buck开关电源EMI抑制

buck开关电源EMI抑制
buck开关电源EMI抑制

Reducing Emissions in the Buck Converter SMPS

减少Buck变换器开关电源的EMI发射

Abstract

?Switched Mode Power Supply demands are increasing, as the electronics industry requires more DC-DC conversion. In the past, linear regulators

have been used to regulate power, but as the difference between supply voltages and desired output voltage increases, they become very inefficient.

The BUCK power supply is efficient in converting higher voltages to lower voltages, but unfortunately in the process, both change in current (dI/dt) and change in voltage (dV/dt) are experienced. These changing parameters can cause excessive emissions in the RF spectrum, in conducted and radiated forms. We will examine the modes under which these emissions are

allowed to propagate, and investigate techniques used to reduce them.

?开关电源的需求正在增加,如电子行业需要更多的DC -DC转换。在过去,常用线性稳压器,但随着电源电压和所需的输出电压之间的差额的增加,它们变得非常低效。BUCK降压型电源在将高电压变到低电压时有更高的转换效率,但不幸的是,在这个过程中,电流的变化(di/ dt)和电压的变化(dv/ dt)都是经常的。这些不断变化的参数可能会以传导和辐射的形式造成超标发射的RF频谱。我们将研究发射被传播的模式,调查减少它们可采用的技术。

Introduction

?One primary contributor to the low frequency emissions is the switching frequency of the converter, found typically in the 100’s of kHz range. Energy at the fundamental

frequency along with several of its harmonics can find its way out onto the wire harness and radiate effectively.

These emissions are derived from, among other things, the sudden changes in current flow (dI/dt) as a result of the regulator (SMPS IC in Figure 1) turning on and off

during its periodic cycle.

?

导言

低频EMI发射的一个主要贡献者是转换器的开关频率,典型的发现在几百kHz的频率范围。基频与它的几个谐波的能量可以在线缆上找到它的出路形成辐射。除其他外,这些发射是来自于调整器(SMPS IC in Figure 1)在它的周期循环中不停地开和关引起的电流突变(dI/dt)所造成的结果。

Figure 1. Typical BUCK SMPS Circuit Diagram.图1 典型的BUCK开关电源简图

?When the SMPS IC turns ON, the current flows through L1, SMPS IC, L2, and is delivered to the load (in parallel with C4). When the SMPS IC turns OFF, the current flowing through the SMPS IC stops. At this same moment, the energy stored in the inductor (L2) is released to the load, as the “free-wheeling”diode (CR1) begins

conducting. It is this switching that creates current flow discontinuities at the input to the power supply. These current spikes in turn can drive the wire harness, attached to the product (Position 1 in Figure 1), like a transmitting antenna. Equation 1 can be used to calculate resonant frequencies (Hertz) of the cabling; substitute the length of the attached cable (meters) for l, and the speed of light (3x108m/s) for C. Using 2, 4, and 20 times the length of the attached cable for l allows other resonant frequencies to be calculated. If any resonant frequencies of the cabling correspond with undesired RF frequencies coming from the Power Supply, the resonance can exaggerate the RF emissions problem.

?当SMPS IC打开,电流流经L1,SMPS IC,L2,并交付给负载(并联电容C4 )。当SMPS IC关闭,电流到SMPS IC停止。在这同一时刻,储存在电感(L2)上的能量释放给负载,因为“free-wheeling”二极管(CR1 )开始导通。正是这种开关转换,造成电源输入电流的不连续性。这些电流峰值反过来可以推动连到产品上的线束(图1位置

1 ),如发射天线。方程1可用于计算电缆的谐振频率(赫兹); λ替代成附加电缆的长

度L(米),光速C为3x108米/秒,用2 ,4 ,和20倍的电缆长度,可计算其他谐振频率。如果有任何与电缆长度相关的共振频率,不受欢迎的RF频率从电源发出,共振可以恶化RF辐射问题。

λ= C / f(1)

Figure 2

Figure 2 shows discontinuities at the input to the power supply (measuring between VIN of the SMPS IC and ground) while the regulator is switching. Notice that the discontinuities at VIN correspond directly to sharp changes in the SMPS IC’s output voltage (measured between Figure 1 position 4, and ground).

图2示出在整流器转换时电源输入的不连续性(测量SMPS IC 的VIN和ground),。请注意,在VIN的不连续性直接对应SMPS IC的输出电压的急剧变化(测量图1的位置4和ground之间)。

?At the output of the regulator (position 4 in Figure 1), dur-ing switching states, two separate resonant RLC networks can be defined. These networks produce an under-damped response when “excited”

by a step function (ie. switching!) and allow high frequency ringing to oscillate for several cycles.

?在稳压器的输出(图1中的位置4),在转换状态,两个单独的共振RLC网络可以被界定。这些网络在开关阶梯激励下产生不完全衰减响应,并允许高频振铃振荡几个周期。

?Broadband RF emissions commonly seen anywhere from 40 –140 MHz are a direct result of this ringing. The R, L, and C components that make up the networks are defined by the path that the current flow takes during each switch state. RLC network #1 is formed when the SMPS IC output turns OFF. In this state the current flows from ground through CR1, L2, C4, and the LOAD.

?到处常见从40 -140兆赫的宽带射频发射,就是这个振铃的直接结果。组成网络的R ,L和C元件,由在每个开关状态电流流动的路径确定。SMPS IC 输出关闭时形成RLC network #1,在该状态电流流动从ground通过CR1, L2, C4,和负载。

?Each of these devices has impedance that is made up of R’s, L’s, and C’s (including the PCB layout traces and parasitics). When combined, these properties form the resonant network that gets

“excited”by the step response of the switching (ON -OFF, or OFF-ON).

?所有这些器件都有RLC形成的阻抗(包括PCB布局线迹和寄生)。组合后,这些参数形成谐振网络,获得由开关阶跃(ON -OFF, 或OFF-ON))的“激励”。

?RLC network #2 is formed when the SMPS IC output turns ON. In this state, the current flows from the OUT pin of the SMPS IC (Figure 1), through L2, C4, and the LOAD.

?RLC network #2形成于SMPS IC输出打开。在此状态下,电流流动从SMPS IC的输出引脚(图1 ),通过L2,C4和负载。Each of these two paths has a unique frequency response, and is tuned

differently.

?这两个路径有着独特的频率响应,并调整不同。

?An RC snubber circuit (R1 & C3) can be added in parallel to the output of the regulator to create a more “dampened”response in the two unique RLC networks.

?一个RC缓冲电路(R1 & C3)可以并行增加到调节器的输出上,在这两个独特的RLC网络上以产生一个更加“dampened”的响应

?If values are chosen correctly, the snubber circuit will reduce the amplitude and number of cycles of the unwanted ringing. See waveforms in Figure 3 that illustrate this ringing. Note the frequency of the ringing is directly related to high frequency emissions seen during testing (see Figure 4 @ 60MHz).?如果值是选择正确的话,缓冲电路将减少一些不想要的振铃的振幅和持续周期数。看波形图3可说明此振铃。注意振铃的频率,与高频发射测试过程中看到的直接相关(见图4 @ 60MHz )。

Figure 3. Leading edge, ringing waveforms.

Ringing measured on the output of the regulator (position 4 in Figure 1) also affects the current flow through the output inductor, and causes a corresponding change in the magnetic field surrounding the device. This changing magnetic field can couple onto neighboring traces or planes allowing the RF energy to proliferate throughout the board.在稳压器输出端测量到的振铃(在图1位置4 )也影响到流经输出电感的电流,并引起了器件周围的磁场的相应的变化。这一变化的磁场可以耦合到旁边的线迹或平面使RF能量扩散到整个板。

Layout Considerations布局考虑

?

One of the most important layout considerations for buck converters is to minimize parasitic capacitance and inductance at the output of the regulator. Parasitics contribute significantly to the ringing and other distortion on the output waveform. Do not place a ground

plane on any layer of the board stack-up directly below inductor L2;

this creates the parasitic capacitance that should be avoided. An option to consider would be to place a power bus (+) beneath

inductor L2 if using a multi-layer board.

?

对降压转换器布局考虑其中最重要的是尽量减少稳压器的输出端的寄生电容和电感。寄生对输出波形的振铃和其他失真作出重大贡献。不要在电感L2直接下面任何层上安排一个接地面;这创造了寄生电容,应加以避免。如果使用多层电路板,一种可选考虑将是在电感L2下方放一个电源总线(+ )。

Loop Areas环面积

?Loop areas need to be controlled and minimized (physical area) in the layout to reduce overall emissions. A loop formed between the output pin of the SMPS IC and the ground on the load

(connected across C4) contains large amplitude dI/dt waveforms and must be controlled to the fullest extent possible. Another loop is formed between position 1 and position 3 in Figure 1.

?

为降低整体的辐射,布局中对环面积需要控制和减少到最低限度(物理面积)。在SMPS IC的输出引脚与负载(connected across C4)的ground之间形成的环,包含大振幅的dI/dt波形,必须予以尽可能充分的控制,图1上位置1和3之间形成另一回路。

?Finally, a loop area formed between the input to the supply (position 1) (usually at the main connector) and the ground to the SMPC IC, contains small discontinuities (dV/dt and dI/dt).

?最后,在电源输入(position 1,通常是主要的连接器)和SMPC IC的ground之间形成一个环面积,包含小的不连续(dV/dt and dI/dt) 。

?Loop areas are kept small through proper floor planning and routing of traces.

?通过适当的布局规划和布线保持小的环面积

?Initially our output stage (CR1, L2, C4) was not properly designed and the loop area formed there was approximately 3 in2.

?最初我们的输出级(CR1, L2, C4)未妥善设计,形成的环面积有大约三平方英寸。

?Redesigning the output stage allowed us to reduce the area to 1.5 in2.

?重新设计输出级,使我们能够减少该面积到一点五平方英寸。

?This change brought improvements in the amount of cycles and amplitude of the unwanted ringing on the output (Figure 1 position 4).

?Although this was not the only change to the design, reducing this loop area had a direct correlation to reducing broadband emissions in the frequency range of 40MHz –140MHz (Figures 4 & 5).

?这种变化带来了对输出上(图1位置4 )不必要的振铃的持续周期数和振幅的改进。虽然这不是设计上唯一的改变,但减少该环路面积与减少40MHz -140MHz频率范围宽带发射直接相关(图4和5 )。

Feedback Trace反馈线

?The feedback trace is used by the SMPS IC to sense the status of its output (connected between C4 and the feedback pin of the SMPS IC). Therefore, it is critical to route it away from any noisy circuitry, in particular, the output inductor L2. If using a multi-layer PCB, the

feedback trace of the regulator can be embedded in a layer below the top layer (further down the board stack-up) and shielded by

ground from the layers above and below. A ferrite may also be

placed in series with this trace to reduce RF energy that can enter the SMPS IC and can adversely influence the output waveform.

?

SMPS IC使用反馈线感知其输出状态(C4和SMPS IC反馈引脚之间连接的)。因此,关键是要让它的布线远离噪音电路,尤其是输出电感L2 。如果使用多层电路板,调节器的反馈线可以嵌入在最上层以下的一个层,从在上面和下面用地面层屏蔽。铁氧体也可串入在这一反馈线上,以减少能进入SMPS IC并对输出波形产生不利影响的射频能量。

Component Considerations

组件思考

?Whenever possible, use surface mount devices to minimize lead inductance. L2 should be a closed core inductor. This type of

component keeps most of the magnetic field confined within the core during the switching of the regulator. Industry suppliers have various options to choose from. The best approach is to ask vendors for

samples, and try each type during testing. Choosing the right device is a key factor in reducing emissions, since the field surrounding the inductor is constantly changing (i.e. ringing, switching current) and can couple to neighboring components and traces, etc.

?只要有可能,使用表面贴装器件,以减少引线电感。L2应该是一个封闭磁芯电感。这种类型的组件在调节器开关动作时可保持大多数磁场局限于磁芯。工业供应商的各种选择方案可供选择。最好的办法是要求供应商提供样品,并尝试测试每种类型。选择正确的器件是一个减少发射的关键因素。因为电感周围的场是不断变化的(即振铃,开关电流),并可以耦合到邻近的元件和迹线等

Snubber Circuit缓冲电路

? A snubber circuit can be used in parallel with the output of the SMPS IC (Figure 1 position 4 to ground) to reduce distortion and ringing on the output waveform. Typically this circuit is located between the “free-wheeling diode CR1,”and the output inductor L2.

?This circuit works like a high frequency shunt to allow RF energy to return to ground (i.e. capacitor to ground).

?One important factor to consider when choosing to use a snubber circuit is that you must sacrifice some efficiency in the power conversion.

?Some of the power will be dissipated in the snubber circuit itself

?The series resistor is used to limit the amount of RF current taking this path to ground and the capacitor is used to “tune”the frequency.

?The switching waveform at the location of the snubber circuit is primarily a square wave, and Fourier theory states that it contains high frequency content that is dependent upon the rise time of the waveform.

?Consequently, without a series resistor in the snubber circuit, there will be significant power dissipation in the shunt capacitor. The snubber circuit can be effective at reducing broadband RF emissions typically seen between 40MHz and 140MHz. Typical values are R = 20 ohms, and C = .01uf. Also, low parasitic inductance components should be used to avoid forming resonant tank circuits. Therefore, avoid using wire-wound resistors, or leaded capacitors.

?缓冲电路可用于并联到SMPS IC输出上(图1中位置4到地),以减少输出波形的失真和振铃。通常这个电路位于free-wheeling diode CR1和输出电感L2之间的。这个电路具有高频分流作用,使RF能量返回地面(即电容器到地)。

?当你选择使用一个缓冲电路时需要考虑的一个重要因素是这样做必须牺牲电源转换的一些效率。

?部分功率将消耗在缓冲电路本身。

?该串联电阻是用来限制这条途径到地的射频电流,电容是用来“调”频率。

?缓冲电路位置的开关波形主要是一个方波,按傅立叶理论,它包含的高频成分取决于波形的上升时间。?因此,在缓冲电路如果没有一个串联电阻,将有显著的功耗消耗在并联电容器上。该缓冲电路可以有效地减少通常可见的40MHz到140MHz之间宽带射频发射量。典型值为R = 20欧姆,和c = 0.01 uf。此外,应使用低寄生电感元件,以避免形成谐振电路。因此,避免使用线绕电阻或引线电容。

Diode

二极管

?The diode (CR1) should be placed on the same side of the PCB where the other power supply circuitry is placed. This is done in order to minimize inductance (by avoiding the use of vias) while the diode is in “conduction”mode and current is flowing through the diode (CR1) and out to the LOAD (C4). This proved to be very beneficial for reducing the emissions near 70 MHz. Diodes that are available in the industry can have various switching characteristics such as: soft start, ultra slow start and fast start. These terms refer to how fast or slow the diode switches from the reverse diode block mode (when the SMPS IC output is ON), to the forward conducting mode (when the SMPS IC is OFF). Much of this parameter has to do with the forward voltage required to “setup”the p-n junction. Tradeoffs must be considered when selecting the freewheeling diode and the output inductor. The longer the inductor is in a non-steady state mode, the more heat it will be required to dissipate.

?二极管(CR1 )应放在印刷电路板上的其他供电电路同一面。这样做是为了尽量减少电感(避免使用过孔),而二极管是在“导通”模式和电流是流经二极管(CR1 )和向负载(C4)。这被证明对减少接近70兆赫的发射是非常有益的。工业中能得到的二极管,可以有不同的开关特性,如:软启动,超慢启动,快速启动。这些条款是指当从二极管的反向阻塞模式(SMPS IC output开),转换成正向导通模式(SMPS IC关闭)转换速度有多快或多慢。需要正向电压“setup”PN结。必须权衡考虑选择freewheeling二极管和输出电感。时间越长,电感是一种非稳态模式,更多的热量将需要消散。

When selecting diodes from vendors, look for the symbol “Vf”that indicates the forward voltage required to turn the diode on. A smaller voltage rating means that the diode will turn on faster.

Each diode has its own characteristic impedance that can affect the nature of the high frequency emission (40MHz –140MHz). The process of selecting the right diode can be trial and error. This is due to the parasitic inductance and capacitance inherent and unique to each individual layout. If you have test equipment available, one of the best ways to approach this is to obtain samples from vendors and place each diode on the PCB while observing the RF emissions performance.?在选择二极管供应商,寻找有符号“Vf”,表明需要正向电压打开二极管。一个较小的额定电压是指二极管就会更快。每个二极管都有自己的特性阻抗,可以影响高频发射(40MHz -140MHz )的性质,。选择合适的二极管的过程中可以反复试验和除错。这是由于每一个独特的布局,寄生电感和电容也是固有的、独特的。如果你得到测试设备,最佳途径之一,从供应商获取样品,每个二极管安装到PCB上,同时验证RF发射性能。

Front End Filtration前端过滤

?

Clean input power is critical for “quiet”SMPS IC operation. In order to reduce the RF emissions within the low frequency range (i.e.

switching frequency up to several Megahertz), front-end filtration must be carefully selected. Given that there are two types of

discontinuities seen at the input to the SMPS IC (i.e. voltage and current), two types of filtering need to be addressed.

?为使SMPS IC“安静”运行,清洁输入电源是至关重要的。为了减少低频范围内(即从开关频率至高达数兆赫)RF发射,前端滤波必须仔细挑选。鉴于看到SMPS IC输入端有两种类型的不连续性(即电压和电流),两种类型的滤波需要加以解决。

Series Inductance

串联电感

?The series inductor (L1) stores energy and releases it as necessary to reduce current spikes. Caution should be used when selecting this inductor. First, the device should be properly rated for steady state current flow. Second, a balance should be considered between having enough inductance to smooth larger current spikes, but also keeping a low series DC resistance. Large voltage drops can occur depending upon current draw, subsequently reducing the overall voltage available to other circuitry including the SMPS IC.

?

串联电感(L1)存贮能量,在需要时分发,以减少电流峰值。注意选择此电感。第一,该器件应适当限定稳态电流。第二,应在有足够大的电感来平滑大的电流峰值,而且还要保持低串联直流电阻之间平衡考虑。大电压跌落,可能会发生取决于拉电流,随后降低总体电压提供给其他电路包括开关电源集成电路。

Bulk Capacitance

散装电容

?Bulk parallel capacitance is required at the input of the SMPS IC to remove voltage discontinuities, and should be placed as closely as possible to the input pins of the SMPS IC. However, if the bulk capacitor is too large, the charging period will be long and may cause large current spikes (i.e. higher emissions). If using Electrolytic

capacitors, it is best to choose the lowest ESR (Equivalent Series Resistance)

possible. This ensures that stored charge is delivered, with the lowest impedance, to the SMPS IC. In some cases it may be necessary to add a small ceramic capacitor in parallel with the input between the bulk capacitor and the SMPS IC. Ceramic

capacitors have very low ESR and can a provide charge at faster rates to reduce unwanted swings in the voltage.

?

需要在开关电源集成电路输入并联散装电容,消除电压不连贯性,并应放在尽可能靠近开关电源集成电路的输入引脚。但是,如果大容量电容过大,充电将长的,可能会造成大电流峰值(即高发射)。如果使用电解电容,最好是尽可能选择最低的ESR (等效串联电阻)。这可以确保存贮充电,对开关电源集成电路最低阻抗。在某些情况下可能有必要加一个小的陶瓷电容并联到输入,在大容量电容和开关电源集成电路之间。陶瓷电容器具有非常低ESR和能提供更快的充电率,以减少不必要的电压波动。

Common Mode Choke共模扼流圈

?Common mode chokes are effective input filters. From our experience, ferrite core CMC’s were effective at

reducing emissions in the ringing frequency range (40 MHz –140 MHz) but did not help at the switching

frequency (260 kHz). Using an iron core transformer at the input did the opposite where it adequately reduced switching frequency noise but did not reduce the ringing frequency emissions.

?

共模扼流圈是有效的输入滤波器。根据我们的经验,铁氧体磁芯CMC在减少振铃频率范围(40兆赫-140兆赫)的发射方面是有效的,但对开关频率(260千赫)没有帮助。在输入端使用铁芯变压器充分降低开关频率的噪音,但没有减少振铃频率发射。

Design Methodology

设计方法

?One of the best ways to approach a power supply design is to focus only on the power supply section initially. Remove any circuitry from the PCB that is not related to the power supply.

?

电源设计最佳途径之一是开始只注重电源部分。再移走印刷电路板上与电源不相关的任何电路。?This allows the designer to implement a layout that is as close to ideal as possible, given the shape and size of the PCB.

?这使得设计人员能够采用的布局是尽可能接近理想,规定电路板的形状和大小。

?An artificial load can be made to draw the same expected current, as the load will draw on the board in the power supply’s final application. The artificial load can be connected during initial testing to obtain results. We recommend using a conducted emissions test as a way to

benchmark and monitor improvements as the design is optimized. One primary advantage to this method is that efforts are focused on the power supply design. Not having the other application specific circuitry placed on the PCB makes it easier to manipulate the power supply design. It also requires less time to make changes and release another prototype revision. After the optimal power supply design has been determined, the remaining circuitry can be added. Changing as little of the power supply section as possible will maintain the improved EMC performance that has been achieved.

?人工负载可以得出相同的预期电流,和板上最终应用在电源上的负载一样。人工负荷可连接在初步测试以取得结果。我们建议您使用传导发射测试作为建立标杆和监测设计优化的改进。一个主要优势是,这种方法的努力主要集中在电源设计。没有其他的具体应用电路放在PCB板更容易操纵电源设计。这还需要更少的时间进行更改,并释放另一个原型修订。在优化电源设计已经确定,剩下的电路可以添加。电源部分尽可能少的改变,以保持EMC性能方面已取得的改善。

超详细的反激式开关电源电路图讲解

反激式开关电源电路图讲解 一,先分类 开关电源的拓扑结构按照功率大小的分类如下: 10W以内常用RCC(自激振荡)拓扑方式 10W-100W以内常用反激式拓扑(75W以上电源有PF值要求) 100W-300W 正激、双管反激、准谐振 300W-500W 准谐振、双管正激、半桥等 500W-2000W 双管正激、半桥、全桥 2000W以上全桥 二,重点 在开关电源市场中,400W以下的电源大约占了市场的70-80%,而其中反激式电源又占大部分,几乎常见的消费类产品全是反激式电源。 优点:成本低,外围元件少,低耗能,适用于宽电压范围输入,可多组输出. 缺点:输出纹波比较大。(输出加低内阻滤波电容或加LC噪声滤波器可以改善) 今天以最常用的反激开关电源的设计流程及元器件的选择方法为例。给大家讲解如何读懂反激开关电源电路图! 三,画框图 一般来说,总的来分按变压器初测部分和次侧部分来说明。开关电源的电路包括以下几个主要组成部分,如图1

图1,反激开关电源框图 四,原理图 图2是反激式开关电源的原理图,就是在图1框图的基础上,对各个部分进行详细的设计,当然,这些设计都是按照一定步骤进行的。下面会根据这个原理图进行各个部分的设计说明。 图2 典型反激开关电源原理图

五,保险管 图3 保险管 先认识一下电源的安规元件—保险管如图3。 作用:安全防护。在电源出现异常时,为了保护核心器件不受到损坏。 技术参数:额定电压 ,额定电流 ,熔断时间。 分类:快断、慢断、常规 计算公式:其中:Po:输出功率 η效率:(设计的评估值) Vinmin :最小的输入电压 2:为经验值,在实际应用中,保险管的取值范围是理论值的1.5~3倍。 0.98: PF值 六,NTC和MOV NTC 热敏电阻的位置如图4。 图4 NTC热敏电阻 图4中的RT为NTC,电阻值随温度升高而降低,抑制开机时产生的浪涌电压形成的浪涌电流。

反激式开关电源原理与工程设计讲解

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 二.反激式开关电源实际电路的主要部件及其作用三.反激式开关电源电路各主要器件的参数选择四.反激式开关电源pcb排板原则 五.变压器的设计 六.反激式开关电源的稳定性问题

反激式开关电源原理与工程设计 一.反激式开关电源的原理分析 1.反激式开关电源电路拓扑 2.为什么是反激式 a.变压器的同名端相反 b.利用了二极管的单向导电特性 3.电感电流的变化为何不是突变 电压加在有电感的闭合回路上,流过电感上电流不是突变

的,而是线性增加。 愣次定律: a.当电感线圈流过变化的电流时会产生感生电动势,其大 小于与线圈中电流的变化率成正比; b.感生电动势总是阻碍原电流的变化 4.变压器的主要作用与能量的传递 理想变压器与反激式变压器的区别 反激式变压器的作用 a.电感(储能)作用 遵守的是安匝比守恒(而不是电压比守恒) 储存的能量为1/2×L×Ip2

b.限流的作用 c.变压作用 初次级虽然不是同时导通,它们之间也存在电压转换关系,也是初级按匝比变换到次级,次级按变比折射回初级。 d.变压器的气隙作用 扩展磁滞回线,能使变压器更不易饱和 磁饱和的原理 图 电感值跟导磁率成正比,

导磁率=B/H B是磁通密度 H是磁场强度 简单一点,H跟外加电流成正比就是了,增加电流,磁流密度会跟着增加, 当加电流至某一程度时,我们会发现,磁通密度会增加得很慢, 而且会趋近一渐近线.当趋近这一渐近线时,这时的磁通密度,我们就称為饱和磁通密度,电感值跟导磁率成正比,导磁率=B/H B是磁通密度,H是磁场强度(电流增加,H会增加.) H会增加,但B不会增加, 导磁率变化量会趋近零啦! 电感值跟导磁率变化量成正比, 导磁率变化量趋近零,那电感值会是多少? 零 5.开关管漏极电压的组成 a. 高压为基础部分 b. 折射回来的电压部分 c. 漏感产生的尖峰部分 波形

反激式开关电源设计

反激式开关电源设计

反激式开关电源变压器设计 2011年04月25日来源:网络 [责任编辑:wangpan] 中心议题: * 反激式开关电源变压器的设计步骤 解决方案: * 选定原边感应电压V * 确实原边电流波形的参数 * 选定变压器磁芯 * 计算变压器的原边匝数 * 确定次级绕组的参数,圈数和线径 反激式变压器是反激开关电源的核心,它决定了反激变换器一系列的重要参数,如占空比D,最大峰值电流,设计反激式变压器,就是要让反激式开关电源工作在一个合理的工作点上。这样可以让其的发热尽量小,对器件的磨损也尽量小。同样的芯片,同样的磁芯,若是变压器设计不合理,则整个开关电源的性能会有很大下降,如损耗会加大,最大输出功率也会有下降,下面我系统的说一下我算变压器的方法。 算变压器,就是要先选定一个工作点,在这个工作点上算,这个是最苛刻的一个点,这个点就是最低的交流输入电压,对应于最大的输出功率。下面我就来算了一个输入85V到265V,输出5V,2A 的电源,开关频率是100KHZ。 第一步就是选定原边感应电压VOR,这个值是由自己来设定的,这个值就决定了电源的占空比。可能朋友们不理解什么是原边感应电

压,是这样的,这要从下面看起,慢慢的来, 这是一个典型的单端反激式开关电源,大家再熟悉不过了,来分析一下一个工作周期,当开关管开通的时候,原边相当于一个电感,电感两端加上电压,其电流值不会突变,而线性的上升,有公式上升了的I=Vs*ton/L,这三项分别是原边输入电压,开关开通时间,和原边电感量.在开关管关断的时候,原边电感放电,电感电流又会下降,同样要尊守上面的公式定律,此时有下降了的I=VOR*toff/L,这三项分别是原边感应电压,即放电电压,开关管关断时间,和电感量.在经过一个周期后,原边电感电流的值会回到原来,不可能会变,所以,有VS*TON/L=VOR*TOFF/L,,上升了的,等于下降了的,懂吗,好懂吧,上式中可以用D来代替TON,用1-D来代替TOFF,移项可得,D=VOR/(VOR+VS)。此即是最大占空比了。比如说我设计的这个,我选定感应电压为80V,VS为90V ,则D=80/(80+90)=0.47 第二步,确实原边电流波形的参数。 原边电流波形有三个参数,平均电流,有效值电流,峰值电流。首先要知道原边电流的波形,原边电流的波形如下图所示,画的不好,但不要笑啊。这是一个梯形波横向表示时间,纵向表示电流大小,这

RCC开关电源设计详细讲解39308

目录 摘要 ABSTRACT 绪论 第一章.RCC电路基础简介 1.1RCC电路工作原理 1.2RCC电路的稳压问题 1.3RCC电路占空比的计算 1.4RCC电路振荡频率的计算 1.5RCC电路变压器的设计 第二章.简易RCC基极驱动的缺点及改进设计 2.1 简易RCC电路的缺点 2.2 开关晶体管恒流驱动的设计 第三章.RCC电路的建模及仿真 3.1 RCC电路的建模及参数设计 3.1.1 主要技术指标 3.1.2 变压器的设计 3.1.3 电压控制电路的设计

3.1.4 驱动电路的设计 3.1.5 副边电容、二极管参数的设计 3.1.6 其他辅助电路的设计 3.2 RCC电路的仿真 3.2.1 RCC电路带额定负载时的仿真及设计标准的验证 3.2.2 RCC电路带轻载时的仿真 3.3 RCC电路的改进及改进后的仿真 3.3.1 RCC电路的恒流设计 3.3.2带有恒流源的RCC电路的仿真 第四章RCC电路间歇振荡的应用实例 4.1 三星S10型放像机中的RCC型开关电源

RCC电路间歇振荡现象的研究 摘要:RCC变换器通常是指自振式反激变换器。它是由较少的几个器件就可以组成的高效电路,已经广泛用于小功率电路离线工作状态。由于控制电路能够与少量分立元件一起工作而不会出现差错,所以电路的总的花费要比普通的PWM反激逆变器低。一方面,当其控制电流过高时就会出现一种间歇振荡现象,从而使得电路的振荡周期在很大范围内变化,类如例如从数百赫兹到数千赫兹之间变化,因而在较大功率输出时将引起变压器等产生异常的噪音,所以需要抑制这种现象的产生。另一方面,当电路的输出功率输出较小时,却可以利用这种间歇振荡,使开关电路处于低能耗状态。当需要电路工作时,只需给电路一个信号脉冲即可。电路本文主要通过实验仿真的方法在RCC电路中加入某些特定的电路从而达到抑制消除这种间歇振荡,同时还简要阐述一些利用间歇振荡的例子。 Abstract:The self-oscillating flyback converter, often referred to as the ringing choke converter (RCC), is a robust, low component-count circuit that has been widely used in low power off-line applications. Since the control of the circuit can be implemented with very few discrete components without loss of performance, the overall cost of the circuit is generally lower than the conventional PWM flyback converter that employs a commercially available integrated control .

反激式开关电源设计与考试步骤精

反激式开关电源设计与测试步骤(精)

————————————————————————————————作者:————————————————————————————————日期:

初次设计反激电源式电源步骤 准备 在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。 所需设备 在本课程中,您将用到以下设备: 1.一个隔离式交流电源供应器或一个自耦变压器 2.一个瓦特表 3.至少四个数字万用表,其中两个具有高精度电流量程 4.一个带有高压探针的示波器 5.一个电流探针 6. 还有您的实际负载 第1章:术语 本课中将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。 处于稳压状态的输出 自动重启动 在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。有关特定的自动重启动导通时间,请参见相关的Power Integrations器件数据手册。 在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。 第2章:设计信息

反激式开关电源设计与测试步骤

初次设计反激电源式电源步骤 准备 在初次设计电源之前,应确保电源所采用的印刷电路板符合Power Integrations器件数据手册中指定的布局指南。如果在实验用面包板或原始样板上搭建设计的电路,会引入很多寄生元件,这样会影响电源的正常工作。而且,许多实验用面包板都无法承载开关电源所产生的电流水平,并可能因而受损。此外,在这些电路板上非常难以控制爬电距离和电气间隙。 所需设备 在本课程中,您将用到以下设备: 1.一个隔离式交流电源供应器或一个自耦变压器 2.一个瓦特表 3.至少四个数字万用表,其中两个具有高精度电流量程 4.一个带有高压探针的示波器 5.一个电流探针 6. 还有您的实际负载 第1章:术语 本课中将频繁使用的两个术语是“稳压”和“自动重启动”。当电源处于稳压状态时,控制器持续接收反馈,所有输出电压均保持稳定不变,并处于指定的容差限值内。自动重启动是Power Integrations器件中内置的一种保护模式。 处于稳压状态的输出 自动重启动 在工作期间,如果所消耗的功率大于电源所能提供的功率限值,或者在启动后,电源的输出电压在指定的时间内不能达到稳压,Power Integrations器件将进入自动重启动保护模式。这种设计通过限制电源在故障情况下提供的平均功率,可防止元件受损。有关特定的自动重启动导通时间,请参见相关的Power Integrations器件数据手册。 在测试期间,如果发现电源性能与本课程中所描述的情况不符,或者表现出任何异常特征,请停止测试程序,并参照其他PI大学故障诊断课程中的内容排查问题,或者联系当地PI代表解决问题。 第2章:设计信息

相关文档
最新文档