超硬磨具用树脂材料的选择

超硬磨具用树脂材料的选择
超硬磨具用树脂材料的选择

超硬材料磨具用树脂的选择

郑州磨料磨具磨削研究所王振民丁春生

在树脂超硬材料砂轮制造中,粘结剂用树脂的性能对砂轮的质量起着非常重要的作用,树脂的性能影响到砂轮的使用寿命和耐用度,还是砂轮能否正常使用的一项关键因素。如何考核树脂性能的好坏,通常主要掌握两个方面,一是它的结合强度,应能够对磨粒及其辅料有良好的粘结能力,使磨粒在受到磨削冲击力时不易松动或脱落。二是它的耐热性,应能够适应砂轮在磨削时受到的瞬时高温和累积高温,不致烧毁结合剂。

对于砂轮适用的树脂材料,目前市场供应上主要有三种,即聚酰亚胺树脂、芳烷基改性酚醛树脂和酚醛树脂(2123型),另外还有其它一些树脂种类。现简要比较其特点和用途。

l、聚酰亚胺树脂

聚酰亚胺树脂是芳环二酐与芳环二胺的聚合物,国内生产厂有多家。目前市售的多为聚双马来酰亚胺树脂。根据合成树脂时所用的原料差异和合成工艺的不同,树脂的性能会有很大差别,如软化点、固化温度与时间等。该类树脂的耐热性如

在砂轮制造行业中,该树脂是属于高温型树脂粘结剂,热分解温度高,用它制造的超硬材料砂轮,在干磨条件下,结合剂可以承受磨削高温而不易被烧蚀破坏,使用中砂轮磨料层不易出现裂纹,磨削锋利,工件也避免被烧伤。与酚醛树脂相比,干磨时也不产生较难闻的气味,生产环境较好。

聚酰亚胺树脂的拉强度也略高于酚醛树脂。因此,用它制成的砂轮,在工厂使用条件下大体统计,其使用寿命可高出10%左右。但该树脂在使用中也存在一些不足之处。如成型温度高;成型料与铝基体之间的结合力不够好;在有的产品上工艺条件不易控制。砂轮磨料层会出现裂纹。另外是价格较高。影响了其使用范围。

2、芳烷基改性酚醛树脂

芳烷基改性酚醛树脂是在树脂的分子链中引进耐热型的芳烷基,使树脂的耐热性得到提高。它的性能与英国的xylok 939P树脂相类似。据资料介绍。该树脂的马丁耐热性为>200℃。可达250℃。

用该树脂和酚醛树脂分别混入碳化硅磨料做成长条型样块,进行耐热性和抗

由表中数据看出,该树脂的耐热性与抗折强度均高于酚醛。用它制造的金刚石砂轮,在干磨条件使用下,效果良好,砂轮不裂纹,工件不烧伤,在同样条

件下使用酚醛树脂砂轮。则砂轮出现裂纹。可见它用在干磨使用场合。具有明显的技术优势。

改性酚醛有着与酚醛树脂基本相同的工艺条件,使用比较方便。需要注意的是。用该树脂混制的砂轮成型料在热压成型时,会产生较多的气体,容易引起砂轮起泡,因此在热压成型时,予热阶段应适当采取放气措施,并及时加足预定的成型压力,直至砂轮卸模。

根据资料介绍和样块测试,该树脂的耐热性能和抗拉强度不及聚酰亚胺。由于它的工艺性较好,价格比聚酰亚胺低廉。在超硬材料磨具行业中得到较广泛的应用。

3、酚醛树脂

酚醛树脂是磨料磨具行业中使用量最大的一种树脂,当前在超硬材料磨具中最常用的是2123酚醛树脂粉,它是苯酚和甲醛的缩聚物。市售的2123树脂粉中有的已经加入了固化剂(乌洛托品)。

该树脂粉的特点是耐热性较好,抗抗拉强度较高,工艺性能适中,价格较低廉。与上述两种树脂相比,本树脂的耐热性偏低。因此该种树脂砂轮不适宜在干磨砂轮使用。在干磨状态下,磨削时产生的累积高温对会使砂轮中树脂的体型分子结构受到破坏,使砂轮磨料层产生裂纹、掉块,砂轮报废,同时在磨削时由于树脂的高温裂解,会产生不好闻的气味。

该树脂有较好的抗拉强度,与磨粒有良好的粘结力,因此在湿磨状态下,仍有良好的适用性。经用户使用对比,湿磨时该类砂轮的使用寿命、耐用度、工件的表面质量等,与改性酚醛树脂难分高下。

4、其它种类的树脂:

为了提高砂轮的使用性能,业内人士也一直进行新树脂或其它改性树脂的试验工作如:缩醛改性酚醛,环氧改性酚醛,聚酰亚胺改性酚醛等,也有采用英国的xylok 939P树脂,有的已取得一定的成效,这些需要继续进行试验探索。

需要注意,同型号的树脂会因其产地不同或批号不同,而有较大的性能差异,需要在使用前进

行检验。性能差异主要表现在树脂的抗拉强度方面,而在耐热性方面则差异较小。

综上所述可以看出,制造干磨砂轮时宜采用聚酰亚胺树脂和改性酚醛树脂,在制造湿磨砂轮时,聚酰亚胺树脂有略高的使用寿命,酚醛树脂有良好的工艺性和成本优势。

树脂基复合材料在各领域的应用

树脂基复合材料在建筑工业中的应用 建筑工业在国民经济中占有很重要的地位,不论是哪一个国家,建筑工业望远是国民经济的支柱产业之一。随着社会的进步,人们对居住面积、房屋质量和娱乐设施等提出越来越高的要求,这就是推动建筑工业改革发展的动力。 建筑工业现代化的发展方向是:改善施工条件,加快建设进度,降低成本,提高质量,节约能源,减少运输,保护耕地,保护环境和提高技术经济效益等。为了达到此目的,必须从改善现有的建筑材料和发展新型建筑材料方向着手。 在建筑工业中发展和使用树脂基复合材料对减轻建筑物自重,提高建筑物的使用功能,改革建筑设计,加速施工进度,降低工程造价,提高经济效益等都十分有利,是实现建筑工业现代化的必要条件。 1、树脂基复合材料的建筑性能 (1)材料性能的可设计性树脂基复合材料的性能可根据使用要求进行设计,如要求耐水、防腐、高强,可选用树脂基复合材料。由于树脂基复合材料的重量轻,制造方便,对于大型结构和形状复杂的建筑制品,能够一次成型制造,提高建筑结构的整体性。 (2)力学性能好树脂基复合材料的力学性能可在很大范围内进行设计,由于选

用的材料不同,增强材料的铺设方向和方向差异,可以获得性能判别很大的复合材料,如单向玻纤增强环氧复合材料的拉伸强度可达1000MPa以上,比钢(建筑钢)的拉伸强度还高,选用碳纤维作增强材料,制得的树脂基复合材料弹性模量可以达到建筑钢材水平,而其密度却比钢材小4~5倍。更为突出的是树脂基复合材料在制造过程中,可以根据构件受力状况局部加强,这样既可提高结构的承载能力,又能节约材料的减轻自重。 (3)装饰性好树脂基复合材料的表面光洁,可以配制成各种鲜艳的色彩,也可以制造出不同的花纹和图案,适宜制造各种装饰板、大型浮雕及工艺美术雕塑等。 (4)透光性透明玻璃钢的透光率达85%以上(与玻璃相似),其最大特点是不易破碎,能承受荷载。用于建筑工程时可以将结构、围护及采光三者综合设计,能够达到简化采光设计,降低工程造价之目的。 (5)隔热性建筑物的作用是能够防止由热传导、热对流引起的温度变化,给人们以良好的工作和休息环境。一般建筑材料的隔热性能较差,例如普通混凝土的导热系数为1.5~2.1W(m?K),红砖的导热系数为0.81 W(m?K),树脂基复合材料的夹层结构的导热系数为0.05~0.08 W(m?K),比普通红砖小10倍,比混凝土小20多倍。 (6)隔音性隔音效果好坏是评价建筑物质量的标准之一。但传统材料中,隔音效果好的建筑材料往往密度较大,隔热性差,运输和安装困难。树脂基复合材料

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 集团公司文件内部编码:(TTT-UUTT-MMYB-URTTY-ITTLTY-

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种,如木粉、矿物粉、或纺织品等使其增强,制成增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于

古建中国详解合成树脂瓦施工步骤

古建中国详解合成树脂瓦施工步骤 合成树脂瓦作为新一代轻型屋面建筑材料,产品节能环保,并可再生利用,其色泽丰富亮丽、经久不褪色,造型美观且富立体感,符合中国建筑文化特色;同时具有绝缘、防水抗风、耐酸碱、绿色环保、轻质易安装等优点,是各类建筑屋面的理想材料,普遍适用于商场、住宅小区、别墅、仿古建筑等屋面,尤其适用于目前大力推广的“平改坡”工程。 合成树脂瓦的特点 1、合成树脂瓦施工简便,使用专用的固定件安装牢固,可用于坡度为20~80度的钢结构屋面、混凝土屋面和木结构屋面;瓦片可根据不同坡屋面按施工需要的尺寸定做(长度为节距的整数倍),整片纵向长度最长可达6米,铺装效率高。 2、合成树脂瓦表面致密、光滑,能产生“荷叶效应”,不易吸附灰尘,具有超强的自清洁性能,施工后维护成本低;耐候性和耐久性好,在紫外线、温、湿、热、寒环境下能保持其颜色和物理性能稳定,使用寿命可达50年。

3、为防止单向搭接造成的倾斜和不平整现象,主瓦横向安装要一上一下排列,即第二张瓦扣压第一张瓦和第三张瓦,第四张瓦扣压第三张和第五张瓦并各搭接一个瓦波,其余以此类推;主瓦、正脊瓦、斜脊瓦安装选用不同规格的自攻螺钉固定,固定瓦时先将防水圈置于保护垫下面的凹槽内,并将自攻钉穿过保护垫中心孔(弧面朝下),与檩条固定牢固,最后安装防水帽。 合成树脂瓦施工步骤: 第一步、首先安装屋顶主瓦,特别是第一张瓦的安装非常重要,抱枕瓦底边与CC1线或DD1线保持垂直。第一张瓦摆好后将最下的槽条和波峰固定好。然后依次安装其他主瓦。 第二步、安装好主瓦之后,将正脊瓦安装上。正脊瓦指的就是安装在顶端屋脊上的瓦。从靠近主瓦区的一侧开始安装,第一张正脊瓦不能和主瓦搭接重叠,每两张正脊瓦要搭接一个波形。

环氧树脂复合材料

环氧树脂复合材料 复合材料是由基体材料和增强材料复合而成的多相体系固体材料。它充分发挥了各组分材料的特点和潜在能力,通过各组分的合理匹配和协同作用,呈现出原来单一材料(均质材料、单相材料)所不具有的优异的新性能,从而达到对材料某些性能的综合要求。复合材料的出现在材料发展史上具有划时代的意义。受到国内外的极大重视。其发展之迅猛在历史上是空前的。已在工业、农业、交通、军事、科学技术和人民生活等各个领域广为应用。尤其是在航空、航天等尖端技领域中已成为不可缺少的重要的结构材料。无怪乎有人认为21世纪将进入“复合材料时代”。 热固性树脂基复合材料是目前研究得最多、应用得最广的一种复合材料。它具有质量轻、强度高、模量大、耐腐蚀性好、电性能优异、原料来源广泛,加工成型简便、生产效率高等特点,并具有材料可设计性以及其他一些特殊性能,如减振、消音、透电磁波、隐身、耐烧蚀等特性,已成为国民经济、国防建设和科技发展中无法取代的重要材料。在热固性树脂基复合材料中使用最多的树脂仍然是酚醛树脂、不饱和聚酪树脂和环氧树脂这三大热固性树脂。这三种树脂阶性能各有特点:酚醛树脂的耐热性较高、耐酸性好、固化速度快,但较脆、需高压成型;不饱和聚酪树脂的工艺性好、价格最低,但性能较差;环氧树脂的粘结强度和内聚强度高,耐腐蚀性及介电性能优异,综合性能最好,但价格较贵。因此,在实际工程中环氧树脂复合材料多用于对使用性能要求高的场合,如用作结构材料、耐腐蚀材料、电绝缘材料及透波材料等。 1、环氯树脂复合材料的分类 环氧树脂复合材料(简称环氧复合材料,也有人称为环氧增强塑料)的品种很多,其名称、含义和分类方法也没有完全统一,但大体上讲可按以下方法分类。 (1)按用途可分为环氧结构复合材料、环氧功能复合材料和环氧功能型结构复合材料。结构复合材料是通过组成材料力学性能的复合,使之能用作受力结构材料,并能按受力情况设计和制造材料,以达到材料性能册格比的最佳状态。功能复合材料是通过组成材料其他性能(如光、电、热、耐腐蚀等)的复合,以得到具有某种理想功能的材料。例如环氧树脂覆铜板、环氧树脂电子塑封料、雷达罩等。需要指出的是,无论使用的是材料的哪一种功能性,都必须具有必要的力学性能,否则再好的功能材料也没有实用性。已有些功能材料同时还要有很高的强度,如高压绝缘子芯棒,要求绝缘性和强度都很高,是一种绝缘性结构复合材料。 (2)按成型压力可分为高压成型材料(成型压力5—30MPa),如环氧工程塑料及环氧层压塑料;低压成型材料(成型压力<2.5MPa),如环氧玻璃钢和高性能环氧复合材料。玻璃钢和高性能复合材料由于制件尺寸较大(可达几个㎡)、型面通常不是平面,所以不宜用高压成型。否则模具造价太高,压机吨位太大,因而成本太贵。

先进纤维增强树脂基复合材料在航空航天工业中的应用

军民两用技术与产品2010·1 先进纤维增强树脂基复合材料 在航空航天工业中的应用 航天材料及工艺研究所 赵云峰 !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" !!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!" !!!!!!!!!!!!" 一、引 言 随着航空航天工业的发展,先进飞机、运载火箭和导弹、卫星等的高性能、高可靠性和低成本,很大程度上是由于新材料和新工艺的广泛应用。先进复合材料是航空航天高技术产品的重要组成部分,它能有效降低飞机、运载火箭、导弹和卫星的结构重量,增加有效载荷和射程,降低成本。国外各类航空航天器结构已经广泛采用了先进的纤维增强树脂基复合材料,其中应用最多的是碳纤维增强环氧树脂复合材料。目前,先进复合材料已经取代了铝合金,成为现代大型飞机的首要结构材料。 二、先进纤维增强树脂 基复合材料的特点 先进纤维增强树脂基复合材料由高性能增强纤维和基体树脂按一定的工艺方法复合而成。与其它材料相比,具备如下特点: (1)与金属材料相比,复合材料具有高的比强度和比模量,可以大幅减轻结构重量; (2)各向异性,具有良好的可设计性,可以充分发挥增强纤维的性能; (3)具有优异的耐疲劳、耐腐蚀和抗振动等特性; (4)成型工艺性好,易于制造一次整体成型复杂零件。 表1列出了几类典型的树脂基复合材料和金属材料的性能。 三、先进纤维增强树脂基复合材料在航天产品上的典型应用 欧洲的“阿里安4”运载火箭采用了大量的碳纤维增强环氧树脂复合材料。卫星发射支架,仪器舱,大型整流罩,第一、二级之间的分离壳,助推器前锥和第二、三级级间段均采用碳纤维增强环氧树脂复合材料制造而成。 “阿里安4”运载火箭卫星整流罩最大外径4米、长约12米。由端头、前锥段、圆柱段和倒锥几部分组成。端头为铝合金加强筋环结构。前锥段和圆柱段采用碳纤维面板/铝蜂窝夹层结构。“阿里安5”运载火箭大型卫星整流罩外径5.4米,同样采用碳纤维面板/铝蜂窝夹层结构。“阿里安4”运载火箭第二、三级碳/环氧级间段直径 2.6米、高度2.73米,采用8块曲型 壁板组成,两端框为铝合金材料,中间用5个铝合金环框加强。 先进复合材料结构件的使用,提高了卫星结构的效率,增加了卫星的有效载荷,加强了商业竞争能力。一些航天器结构所用的典型复合材料见表2。 四、高性能增强纤维 1 碳纤维 碳纤维是一种以聚丙烯腈(PAN )、沥青、粘胶纤维等为原料,经预氧化、碳化、石墨化工艺而制得的含碳量大于90%的高强度、高模量、耐高温特种纤维。PAN 基碳纤维生产工艺简单、产品综合性能好,因而发展很快,产量占到90%以上。碳纤维具有高强度、高模量、低密度、耐高温、耐腐蚀、耐摩擦、导电、导热、膨胀系数小等优异性能,是国防军事工业不可缺少的工程材料。 研究制备碳纤维的新技术,特别是低成本碳纤维制备技术是国外碳纤维研究的重点。制备碳纤维的新技术可归纳为研究发展廉价原丝、新的预氧化技术和新的碳化和石墨化技术三个方面。为了降低碳纤维的价格,研制低成本碳纤维,美国推出了低成本碳纤维研制计划,并已取得了一定的成果,建成了采用微波碳化的试验线,取得了良好效果,使制备碳纤维

树脂基复合材料研究进展

先进树脂基复合材料研究进展 摘要:本文介绍了颗粒增强、无机盐晶须增强、光固化等类型的树脂基复合材料,亦指出热固性、环氧树脂基复合材料,并简述了制备方法和新技术的应用。 关键词:树脂基复合材料,颗粒增强,无机盐晶须增强,光固化,制备方法,新技术ADVANCE THE RESEARCH OF POLYMER MATRIX COMPOSITES ABSTRACT: The particulate reinforced、inorganic salt whisker, light-cured of resin matrix composites were introduced in this paper,the thermosetting and thermoplastic resin matrix composites was also show in the paper.This paper also discussed the application of new preparation method and technology. Keywords: resin matrix composites,particulate reinforced,inorganic salt whisker, light-cured,preparation method,new technology 先进树脂基复合材料是以有机高分子材料为基体、高性能连续纤维为增强材料、通过复合工艺制备而成,并具有明显优于原组分性能的一类新型材料。目前航空航天领域广泛应用的先进树脂基复合材料主要包括高性能连续纤维增强环氧、双马和聚酞亚胺基复合材料[1]。树脂基复合材料具有比强度高、比模量高、力学性能可设计性强等一系列优点,是轻质高效结构设计最理想的材料[2]。用复合材料设计的航空结构可实现20%一30%的结构减重;复合材料优异的抗疲劳和耐腐蚀性,能提高飞机结构的使用寿命,降低飞机结构的全寿命成本;复合材料结构有利于整体设计和制造,可在提高飞机结构效率和可靠性的同时,采用低成本整体制造工艺降低制造成本。可见复合材料的应用和发展是大幅提高飞机安全性、经济性等市场竞争指标的重要保证,复合材料的用量已成为衡量飞机先进性和市场竞争力的重要标志。 纤维增强树脂基复合材料是在树脂基体中嵌人高性能纤维,比如碳纤维、超高分子量聚乙烯纤维和芳纶纤维等所制得的材料[3]。树脂基体可以分为热塑性树脂和热固性树脂两种,常用的热塑性树脂有聚乙烯(PE)、聚丙烯(PP)、聚氯乙烯(PVC)等;常用的热固性树脂有酚醛树脂、环氧树脂和聚醋树脂等。由于纤维增强复合材料具有高强度、高模量、低密度等一系列优良特性,其在航空航天、汽车、建筑、防护、运动器材和包装等领域已有广泛的应用。然而新材料新技术的发展使人们对纤维增强复合材料的性能有了更高的期望,所以高性能纤维增强树脂基复合材料依然是近年来的研究热点。 1 先进树脂基复合材料体系 1.1 纤维增强 纤维增强树脂基复合材料由纤维和树脂基体两部分组成,纤维起承担载荷的作用,树脂均匀传递应力,界面在应力传递的过程中起到关键的作用,是纤维与树脂问应力传递的纽带.随着对复合材料界面性能研究的不断的深入,人们发现纤维的浸润性能、纤维与树脂间的键台及纤维与树脂间的机械嵌合作用等因素对复合材料的性能影响显著,并以此设计出一系列提高界面粘接强度的方法,有效地提高了纤维复合材料的界面性能[4]. 1.1.1碳纤维(CF)增强树脂基复合材料 碳纤维以热碳化方式由聚丙烯睛、沥青或粘胶加工而成,具有高强度、高模量、优异的耐酸碱性和抗蠕变性[4J。对碳纤维增强树脂基复合材料的研究主要集中在对纤维进行改性、对树脂基体进行改性和改善纤维和树脂基体的粘接性能这几个方面。 1.1.2超高强度聚乙烯纤维(uHMPE), 超高分子量聚乙烯纤维(UHMWPE)是1975年由荷兰DSM公司采用凝胶纺丝一超拉伸技术研制成功并实现工业化生产的高强高模纤维。UHMWPE纤维中大分子具有很高的取向度和结晶程度,纤维大分子几乎处于完全伸直的状态,赋予最终纤维高强度、高模量、低密度、耐酸碱

树脂基复合材料的力学性能

树脂基复合材料的力学性能 力学性能是材料最重要的性能。树脂基复合材料具有比强度高、比模量大、抗疲劳性能好等优点,用于承力结构的树脂基复合材料利用的是它的这种优良的力学性能,而利用各种物理、化学和生物功能的功能复合材料,在制造和使用过程中,也必须考虑其力学性能,以保证产品的质量和使用寿命。 1、树脂基复合材料的刚度 树脂基复合材料的刚度特性由组分材料的性质、增强材料的取向和所占的体积分数决定。树脂基复合材料的力学研究表明,对于宏观均匀的树脂基复合材料,弹性特性复合是一种混合效应,表现为各种形式的混合律,它是组分材料刚性在某种意义上的平均,界面缺陷对它作用不是明显。 由于制造工艺、随机因素的影响,在实际复合材料中不可避免地存在各种不均匀性和不连续性,残余应力、空隙、裂纹、界面结合不完善等都会影响到材料的弹性性能。此外,纤维(粒子)的外形、规整性、分布均匀性也会影响材料的弹性性能。但总体而言,树脂基复合材料的刚度是相材料稳定的宏观反映。 对于树脂基复合材料的层合结构,基于单层的不同材质和性能及铺层的方向可出现耦合变形,使得刚度分析变得复杂。另一方面,也可以通过对单层的弹性常数(包括弹性模量和泊松比)进行设计,进而选择铺层方向、层数及顺序对层合结构的刚度进行设计,以适应不同场合的应用要求。 2、树脂基复合材料的强度 材料的强度首先和破坏联系在一起。树脂基复合材料的破坏是一个动态的过程,且破坏模式复杂。各组分性能对破坏的作用机理、各种缺陷对强度的影响,均有街于具体深入研究。 树脂基复合材强度的复合是一种协同效应,从组分材料的性能和树脂基复合材料本身的细观结构导出其强度性质。对于最简单的情形,即单向树脂基复合材料的强度和破坏的细观力学研究,还不够成熟。 单向树脂基复合材料的轴向拉、压强度不等,轴向压缩问题比拉伸问题复杂。其破坏机理也与拉伸不同,它伴随有纤维在基体中的局部屈曲。实验得知:单向树脂基复合材料在轴向压缩下,碳纤维是剪切破坏的;凯芙拉(Kevlar)纤维的破坏模式是扭结;玻璃纤维一般是弯曲破坏。 单向树脂基复合材料的横向拉伸强度和压缩强度也不同。实验表

航空航天先进复合材料

航空航天先进复合材料现状 2014-08-10 Lb23742 摘要:回顾了树脂基复合材料的发展史;综述了先进复合材料工业上通常使用环氧树脂的品种、性能和特性;复合材料使用的增强纤维;国防、军工及航空航天用树脂基复合材料;用于固体发动机壳体的树脂基体;用于固体发动机喷管的耐热树脂基体;火箭发动机壳体用韧性环氧树脂基体;树脂基结构复合材料;防弹结构复合材料;先进战斗机用复合材料;树脂基体;航天器用外热防护涂层材料;飞机结构受力构件用的高性能环氧树脂复合材料;碳纤维增强树脂基复合材料在航空航天中的其它应用;民用大飞机复合材料;国产大飞机的软肋还是技术问题;复合材料之惑。 关键词:树脂基体;复合材料;国防;军工;航空航天;结构复合材料 0 前言 复合材料与金属、高聚物、陶瓷并称为四大材料。今天,一个国家或地区的复合材料工业水平,已成为衡量其科技与经济实力的标志之一。先进复合材料是国家安全和国民经济具有竞争优势的源泉。到2020年,只有复合材料才有潜力获得20-25%的性能提升。 环氧树脂是优良的反应固化型性树脂。在纤维增强复合材料领域中,环氧树脂大显身手。它与高性能纤维:PAN基碳纤维、芳纶纤维、聚乙烯纤维、玄武岩纤维、S或E玻璃纤维复合,便成为不可替代的重要的基体材料和结构材料,广泛运用在电子电力、航天航空、运动器材、建筑补强、压力管雄、化工防腐等六个领域。本文重点论述航空航天先进树脂基体复合材料的国内外现状及中国的技术软肋问题 1 树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国不科学地俗称为玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、

热固性复合材料与热塑性复合材料

热固性复合材料与热塑性复合材料 1热固性树脂基复合材料 热固性树脂基复合材料是应用十分广泛的复合型材料,这种材料是经过复合而成,在多高科技产品中都得到了广泛的应用与研究,例如在大型客运机的应用中,其不仅减轻了重量,并且还优化了飞机的性能,减轻了飞机在飞行过程中的阻碍,热固性树脂具有非常优异的开发潜能,其应用领域也会在其改性后得到更大的发展。 典型的热固性树脂复合材料分为以下几种: (1)酚醛树脂复合材料:随着对阻燃材料的强烈需求,美国西化学公司,道化学公司等一系列大型化学公司都先后研制成功了新一代的酚醛树脂复合材料。其具有优异的阻燃、低发烟、低毒雾性能和更加优异的热机械物理性能。在制备这种具有阻燃效果的材料上,研究人员重新设计思路,在加入不饱和键等其他基团条件下,提高了反应速度,减少了挥发组分。使酚醛树脂复合材料在其应用领域得到大力发展。 (2)环氧树脂复合材料:由于环氧树脂本身的弱点,研究人员对其进行了两面的改性研究,一面是改善湿热性能提高其使用温度;另一面则是提高韧性,进而提高复合材料的损伤容限。含有环氧树脂所制备的复

合材料己经大力应用到机翼、机身等大型主承力构件上。 (3)双马来酞亚胺树脂复合材料:在双马来酞亚胺树脂复合材料中,由于双马来酞亚胺树脂具有流动性和可模塑性,良好的耐高温、耐辐射、耐湿热、吸湿率低和热膨胀系数小等优异性能,所以这种树脂则会广泛运用在绝缘材料、航空航天结构材料、耐磨材料等各个领域中。(4)聚酰亚胺复合材料:聚酰亚胺复合材料具有高比强度,比模量以及优异的热氧化稳定性。其在航空发动机上得到了广泛应用,主要可明显减轻发动机重量,提高发动机推重比。所以在航天航空领域得到了大力的发展和运用。 2热塑性树脂基复合材料 热塑性树脂基复合材料:其自身中的基体是热塑性树脂,该类复合材料是由热塑性树脂基体、增强相以及一些助剂组成。在热塑性复合材料中最典型和最常见的热塑性树脂有聚氯乙烯、聚乙烯、聚丙烯、聚苯乙烯、聚酰胺、聚酯树脂、聚碳酸树脂、聚甲醛树脂、聚醚酮类、热塑性聚酰亚胺、聚苯硫醚、聚飒等。 而热塑性树脂复合材料具有很多的特点,以下概述了一些热塑性树脂复合材料的特点。

合成树脂瓦多少钱一平方米

合成树脂瓦是新式建筑材料,具有色彩持久、耐腐蚀、隔热隔音、防水防火、使用寿命长等性能。合成树脂瓦的价格主要看质量,若低端树脂瓦它的工艺和材料肯定是差一点的价格有十几二十元的,高质量的合成树脂瓦大概在30-50左右。 下面,就给大家说一下为什么合成树脂瓦的价格会差那么多? 1.不惜在树脂瓦的厚度上做文章,厂家通过把树脂瓦的厚度做成了 2.0mm、 2.3mm、2.5mm2.7mm,这样看来原材料是节省了,价格甚至可相差10元。也具有竞争优势,但是寿命却大打折扣。 2.ASA合成树脂瓦,起决定性作用的还是面层的一层抗老化、抗紫外线的优质ASA,当然现在ASA工程树脂也分好的和差的,好的ASA价格达到三万多近四万一吨,差的一万多也有,差的ASA抗老化性能比较差,易褪色。所以核算整体造价至少相差6元。 3.现在有些厂家更是用ABS作为面层,因为ABS原材料几千元/吨,非常便宜。但是根据理论,ASA的抗老化耐候性能是ABS的十倍,也就是说ABS的寿命相对于ASA要差近10年。且易褪色(几个月就褪色)易脆裂(脆化温度-7℃)。 4.再有就是原材料的配比,这些原材料的价格不一样,有些通过增加碳酸钙

来增加重量,所以整体造价要低,有些通过多添加增塑剂,达到瓦具有一定的柔韧性,但增塑剂不防火,所以不达标。 5.当然以聚氯乙烯(PVC)为主要材料的价格也是决定树脂瓦价格和质量好坏的材料。有些不负责的厂家为了提高利润降低质量,用再生PVC粉料生产树脂瓦。 6.最后大家都知道每个地方的生产成本、厂房租金、人工、水电等费用也不一样,相差一两元也是决定树脂瓦整体的成本。 以上就是为大家介绍的关于合成树脂瓦多少钱一平方米的相关内容,希望对大家有所帮助!大家要记得,价格和质量是成正比的。市面上合成树脂瓦价格繁多,质量也是参差不齐,大小工厂上万家,看似一样的树脂瓦有的可以卖到四十多,有的甚至可以只卖二十多,很多人因为贪便宜,买了便宜的瓦,最后造成了一些不是很好的后果。

复合材料聚合物基体考试整理

济南大学复合材料聚合物基体考试整理 复材1108班 第一章(12分) 不饱和聚酯树脂:是指不饱和聚酯在乙烯基类交联单体(例如苯乙烯)中的溶液。不饱和聚酯:是由不饱和二元酸或酸酐、饱和二元酸或酸酐,二元醇经缩聚反应合成的相对分子质量不高的聚合物。 不饱和聚酯树脂的合成方法:熔融缩聚法、溶剂共沸脱水法、减压法、加压法。不饱和聚酯树脂的合成过程包括:线型不饱和聚酯的合成、用苯乙烯稀释聚酯。不饱和聚酯树脂固化的三个阶段:凝胶、定型、熟化。 最常用的交联单体:是苯乙烯。 酸值:中和一定量的不饱和聚酯树脂所消耗的氢氧化钾的毫克数。 固化:粘流态树脂体系发生交联反应而转变成为不溶、不熔的具有体型网络结构的固态树脂的全过程。 引发剂:是能使单体分子或含双键的线型高分子活化而成为游离基并进行连锁聚合反应的物质。 有机过氧化物的通式为:R-O-O-H或R-O-O-R。其中的R基团可以是:烷基、芳基、酰基、碳酸酯基。 有机过氧化物的特性是用:活性氧含量、临界温度、半衰期来表征的。 通用型不饱和聚酯树脂具有下列技术指标:粘度、酸值、凝胶时间、固体含量。工业上生产不饱和聚酯树脂的方法有:一步法、二步法。 增粘剂:能使不饱和聚酯树脂粘度增加的物质。 阻聚剂:使单体与不饱和聚酯不能发生聚合反应的物质。 不饱和聚酯树脂的固化是一种游离基型共聚反应,具有链引发、链增长 链终止三个游离基型聚合反应的特点。 影响树脂增粘过程的因素:树脂的起始粘度、不饱和聚酯的结构、增粘剂的种类与用量、体系的水分含量、填料的种类。 常用的交联剂分为:单官能团单体、双官能团单体、多官能团单体。 酸酐中的反式双键比顺式双键活泼。 第二章(6分) 环氧树脂:指分子中含有两个或两个以上环氧基团的那一类有机高分子化合物。环氧树脂分5类:缩水甘油醚类、缩水甘油酯类、缩水甘油胺类、线型脂肪族类、脂环族类。 环氧值:是指每100g树脂中所含环氧基的克当量数。 环氧当量:含有1克当量环氧基的环氧树脂的克数。 半衰期:在给定温度下,有机过氧化物分解一半所需要的时间。 常用的脂肪族胺类固化剂有:二乙烯三胺(H2NCH2CH2NHCH2CH2NH2)、三乙烯四胺(H2NCH2CH2NHCH2CH2NHCH2CH2NH2)、四乙烯五胺(H2NCH2CH2NHCH2CH2NHCH2CH2NHCH2CH2NH2)。 用于环氧树脂的固化剂有两类:反应性固化剂、催化性固化剂。 E-44表示主要组成物质为:二酚基丙烷,环氧平均值为0.44。 稀释剂:用来降低环氧树脂的粘度。主要有两种:活性稀释剂、非活性稀释剂。增韧剂:能够改善环氧树脂固化物的抗冲击强度、耐热冲击性能。主要分为:活性增韧剂、非活性增韧剂。 第三章(4分)

树脂基复合材料的发展史

树脂基复合材料的发展史 树脂基复合材料(Resin Matrix Composite)也称纤维增强塑料(Fiber Reinforced Plastics),是目前技术比较成熟且应用最为广泛的一类复合材料。这种材料是用短切的或连续纤维及其织物增强热固性或热塑性树脂基体,经复合而成。以玻璃纤维作为增强相的树脂基复合材料在世界范围内已形成了产业,在我国俗称玻璃钢。 树脂基复合材料于1932年在美国出现,1940年以手糊成型制成了玻璃纤维增强聚酯的军用飞机的雷达罩,其后不久,美国莱特空军发展中心设计制造了一架以玻璃纤维增强树脂为机身和机翼的飞机,并于1944年3月在莱特-帕特空军基地试飞成功。从此纤维增强复合材料开始受到军界和工程界的注意。 第二次世界大战以后这种材料迅速扩展到民用,风靡一时,发展很快。1946年纤维缠绕成型技术在美国出现,为纤维缠绕压力容器的制造提供了技术贮备。 1949年研究成功玻璃纤维预混料并制出了表面光洁,尺寸、形状准确的复合材料模压件。1950年真空袋和压力袋成型工艺研究成功,并制成直升飞机的螺旋桨。 60年代在美国利用纤维缠绕技术,制造出北极星、土星等大型固体火箭发动机的壳体,为航天技术开辟了轻质高强结构的最佳途径。在此期间,玻璃纤维-聚酯树脂喷射成型技术得到了应用,使手糊工艺的质量和生产效率大为提高。 1961年片状模塑料(Sheet Molding Compound, 简称SMC)在法国问世,利用这种技术可制出大幅面表面光洁,尺寸、形状稳定的制品,如汽车、船的壳体以及卫生洁具等大型制件,从而更扩大了树脂基复合材料的应用领域。 1963年前后在美、法、日等国先后开发了高产量、大幅宽、连续生产的玻璃纤维复合材料板材生产线,使复合材料制品形成了规模化生产。拉挤成型工艺的研究始于50年代,60年代中期实现了连续化生产,在70年代拉挤技术又有了重大的突破,近年来发展更快。除圆棒状制品外,还能生产管、箱形、槽形、工字形等复杂截面的型材,并还有环向缠绕纤维以增加型材的侧向强度。目前拉挤工艺生产的制品断面可达76cm×20cm。 在70年代树脂反应注射成型(Reaction Injection Molding, 简称RIM)和增强树脂反应注射成型(Reinforced Reaction Injection Molding, 简称RRIM)两种

热塑性树脂和热固性树脂的概念和区别

热塑性树脂和热固性树脂的概念和区别 热固性树脂简介 树脂加热后产生化学变化,逐渐硬化成型,再受热也不软化,也不能溶解。热固性树脂其分子结构为体型,它包括大部分的缩合树脂,热固性树脂的优点是耐热性高,受压不易变形。其缺点是机械性能较差。热固性树脂有酚醛、环氧、氨基、不饱和聚酯以及硅醚树脂等。 指在加热、加压下或在固化剂、紫外光作用下,进行化学反应,交联固化成为不溶不熔物质的一大类合成树脂。这种树脂在固化前一般为分子量不高的固体或粘稠液体;在成型过程中能软化或流动,具有可塑性,可制成一定形状,同时又发生化学反应而交联固化;有时放出一些副产物,如水等。此反应是不可逆的,一经固化,再加压加热也不可能再度软化或流动;温度过高,则分解或碳化。这也就是与热塑性树脂的基本区别。 在塑料工业发展初期,热固性树脂所占比例很大,一般在50%以上。随着石油化工的发展,热塑性树脂产量剧增,到80年代,热固性树脂在世界合成树脂总产量中仅占10%~20%。 热固性树脂在固化后,由于分子间交联,形成网状结构,因此刚性大、硬度高、耐温高、不易燃、制品尺寸稳定性好,但性脆。因而绝大多数热固性树脂在成型为制品前,都加入各种增强材料,如木粉、矿物粉、纤维或纺织品等使其增强,制成

增强塑料。在热固性树脂中,加入增强材料和其他添加剂,如固化剂、着色剂、润滑剂等,即能制成热固性塑料,有的呈粉状、粒状,有的作成团状、片状,统称模塑料。热固性塑料常用的加工方法有模压、层压、传递模塑、浇铸等,某些品种还可用于注射成型。 热固性树脂多用缩聚(见聚合)法生产。常用热固性树脂有酚醛树脂、脲醛树脂、三聚氰胺-甲醛树脂、环氧树脂、不饱和树脂、聚氨酯、聚酰亚胺等。热固性树脂主要用于制造增强塑料、泡沫塑料、各种电工用模塑料、浇铸制品等,还有相当数量用于胶粘剂和涂料。 从发展看,热固性树脂还在进一步改进质量,研制新品种,以满足新加工工艺开发的要求。用弹性体和热塑性树脂进行改性、开发注塑级热固性模塑料以及反应注射成型用专用树脂及配方,近年来已受到很大重视。采用互穿聚合物网络技术将为热固性树脂的合成开辟新途径。 热固性树脂的分类 除不饱和聚酯树脂、环氧树脂、酚醛树脂外,热固性树脂主要有以下品种。 一、三聚氰胺甲醛树脂 三聚氰胺甲醛树脂是由三聚氰胺和甲醛缩聚而成的热固性树脂。用玻璃纤维增强的三聚氰胺甲醛层压板具有高的力学性能、优良的耐热性和电绝缘性及自熄性。

图文详解安装合成树脂瓦时屋面节点的防水处理

图文详解安装合成树脂瓦时屋面节点的防水处理 目前,合成树脂瓦已得到广泛使用,但是在安装时,往往还是会出现各种问题,导致后期房屋漏雨。最主要的原因就是,合成树脂瓦在安装时不够规范,各个屋面节点位置处理的不好。下面坤宝建材小编就图文结合的详细介绍一下合成树脂瓦各个节点的防水处理方法: 1、挑檐处理 为使边檐和屋檐有效排水,同时保护下面檐板,檐口部位宜选用合成树脂封檐板。无檐沟挑檐,合成树脂封檐板由屋面边檐向内伸进100mm向下弯曲盖住檐口,在安装瓦前先将合成树脂封檐板按图6-1所示固定在檐口及檩条上。钢筋混凝土檐沟挑檐的安装方法也是一样的,节点处理如图6-2所示。 2、山墙封檐泛水的处理 屋面与女儿墙体交接处的泛水处理:合成树脂瓦板按图6-3尺寸加工完毕后,一端用射钉固定在墙面上,另一端固定在瓦波上。 盖板泛水:当屋面与垂直于屋面的墙体交接处的泛水处理完毕后,将合成树脂瓦泛水盖板分别固定在山墙两侧,见图6-5所示。

备注:水箱、烟囱泛水与屋面瓦为四面相交,可分正面泛水,弯折泛水。正面上泛水是指屋面瓦位于构筑物斜上坡,可将合成树脂瓦板按图6-3尺寸加工,下端固定在构筑物腰线下面,上端固定在屋面瓦下檩条上面。正面下泛水是指屋面瓦位于构筑物斜下坡,可将合成树脂瓦板按图6-4尺寸加工,上端固定在构筑物腰下面,下方固定在瓦面上。弯折泛水是指屋面瓦位于构筑物两侧斜面相交,加工方式与正面下泛水是一样的,如图6-5所示。 3、天窗泛水处理 在屋面瓦安装前可先将天窗两侧和上坡的金属板固定在屋面上,当天窗下坡的瓦安装完毕后再将金属排水板覆盖在瓦上,如图6-6所示。

4、老虎窗周边排水处理 为使老虎窗上面雨水有效排泄,应在老虎窗上方两侧设置排水槽,如图所示。

树脂基复合材料复习要点

1.功能复合材料主要由功能体和基体组成,或由两种(或两种以上)的功能体组成。 2.材料在复合后所得的复合材料,依据其产生复合效应的特征,可分为线性效应和非线性效应。 3.燃烧过程,大致分为五个不同的阶段:(1)加热阶段;(2)降解阶段;(3)分解阶段;(4)点燃阶段;(5)燃烧阶段。 4.氧指数(OI)愈高,表示燃烧愈难。当OI<22时,为易燃性塑料;当OI在22—27之间时,为自熄性塑料;当OI > 27时,为难燃塑料 5.在美国UL-94防火标准中,塑料阻燃等级由HB,V-2,V-1向V-O逐级递增。 6.阻燃机理有多种:保护膜机理、不燃性气体机理、冷却机理、终止链锁反应机理、协同作用体系。 7.非金属材料的腐蚀类型按腐蚀机理分类①物理腐蚀②化学腐蚀③大气老化④环境应力开裂 8.为了弄清材料的腐蚀机理,进一步对其寿命进行预测,对其进行的实验以试验场所划分,可分为现场试验及实验里试验。 9.摩阻复合材料一般由增强体、摩擦功能调节体与基体等构成,各组分在摩擦材料中的作用是不同的。 10.列举三种常见的水溶性高分子聚合物:聚乙二醇、聚乙吡咯烷酮、聚乙烯。 11.防辐射服是利用服饰内金属纤维构成的环路产生感生电流,有感生电流产生反向电磁场进行屏蔽。 12.吸波材料之所以能够吸收进入材料内部的电磁波主要是由于电磁波在材料内部产生电损耗或磁损耗而使电磁波的电磁性能转化为其他形式的能量散失掉,从而达到减少反射的目的。 13.电损耗介质的吸波机理主要是松弛极化、磁性介质在交变磁场的作用下产生能量损耗的机制有:①磁滞损耗②涡流损耗③剩磁效应④磁共振。 14.密封材料的耐磨性通常以磨损率的倒数来表示。 15.影响玻璃钢透光率的主要因素:玻璃纤维和粘结剂的折射指数;玻璃纤维和粘结剂的光吸收系数;玻璃纤维的直径及其在玻璃钢中的体积含量。 16.阻尼特性可以通过对数衰减率δ与阻尼因子η两种方式来描述。 17.复合材料用于装甲防护主要有两种形式,即单纯的纤维织物和复合材料层合板。 18.防弹复合材料所用的纤维通常为玻璃纤维、尼龙纤维、芳纶和超高分子量聚乙烯纤维,最近开发出具有目前最高强度的聚苯并噁唑(PBO)纤维。 19.理想的树脂基体应具有耐高温、高韧性、高强度、低模量等性能,以及低成本。常用的树脂基体有:( )、( )、低密度聚乙烯、交联聚异戊二烯、聚丙烯等。 20.抗辐射聚合物基体一般在分子主链上具有多重环,如环氧树脂、聚酰亚胺树脂、聚醚砜、聚醚醚酮树脂等均具有良好的耐辐射性。 21.功能复合材料:除力以外而提供其它物理性能的复合材料即具有各种电学性能、磁学性能、光学性能、热学性能、声学性能以及摩擦、阻尼等性能。 22.高分子纳米复合材料:是由各种纳米单元和高分子复合而成的一种新型复合材料,其中纳米单元按化学成分分为金属陶瓷高分子和无机非金属。 23.燃烧氧指数:指试样像蜡烛状持续燃烧时,在氮-氧混合气流中所必须的最低氧含量。

树脂瓦报价

出现褪色、老化等情况,合成树脂瓦等一些大的商家、厂家则基本可以杜绝这种现象。所以大家在购买树脂瓦时不要贪图便宜,购买一些价格低的劣质产品,一定要选择有保障的大厂家。那么这种树脂瓦大厂家的报价一般都是多少呢? 树脂瓦的价格主要与生产厂家有着直接关系,每个厂家的报价或多或少都会有些差别,如您想要获取详细价格,建议还是咨询具体的厂家! 河南华航瓦业有限公司位于中原腹地,朝歌之城---河南省鹤壁市,公司地理环境优越,交通方便,东距京港澳高速和高铁站3公里,西距107国道仅2公里;工厂占地20000平方米,高级技师2名,技师4名,技工40余名,是一家从事新型建筑材料研发和生产的专业化公司,以生产销售研发各种规格菱镁瓦,加长彩釉瓦,铝箔复合瓦,覆抗老化膜瓦等产品为主,本公司生产的瓦制品具有款式多样化,产品强度高,色泽艳丽,长度任选,防腐保温,隔热隔音,防

一、树脂瓦的特点 (1)超强的耐候性、色彩持久性:选用超高耐候性工程树脂瓦的表面材料,这种耐候性树脂在自然环境中具有超乎寻常的耐候性。它即使长期暴露于紫外线、强光、潮湿、寒热等恶劣环境下,仍能保持其颜色和物流性能的稳定性。 (2)隔音效果好:通过音位测定实验表明,在遭受暴雨、冰雹、大风等外界噪音影响时,它能很好的吸收噪音和减少噪音的穿过。 (3)合成树脂瓦的带热系统为0.325W/m.K,是粘土瓦的1/3,厚水泥瓦,琉璃瓦的1/5,0.5mm厚彩钢瓦的1/2000,在不考虑加保温层的情况下,它的隔热保温性能已经达到最佳效果。 (4)环保型合成树脂瓦在低温(-400C)冻融循环下,经落球冲击实验,1公斤重钢球1米高自由落下,无碎裂现象;在常温下(23±20C)经落球冲击实验,1公斤重钢球3米高自由落下,在瓦的表面上不会产生裂纹或贯穿洞。 (5)优异的耐腐蚀性能:合成树脂瓦主体树脂和表面树脂都具有特别好的耐腐蚀性能,不会被雨雪侵蚀,并可长期抵御酸、碱、盐等各种化学物质的侵蚀;实验证明,在40%N2OH、40%H2SO4溶液中,浸渍24小时,产品不会变形或变色。各种微生物也无法在瓦的表面生存。 (6)卓越的防水性能:合成树脂瓦所寻用的高耐侯树脂本身致密且不吸水,不存在微孔渗水的问题。树脂瓦单张面积大,屋面接缝小,且搭接处结合严密,与传统小块瓦相比防水性能更加突出。 (7)体积稳定性高:它的膨胀系数为4.93×10.5/0C加之瓦型在几何形状

复合材料的基体材料

复合材料的基体材料 热塑性基体的缺点: ?、是热塑性基体的熔体或溶液粘度很高,纤维浸渍困难,预浸料制备及制品成型需要在高温高压下进行, ?、聚碳酸酯或尼龙这样一些工程塑料,因耐热性、抗蠕变性或耐药品性等方面问题而使应用受到限制。二、热固性基体热固性基体主要是不饱合聚酯树脂、环氧树脂、酚醛树脂一直在连续纤维增强树脂基复合材料中占统治地位。不饱合聚酯树脂、酚醛树脂主要用于玻璃增强塑料,其中聚酯树脂用量最大,约占总量的80,,而环氧树脂则一般用作耐腐蚀性或先进复合材料基体。 (一) 热固性树脂下表为一些常用的热固性树脂其它物理性能 1(不饱和聚酯树脂 1 不饱和聚酯树脂及其特点不饱和聚酯树脂是指有线型结构的,主链上同时具有重复酯键及不饱和双键的一类聚合物。不饱和聚酯的种类很多,按化学结构分类可分为顺酐型、丙烯酸型、和丙烯酸环氧酯型聚酯树脂。不饱和聚酯树脂在热固性树指中是工业化较早,产量较多的一类,它主要应用于玻璃纤维复合材料。由于树脂的收缩率高且力学性能较低,因此很少用它与碳纤维制造复合材料。但近年来由于汽车工业发展的需耍,用玻璃纤维部分取代碳纤维的混杂复合材料得以发展,价格低廉的聚酯树脂可能扩大应用。不饱和聚酯的主要优点是: ,、工艺性能良好, 如室温下粘度低,可以在室温下固化,在常压下成型,颜色浅,可以制作彩色制品,有多种措施来调节其工艺性能等; ,、固化后树脂的综合性能良好,并有多种专用树脂适应不同用途的需要; ,、价格低廉,其价格远低于环氧树脂,略高于酚醛树脂。不饱和聚酯的主要缺点是: 固化时体积收缩率较大,成型时气味和毒性较大,耐热性、强度和模量都较低,易变形,因此很少用于受力较强的制品中。 2 交联剂、引发剂和促进剂 a 交联剂不饱和聚酯分子链中含有不饱和双键,因而在热的作用下通过这些双键,大分子链之间可以交联起来,变成体型结构。但是

环氧树脂基复合材料

环氧树脂基复合材料 1.前言 环氧树脂是聚合物基复合材料中应用最广泛的热固性树脂之一,对环氧树脂的改性及应用技术研究也一直没有停止过。环氧树脂是先进复合材料应用最广泛的树脂体系。它可以适用于多种成型工艺,可配制成不同配方。可调节粘度范围大以便适用于不同的生产工艺。它的存储寿命长,固化不释放出挥发物,固化收缩率低,固化后的制品具有极佳的尺寸稳定性、良好的耐热、耐湿性能和高的绝缘性,因此,目前环氧树脂统治着高性能复合材料的发展。 2.环氧树脂简介 2.1环氧树脂的性质 环氧树脂是泛指分子中含有两个或两个以上环氧基团的有机高分子化合物,除个别外,它们的相对分子质量都不高。环氧树脂的分子结构是以分子链中含有活泼的环氧基团为其特征,环氧基团可以位于分子链的末端、中间或成环状结构。由于分子结构中含有活泼的环氧基团,使它们可与多种类型的固化剂发生交联反应而形成不溶、不熔的具有三向网状结构的高聚物。环氧树脂具有以下的性质: (1) 力学性能高。环氧树脂具有很强的内聚力,分子结构致密,所以它的力学性能高于酚醛树脂和不饱和聚酯等通用型热固性树脂。 (2) 附着力强。环氧树脂固化体系中含有活性极大的环氧基、羟基以及醚键、胺键、酯键等极性基团,赋予环氧固化物对金属、陶瓷、玻璃、混凝士、木材等极性基材以优良的附着力。 (3) 固化收缩率小。一般为1%~2%。是热固性树脂中固化收缩率最小的品种之一(酚醛树脂为8%~10%;不饱和聚酯树脂为4%~6%;有机硅树脂为4%~8%)。线胀系数也很小,一般为6×10-5/℃。所以固化后体积变化不大。 (4) 工艺性好。环氧树脂固化时基本上不产生低分子挥发物,所以可低压成型或接触压成型。能与各种固化剂配合制造无溶剂、高固体、粉末涂料及水性涂料等环保型涂料。(5) 优良的电绝缘性。环氧树脂是热固性树脂中介电性能最好的品种之一。 (6) 稳定性好,抗化学药品性优良。不含碱、盐等杂质的环氧树脂不易变质。

相关文档
最新文档