系:1.荷载:风荷载、重力荷载、活荷载 2.作用(效应):沉降作用、温差作用、地震作用 作用力与时间关系又分为三类:1.永久作用力:恒载 2 力:风荷载、温差 3.偶然作用力:地震、爆炸 2.什么是荷载的设计值,什么是荷载的标准值?两者间有何关系? 标准值:作用力在正常情况下可能出现的最大估值, 设计值:作用力在考虑必要的安全储备后的设计参数 作用力的设计值等于其标准值乘以分项系数 3.地震震级与地震烈度有何区别? 地震震级:地震的震级是地震的强烈级别,它是地震是时震源处释放能量的多少来确定的 地震烈度:地震烈度是指某一地区各类建筑物受到一次地震影响的强烈程度。地震烈度与震级、震源的深度、震中距、地质条件、建筑物类型等因素有关 小震不坏,中震可修,大震不倒。 4.影响风荷载大小的因素有哪些?各有何影响? 风速、建筑物体型及地面粗糙程度 5.影响地震荷载大小的因素有哪些?各有何影响? 1.建筑物总重力荷载(成正比) 2.建筑物所在地区的基本烈度(成正比) 3.建筑物动力特征,主要指它的基本周期T,周期与建筑高度成正比与宽度成反 比 4.建筑物所在场地上的类型(土地越硬越好) 6.如何降低风荷载? 选址、平面形状、立面减少竖向线条、重力锤 7.如何减小地震荷载? 选址、结构方案 8.除恒荷载、活荷载、风荷载及地震荷载外,还有哪些因素会在结构中产生内力?

温差内力效应、不同沉降 9.柱、墙竖向荷载的估算方法。 P33 10.结构设计的有哪两个极限状态? 正常使用极限状态,承载能力极限状态 11.建筑结构设计的三个基本要求是什么? 1.结构应能承受正常使用、正常施工时可能出现的荷载或内力,不致因承载力不足而破坏(包括因长细比过大而发生失稳破坏) 2.结构应能承受正常使用、正常施工时出现的荷载,不致因抗倾覆能力不足而倾倒 3.结构在正常使用时有很好的工作性能,不致产生使用所不允许的过大变形、过宽裂缝。 1与2是属于承载能力极限状态 12.什么是结构的倾覆?如何避免结构倾覆? 提高高宽比:H/D 13.什么是单向板?什么是双向板?通常如何区分? 力向一个方向传递叫做单向板,力向两个方向传递叫做双向板 14.楼面结构常用体系有哪些? 次主梁体系、曲梁体系、交叉梁体系、无梁体系 15.如何估算钢筋混凝土梁、板的尺寸? 16.结构的竖向体系有哪些?各自有何特点?适用范围? 柱体系(无梁):不合理排架结构体系(柱与梁铰接):有失稳的可能性,水平抵抗力比较小 框架结构体系(柱与梁刚接):墙体系(用一片墙代替一个柱) 筒体结构体系(四片墙围成一个封闭筒体) 17.高层建筑与多层建筑在结构设计时有何区别? 高层更多考虑水平力,而多层在水平力问题上不是那么突出。

风荷载标准值计算方法

按老版本规范风荷载标准值计算方法: 1.1风荷载标准值的计算方法 幕墙属于外围护构件,按建筑结构荷载规范(GB50009-20012006年版)计算: w k =B gz u z y si W 0 ……7.1.1-2[GB50009-2001 2006 年版] 上式中: w k :作用在幕墙上的风荷载标准值(MPa); Z :计算点标高:15.6m ; B gz :瞬时风压的阵风系数; 根据不同场地类型,按以下公式计算(高度不足5m 按5m 计算): 1. 正压区 2. 负压区 - 对墙面, - 对墙角边, 二、内表面 对封闭式建筑物,按表面风压的正负情况取 -0.2或0.2 本计算点为大面位置 按JGJ102-2003第5.3.2条文说明:风荷载在建筑物表面分布是不均匀的, 在檐口附近、边角部位较大。根据风洞试验结果和国外的有关资料, 在上述区域 B gz =K(1+2 卩 f ) 其中K 为地面粗糙度调整系数, 1 f 为脉动系数 A 类场地: B gz =0.92 X (1+2 卩 f ) 其中: ■0 12 1 f =0.387 X (Z/10). B 类场地: B gz =0.89 X (1+2 [1 f ) 其中: 1 f =0.5(Z/10) -0.16 C 类场地: B gz =0.85 X (1+ 2 1 f ) 其中: 1 f =0.734(Z/10) -0.22 D 类场地: B gz =0.80 X (1+2 1 f ) 其中: 1 f =1.2248(Z/10) -0. 3 对于B 类地形, B gz =0.89 X (1+2 X (0.5(Z/10) 卩Z :风压咼度变化系数; 根据不同场地类型,按以下公式计算: 类场地: ))=1.7189 类场地: 类场地: 类场地: 0 24 卩 z =1.379 X (Z/10). 当 Z>300m 时,取 Z=300m 当 Z<5m 时,取 Z=5m 0.32 卩 z =(Z/10) 当 Z>350m 时,取 Z=350m 当 Z<10ni 时,取 Z=10m 卩 z =0.616 X (Z/10) 0.44 当 Z>400m 时,取 Z=400m 当 Z<15ni 时,取 Z=15m 卩 z =0.318 X (Z/10) 0.60 当 Z>450m 时,取 Z=450m 当 Z<30ni 时,取 Z=30m 15.6m 高度处风压高度变化系数: 对于B 类地形, 卩 z =1.000 X (Z/10) 卩S1:局部风压体型系数; 按《建筑结构荷载规范》GB50009-2001(2006年版)第7.3.3条:验算围护 构 件及其连接的强度时,可按下列规定采用局部风压体型系数卩 一、外表面 S1 : 按表7.3.1采用; 取-1.0 取-1.8 15.6m 高度处瞬时风压的阵风系数:

风荷载作用-例题

[例题2-1] 某高层建筑剪力墙结构,上部结构为38层,底部1-3层层高为4m ,其他各层层高为3m ,室外地面至檐口的高度为120m ,平面尺寸为30m ?40m ,地下室筏板基础底面埋深为12m,如图2-4所示。已知100年一遇的基本风压为2 /45.0m kN =? 建筑场地位置大城市郊区。已计算求得作用于突出屋面小塔楼上的风荷载标准值的总值为800kN 。为简化计算,将建筑物沿高度划分为6个区段,每个区段为20m ,近似取其中点位置的风荷载作为该区段的平均值、计算在风苛载作用下结构底部(一层)的剪力设计值和筏板基础底面的弯矩设计值。 [解] (1) 基本自振周期 根据钢筋混凝土剪力墙结构的经验公式,可得结构的基本周期 为: s n T t 9.13805.005.0≈?== ( n 是层数) 222210/62.19.145.0m s kN T ?=?=? (2) 风荷载体型系数 对于矩形平面,由《高层规程》附录A 可求得 80.01=s μ 57.0)40 12003.048.0()03.048.0(2=?+-=+-=L H s μ (3) 风振系数 由条件可知地面粗糙度类别为B 类,由表2-6可查得脉动增大系数 502.1=ξ 脉动影响系数v 根据H /B 和建筑总高度H 由表2-7确定,其中B 为与风向相一致的房屋宽度,由H/B=4.0可从表2-7经插值求得v=0.497;由于结构属于质量和刚度沿高度分布比较均匀的弯剪型结构,可近似采用振型计算点距室外地面高度z 与房屋高度H 的比值,即 H H i z =?。i H 为第i 层标高;H 为建筑总高度。则由式(2-4)可求得风振系数为: H H H H i z i z v z z v z ??+=?+=+=μμξμα?ξβ497.0502.1111 (4) 风荷载计算 风荷载作用下,按式(2-2a)的可得沿房屋高度分布的风荷载标准值为: z z z z z q βμβμ66.2440)57.08.0(45.0)(=?+?= 按上述方法可求得各区段中点处的风荷载标准值及各区段的合力见表2-9,如图2-4所示。

顺风向风效应习题参考答案

顺风向风效应 1.一矩形高层建筑结构,高度40H m =,建造在城市市郊,地面粗糙度指数0.16a α=,基本风压200.5/w kN m =,体形系数 1.3s μ=,标准地貌的地面粗糙指数为0.16s α=,风 压高度变化系数()222s a a Ts Ta Z s a a H H z z z z z αααμ-?? ????= ? ? ??? ?? ?? ,假设不考虑顺风向脉动风的影响。 求:顺风向风产生的建筑底部弯矩?(沿高度分成四段进行近似计算) 解:沿高度将该结构分成4段,每个区段10m 高,取其中点位置的风载值作为该区段的平均风载值。 ①体形系数 1.3s μ=; ②高度系数()222s a a Ts Ta Z s a s H H z z z z z αααμ-?? ???? = ? ? ??? ?? ?? ,由于s a αα=,所以Ts Ta H H =,则有 ()220.16 0.32 1010a Z s z z z z z αμ??? ????=== ? ? ????? ?? 在各区段中点高度处的风压高度变化系数,分别为 10.801Z μ=,2 1.1385Z μ=,3 1.3407Z μ=,4 1.493Z μ= 由于不考虑顺风向脉动风的作用,所以()1.01~4i i β== 21110 1.0 1.30.8010.50.521/s Z w w kN m βμμ==???= 22220 1.0 1.3 1.13850.50.74/s Z w w kN m βμμ==???= 23330 1.0 1.3 1.34070.50.871/s Z w w kN m βμμ==???= 24440 1.0 1.3 1.4930.50.97/s Z w w kN m βμμ==???= 则由风产生的该结构底部弯矩为 ()100.52150.74150.871250.9735694.3/M kN m m =??+?+?+?=? 2. 一平面为矩形高层建筑结构,高度50H m =,迎风面宽度30B m =,建造在市中心,

风荷载例题

例题1:某三层钢筋混凝土框架结构,平面为矩形,纵向各轴线间距离为4.2m ,层高为3.6m ,室内外高差0.6m ,地貌为B 类,所在地区基本风压值w 0为0.55kN/m 2 。求,顺风向风对一榀横向中框架各层节点产生的风荷载标准值。 风压高度变化系数μz (z)(老规范) 离地面高度(m ) 地面粗糙度B 5 1.00 10 1.00 15 1.14 解:建筑总高h <30m ,取βz =1.0 层数 βz μs z μz w 0 w z 1 1.0 1.3 4.2 1.00 0.55 0.715 2 7.8 1.00 0.715 3 11.4 1.04 0.744 一榀横向中框架各层节点产生的风荷载标准值为: ()1 1 4. 2 3.60.715 4.211.71kN 2P =?+??= ()21 3.6 3.60.715 4.210.81kN 2P =?+??= 31 3.60.744 4.2 5.62kN 2 P =???= 例题2:某金工车间,外形尺寸及部分风载体型系数如图所示,基本风压2 00.45kN /m ω=, 柱顶标高为10m +,室外天然地坪标高为0.30m -,1=2.1m h ,2=1.2m h ,地面粗糙类别为B ,排架计算宽度6m B =。求作用在排架上的顺风向风荷载标准值。 .解:(1)求21,q q ,

离地10m 时,0.1=z μ,离地15m 时,14.1=z μ,当离地10.3m 时, ()1.141 110.3101 .011510 z μ-=+ ?-=- ()10.8 1.010.456 2.18/k q kN m =???=→ ()20.5 1.010.456 1.36/k q kN m =???=→ (2)求w 屋顶与檐口风压高度变化系数均按檐口离室外地坪的高度10.3+2.1=12.4 ()1.141 112.410 1.071510 z μ-=+ ?-=- ()()0.80.5 2.10.50.6 1.2 1.070.4567.54k w kN =+?+-????=????

风荷载习题

1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处) μz =1+(1.14-1)×[(11.4+0. 5-10)/(1 5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??=

背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 0() 1.4[(0.80.5) 1.075 1.10(0.20.6) 1.0890.5(0.60.6) 1.151 2.55]0.55624.3w Q si zi i F r h w B kN μμ==+??+-+??++????=∑ 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙, w 0=0.35kN /m 2。 要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 1 00 t a n (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

盈建科YJK计算参数详解—风荷载信息

风荷载

执行规范:选择最新的。 地面粗糙度类别:《荷规》8.2.1. 修正后的基本风压:指沿海、强风地区及规范特殊规定等可能在基本风压基础上,对基本风压进行修正后的风压。对于一般工程,可按照《荷规》的规定采用。《高规》4.2.2条规定,对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。对于该条规定,软件通过“荷载组合”选项卡的“承载力设计时风荷载效用放大系数”来考虑,不需且不能在修正后的基本风压上乘以放大系数。 风荷载计算用阻尼比:《荷规》8.4.4。 结构X、Y项基本周期:初始默认,设计人员应将计算后的结构基本周期重新填入,重新计算以得到更准确的风荷载计算结果。 承载力…放大系数:《高规》4.2.2,对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采用。 风压:取值与风荷载计算时采用的“基本风压”可能不同(10或50年),因此单独列出,仅用于舒适度验算。 结构阻尼比:《高规》3.7.6,宜取0.01~0.02,高度不小于150m才考虑风振舒适度。 精细计算……风荷加载:以前是对柱按柱顶的节点荷载加载,即把作用在整个柱上的风荷载作为柱顶节点集中力加载,这样计算的内力位移偏大。风荷载按柱间均布风荷载加载更符合钢结构门式刚架等设计的需要。精细风情况可操作,默认勾选。 考虑顺风向风振:《荷规》8.4.1:对于高度大于30m且高宽比大于1.5的房屋,以及基本自振周期T1大于0.25s的各种高耸结构,应考虑风压脉动对结构产生顺风向风振的影响。 其他风向角度:软件自动计算的风工况为+X,-X,+Y,-Y四个工况,即0,90,180,270度方向。若需要考虑其他方向的风工况,可在“其他风向”参数中指定。此处设置后,设

风荷载计算软件方法与规范方法进行比较

风荷载是空气流动对工程结构所产生的压力。 风荷载也称风的动压力,是空气流动对工程结构所产生的压力。风荷载与基本风压、地形、地面粗糙度、距离地面高度,及建筑体型等诸因素有关。中国的地理位置和气候条件造成的大风为:夏季东南沿海多台风,内陆多雷暴及雹线大风;冬季北部地区多寒潮大风。其中沿海地区的台风往往是设计工程结构的主要控制荷载。台风造成的风灾事故较多,影响范围也较大。雷暴大风可能引起小范围内的风灾事故。 一《建筑结构荷载规范》GB50009-2012中所规定的顺风向风荷载的具体计算 1 顺风向风荷载 2012规范关于顺风向风荷载的计算公式没有形式上的变化,仍然采用平均风压乘以风振 0ωμμβωκz s z = (1) 其中: k ω— 风荷载标准值(kN/m 2); z β— 高度z 处的风振系数; s μ— 风荷载体型系数; z μ— 风压高度变化系数; 0ω— 基本风压。 如果不考虑结构在风荷载作用下的动力响应,则由平均风压引起的静荷载取决于体型系 数、风压高度变化系数及基本风压这三项因素,下面讨论顺风向作用下的静荷载计算: 1.1 基本风压 中国规定的基本风压w 0 以一般空旷平坦地面、离地面10米高、风速时距为10分钟平 均的最大风速为标准,按结构类别考虑重现期(一般结构重现期为30年,高层建筑和高耸结构为50年,特别重要的结构为100年),统计得最大风速v (即年最大风速分布的96.67%分位值,并按w 0=ρv 2/2确定。式中ρ为空气质量密度;v 为风速)。根据统计,认为离地面10米高、时距为10分钟平均的年最大风压,统计分布可按极值I 型考虑。 基本风压因地而异,在中国的分布情况是:台湾和海南岛等沿海岛屿、东南沿海是最大风压区,由台风造成。东北、华北、西北的北部是风压次大区,主要与强冷气活动相联系。青藏高原为风压较大区,主要由海拔高度较高所造成。其他内陆地区风压都较小。 风速风速随时间不断变化,在一定的时距Δt 内将风速分解为两部分:一部分是平均风 速的稳定部分;另一部分是指风速的脉动部分。为了对变化的风速确定其代表值作为基本风压,一般用规定时距内风速的稳定部分作为取值标准。 建筑设计中的取用:基本风压应按《建筑结构荷载规范》GB50009-2012附录E 中附表 E.5 给出的全国各地区的风压采用数值。对于高层建筑、高耸结构以及对风荷载比较敏感的其他结构,基本风压应适当提高,并应由有关的结构设计规范具体规定。 当城市或建设地点的基本风压值在本规范全国基本风压图上没有给出时,基本风压值可 根据当地年最大风速资料,按基本风压定义,通过统计分析确定,分析时应考虑样本数量的

风荷载习题

1 1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处) μz =1+(1.14-1)×[(11.4+0. 5-10)/(1 5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??=

2 背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 0() 1.4[(0.80.5) 1.075 1.10(0.20.6) 1.0890.5(0.60.6) 1.151 2.55]0.55624.3w Q si zi i F r h w B kN μμ==+??+-+??++????=∑ 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙, w 0=0.35kN /m 2。 要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 100t a n (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

风荷载计算

参考规范: 《建筑结构荷载规范》GB50009-2012 《高层建筑混凝土结构技术规程》JGJ3-2010 一般情况下的风荷载: 风荷载标准值 《荷载规范》8.1.1、《高规》4.2.1 0w w z s z k μμβ= (1)该风荷载标准值的计算公式适用于计算主要承重(主体)结构的风荷 载; (2)所求的风荷载标准值为顺风向的风荷载; (3)风荷载垂直于建筑物的表面; (4)风荷载作用面积应取垂直于风向的最大投影面积; (5)适用于计算高层建筑的任意高度处的风荷载。 基本风压 《荷载规范》3.2.5第2款 对雪荷载和风荷载,应取重现期为设计使用年限…… 《荷载规范》8.1.2 基本风压应采用按本规范规定的方法确定的50年重现期的风压,但不得小 于0.3kN/㎡。 《荷载规范》E.5 《高规》4.2.2 ……对风荷载比较敏感的高层建筑,承载力设计时应按基本风压的1.1倍采 用。 (条文说明)……一般情况下,对于房屋高度大于60m 的高层建筑,承载力 设计时风荷载计算可按基本风压的1.1倍采用…… 《烟规》5.2.1 ……基本风压不得小于0.35kN/㎡。对于安全等级为一级的烟囱,基本风压 应按100年一遇的风压采用。 风压高度变化系数 《荷载规范》8.2.1 地面粗糙度 A 类 近海海面和海岛、海岸、湖岸及沙漠地区 B 类 田野、乡村、丛林、丘陵以及房屋比较稀疏的乡镇 C 类 密集建筑群的城市市区 D 类 密集建筑群且房屋较高的城市市区 《荷载规范》表8.2.1 对墙、柱的风压高度变化系数,均按墙顶、柱顶离 地面距离作为计算高度z ,查表用插入法确定。 风压体型系数 《荷载规范》8.3.1 围墙:按第32项,取1.3 《高规》4.2.3 1 圆形平面建筑取0.8; 2 正多边形及截角三角形平面建筑,由下列计算:n s /2.18.0+=μ 3 高宽比H/B 不大于4的矩形、方形、十字形平面建筑取1.3; 4 下列建筑取1.4: 1)V 形、Y 形、弧形、双十字形、井字形平面建筑; 2)L 形、槽形和高宽比H/B 大于4的十字形平面建筑;

风荷载计算

第二部分风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:W k zs z w0 其中W k为垂直于建筑物单位面积上的风荷载标准值 z为z高度上的风振系数,取z1.00 z为z高度处的风压高度变化系数 s为风荷载体型系数,取s1.30 w为攀枝花基本风压,取w00.40 该多层办公楼建筑物属于C类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度H19.8m30m,高宽比H19.81.3751.5 B14.4 ,应采用风振 系数 z来考虑风压脉动的影响。该建筑物结构平面为矩形,s1.30,由《建筑结构荷载 规范》第3.7查表得0.8 s(迎风面)s0.5(背风面),风压高度变化系数z可根 据各楼层标高处的高度确定,由表4-4查得标准高度处的 z值,再用线性插值法求得所求各楼层高度的 z值。 风荷载计算 层数H i(m)zzq1(z)KN/mq2(z)KN/m 7女儿墙底部17.50.791.002.3701.480 616.50.771.002.3061.441 513.20.741.002.2161.385 49.90.741.002.2161.385 36.60.741.002.2161.385 23.30.741.002.2161.385 1-3.30.000.000.0000.000 (3)计算各楼层标高处的风荷载q。攀枝花基本风压取 z 2 w00.40KN/mm,取②轴横 向框架梁,其负荷宽度为7.2m,由Ww得沿房屋高度分布风荷载标准值。 kzsz0 q7.20.42.88,根据各楼层标高处的高度zzszzsz H,查得z代入上式,可i 得各楼层标高处的q(z)见表。其中 风正压力计算: q1(z)为迎风面,q2(z)背风面。 7.q1(z)2.88z sz2.881.001.300.790.82.370KN/m 6.q1(z)2.88z sz2.881.001.300.770.82.306KN/m 5.q1(z)2.88z sz2.881.001.300.740.82.216KN/m 4.q1(z)2.88z sz2.881.001.300.740.82.216KN/m 3.q1(z)2.88z sz2.881.001.300.740.82.216KN/m 2.q1(z)2.88z sz2.881.001.300.740.82.216KN/m 1.q1(z) 2.88z sz2.880.001.300.740.80.000KN/m 风负压力计算: 7.q2(z)2.88z sz2.881.001.300.790.51.480KN/m 6.q2(z)2.88z sz2.881.001.300.770.51.441KN/m 5.q2(z)2.88z sz2.881.001.300.740.51.385KN/m 4.q2(z)2.88z sz2.881.001.300.740.51.385KN/m 3.q2(z)2.88z sz2.881.001.300.740.51.385KN/m

风荷载习题

?1、求单层厂房的风荷载 条件:某厂房处于大城市郊区,各部尺寸如图2.1.8所示,纵向柱距为6m ,基本风压 w 0=0.55kN /m 2,室外地坪标高为-0.150。 ?要求:求作用于排架上的风荷载设计值。 答案: 风荷载体型系数如图2.1.8所示。 风荷载高度变化系数,由《荷载规范》按B 类地面粗糙度确定。 柱顶处(标高11.4m 处)?μz =1+(1.14-1)×[(11.4+0.?5-10)/(1?5-10)]=1.044 屋顶(标高12.5m 处) 1.075z μ= (标高13.0m 处) 1.089z μ= (标高15.55m 处) 1.14(1.24 1.14)[(15.550.1515)/(2015)] 1.151z μ=+-?+--= (标高15.8m 处为坡面且却是吸力,二面水平分力的合力为零) 垂直作用在纵墙上的风荷载标准值: 迎风面:21100.8 1.0440.550.459/k s z w w kN m μμ==??= 背风面:22200.5 1.0440.550.287/k s z w w kN m μμ==??= 排架边柱上作用的均布风荷载设计值: 迎风面:211 1.40.4596 3.85/Q k q r w B kN m ==??= 背风面:222 1.40.2876 2.41/Q k q r w B kN m ==??= 作用在柱顶的集中风荷载的设计值: 2、求双坡屋面的风压 条件:地处B 类地面粗糙程度的某建筑物,长10m ,横剖面如图2.1.10a ,两端为山墙,w 0 =0.35kN /m 2。 ???要求:确定各墙(屋)面所受水平方向风力。 答案:1、已知200.35/w kN m = 100 tan (3/12)14.0415α-==<,相应屋面的0.6s μ=-。 100L m = 2、各墙(屋)面所受水平方向风力列表计算如表2.1.1所示。

风荷载计算

第二部分 风荷载计算 一:风荷载作用下框架的弯矩计算 (1)风荷载标准值计算公式:0k z s z W w βμμ=??? 其中k W 为垂直于建筑物单位面积上的风荷载标准值 z β为z 高度上的风振系数,取 1.00z β= z μ为z 高度处的风压高度变化系数 s μ为风荷载体型系数,取 1.30s μ= 0w 为攀枝花基本风压,取00.40w = 该多层办公楼建筑物属于C 类,位于密集建筑群的攀枝花市区。 (2)确定各系数数值 因结构高度19.830H m m =<,高宽比19.8 1.375 1.514.4 H B ==<,应采用风振系数z β来考虑风压脉动的影响。该建筑物结构平面为矩形, 1.30s μ=,由《建筑结构荷载 规范》第3.7查表得0.8s μ=(迎风面)0.5s μ=-(背风面),风压高度变化系数z μ可根据各楼层标高处的高度确定,由表4-4查得标准高度处的z μ值,再用线性插值法求得所求各楼层高度的z μ值。 (3)计算各楼层标高处的风荷载z 。攀枝花基本风压取00.40/w KN mm =,取②轴横向框架梁,其负荷宽度为7.2m,由0k z s z W w βμμ=???得沿房屋高度分布风荷载标准值。 7.20.4 2.88z z s z z s z q βμμβμμ=?=,根据各楼层标高处的高度i H ,查得z μ代入上式,可 得各楼层标高处的()q z 见表。其中1()q z 为迎风面,2()q z 背风面。 风正压力计算: 7. 1() 2.88 2.88 1.00 1.300.790.8 2.370/z s z q z KN m βμμ==????= 6. 1() 2.88 2.88 1.00 1.300.770.8 2.306/z s z q z KN m βμμ==????= 5. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 4. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 3. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 2. 1() 2.88 2.88 1.00 1.300.740.8 2.216/z s z q z KN m βμμ==????= 1. 1() 2.88 2.880.00 1.300.740.80.000/z s z q z KN m βμμ==????= 风负压力计算: 7. 2() 2.88 2.88 1.00 1.300.790.5 1.480/z s z q z KN m βμμ==????= 6. 2() 2.88 2.88 1.00 1.300.770.5 1.441/z s z q z KN m βμμ==????= 5. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 4. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????= 3. 2() 2.88 2.88 1.00 1.300.740.5 1.385/z s z q z KN m βμμ==????=

相关文档
最新文档