机械设计,制造过程中的公差

机械设计,制造过程中的公差
机械设计,制造过程中的公差

机械设计,制造过程中的公差

零件在加工过程中,不可避免地会产生各种误差,想把同一规格的一批零件的几何参数做得完全一致是不可能的,也是不必要的,实际上,只要把几何参数的误差控制在一定范围内,就能满足互换性的要求。

1、有关尺寸的术语及定义

以特定单位表示线性尺寸的数值称为尺寸。由设计给定的尺寸,称为基本尺寸。通过测量获得的某一孔、轴的尺寸,称为实际尺寸。允许尺寸变化的两个极限值,称为极限尺寸。两个极限尺寸中,较大的一个称为最大极限尺寸,较小的一个称为最小极限尺寸。图1所示。

图1极限尺寸

2、有关偏差和公差的术语及定义

尺寸偏差(简称偏差)

某一尺寸(实际尺寸、极限尺寸)减其基本尺寸所得的代数差,简称偏差。

极限偏差

极限偏差包括上偏差和下偏差。孔的上、下偏差代号用大写字母ES、EI表示,轴的上、下偏差代号用小写字母es、ei表示,如图2所示。

最大极限尺寸减其基本尺寸的代数差称为上偏差(ES、es),最小极限尺寸减其基本尺寸的代数差称为下偏差(EI、ei)。

实际偏差

实际尺寸减其基本尺寸的代数差,称为实际偏差。合格零件的实际偏差应在规定的极限偏差范围内。由于极限尺寸可以大于、等于或小于基本尺寸,所以偏差可以为正值、零或负值。偏差值除零外,应标上相应的“+”号或“-”号,极限偏差用于控制实际偏差。

尺寸公差(简称公差)

最大极限尺寸与最小极限尺寸的代数差,称为尺寸公差,也等于上偏差与下偏差的代数差的绝对值。它是允许尺寸的变化量,尺寸公差是个没有符号的绝对值。

(a) (b)

图2尺寸、偏差和公差

公差与偏差是两个不同的概念:公差代表制造精度的要求,是指上下尺寸的变动范围,反映加工难易的程度,当基本尺寸相同时,公差越大,制造难度越低加工越容易,不同尺寸不同公差值时,可用相对尺寸精度来测量其制造难易程度;而偏差是表示偏离基本尺寸的多少与加工的难易程度无关。公差是不为零的绝对值;而偏差可以为正、负或零。公差影响配合的精度。而偏差影响配合的松紧程度。

零线和公差带

图2是公差与配合的一个示意图,它表示了两个相互结合的孔、轴的基本尺寸、极限尺寸、极限偏差与公差的相互关系。在应用中,为简单起见,一般以公差与配合图解来表示。

零线:在公差与配合图解(简称公差带图)中,确定偏差的一条基准直线,即零偏差线。通常零线表示基本尺寸。正偏差位于零线的上方,负偏差位于零线的下方。

公差带:在公差带图中,由代表上、下偏差的两条直线所限定的一个区域,叫公差带。

在国标中,公差带包括了“公差带大小”与“公差带位置”两个参数。前者由标准公差确定,后者由基本偏差确定。

基本偏差

基本偏差是用来确定公差带相对于零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。当公差带位于零线上方时,其基本偏差为下偏差;当公差带位于零线下方时,其基本偏差为上偏差。

3、有关配合的术语及定义

配合

配合是指基本尺寸相同的、相互结合的孔和轴公差带之间的关系。根据相互配合的孔和轴公差带不同的相互位置关系,配合一般可分为间隙配合、过盈配合和过渡配合三类(图3)。

三种配合关系

间隙配合图过盈配合

过渡配合

图3

基准制

在确定配合的过程中,孔、轴公差带位置相对变动,就可获得不同配合性质,如果把其中一个公差带位置固定,而改变另一个公差带的位置从中得到不同性质的配合,这样就可使配合问题简单化。这种把孔轴公差带中之一固定而改变另一公差带位置而得到不同配合性质的方法叫做基准制,如图4所示:按照孔、轴公差带相对位置不同,两种基准制都可以形成间隙,过盈和过渡三种不同的配合性质。

图4基孔制配合和基孔轴制配合公差带

4、基本偏差代号及其符号

基本偏差的代号是用拉丁字母表示,大写字母表示孔,小写字母表示轴。在26个字母中去除五个容易混淆含义的字母:I、L、O、Q、W(i、l、o、q、w),同时增加七个双写字母:CD、EF、FG、JS、ZA、ZB、ZC(cd、ef、fg、js、za、zb、zc),构成28种基本偏差代号,图5为轴和孔的28个基本偏差的位置,即轴和孔的基本偏差系列。

基本偏差中的H和h的基本偏差为零,H代表基准孔,h代表基准轴。

图5轴和孔的基本偏差示意图

机械零件设计中形位公差的确定性方法研究

机械零件设计中形位公差的确定性方法研究 集团企业公司编码:(LL3698-KKI1269-TM2483-LUI12689-ITT289-

机械零件设计中形位公差的确定性方法研究随着正确地选择和确定形位公差的项目、基准及数值对机械零件的设计是十分重要的。依据机械零件的功能要求。并考虑其使用性、工艺性和经济性的综合效果,详细分析了确定形位公差时公差项目、基准和公差数值的选择方法。零件的功能特性是选择形位公差项目、基准和公差数值的基础;公差间的关系可作为进一步精选它们的依据;同时还应兼顾经济性和测量的方便性。 在机械零件的设计过程中,正确地选择形位公差项目以及合理地确定形位公差数值,不仅直接影响到机器的使用性能和质量,而且关系到零件加工的难易程度和成本高低。形位公差的国家标准规定了l4项并列的形位公差,项目较多,而且有些公差项目之间还存在着从属和包容等关系。因此,机械零件的形位公差设计一直是机械零件设计中的难点。本文将根据形位公差的理论与多年的机械零件设计经验,分析形位公差项目及公差值大小等公差内容的选择依据。为设计者提供参考。 1.形位公差项目的选择 1.依据零件的功能特性初选形位公差项目

选择形位公差项目首先应满足零件的功能要求,主要考虑形位误差对零件使用性能的影响。这种使用性能一般指零件的配合性质、装配互换性、工作精度、可靠性及运动平衡性等。设计时了解和明确所设计零件的使用性能,才能确定为保证这些性能必须选用的形位公差项目。 以下为一些常见的零件功能特性与所需的公差项目:(1)在圆柱形零部件的运动配合中,如果圆柱面接触不良,就会造成局部过早磨损,扩大了配合间隙,降低定心精度,这就需要选择圆度和圆柱度等形状公差限制形状误差,以避免过大的形状误差带来的危害。(2)在移动配合中,形状误差会降低导向精度或破坏密封性;在过盈定位配合中,形状误差会降低连接强度和可靠性;曲面形状误差直接影响机械的工作性能,如汽轮机叶片的曲面等;这些都需要选择相应的形状公差加以限定。(3)位置误差直接影响机器的装配精度和运转精度。例如,发动机中的曲轴和变速器中的齿轮轴,为了保证它们的装配精度和工作性能,就要规定它们的两端支承孔的同轴度,否则就会影响齿轮的啮合精度,产生振动和噪声。 2.依据公差间的关系精选形位公差项目 (1)由尺寸公差控制形位公差。形位公差与尺寸公差具有一定的关联性,有些形位误差可自然地控制在尺寸公差内,就不必再给出形位公差要求。

GB1804-m一般公差

一般公差 线性尺寸的未注公差 本标准等效采用国际标准ISO 2768-1:1989《一般公差——第1部分:未注出公差的线性和角度尺寸的公差》中未注出公差的线性尺寸的公差部分。 1 范围 本标准规定了线性尺寸的一般公差等级和极限偏差。 本标准适用于金属切削加工的尺寸,也适用于一般的冲压加工的尺寸。非金属材料和其他工艺方法加工的尺寸可参照采用。 本标准规定的极限偏差适用于非配合尺寸。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款,凡是注日期的引用文件,其随后所有的修改单(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究是否可使用这些文件的最新版本。凡不注日期的引用文件,其最新版本适用于本标准。 GB/T 1804-92 一般公差线性尺寸的未注公差 GB6403.4-86 零件倒圆与倒角 3 术语 3.1 一般公差 一般公差系指在车间一般加工条件下可保证的公差。采用一般公差的尺寸,在该尺寸后不注出极限偏差。 4 线性尺寸的一般公差 4.1 线性尺寸的一般公差规定四个公差等级。线性尺寸的极限偏差数值表见表1;倒圆半径和倒角高度尺寸的极限偏差数值见表2。 4.2 规定图样上线性尺寸的未注公差,应考虑车间的一般加工精度,选取本标准规定的公差等级,由相应的技术文件或标准作出具体规定。 4.3 本公司图样上线性尺寸的未注公差,选取GB1804-m。 1

表1 线性尺寸的极限偏差数值 尺寸分段 公差等级 >0.5~3 >3~6 >6~30 >30~120>120~400>400~1000 >1000~2000>2000~4000 f(精密级) ±0.05 ±0.05 ±0.1 ±0.15 ±0.2 ±0.3 ±0.5 - m(中等级) ±0.1 ±0.1 ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 c(粗糙级) ±0.2 ±0.3 ±0.5 ±0.8 ±1.2 ±2 ±3 ±4 v(最粗级) - ±0.5 ±1 ±1.5 ±2.5 ±4 ±6 ±8 表2 倒圆半径与倒角高度尺寸的极限偏差数值 尺寸分段 公差等级 0.5~3 >3~6 >6~30 >30 f(精密级) ±0.2 ±0.5 ±1 ±2 m(中等级) c(粗糙级) ±0.4 ±1 ±2 ±4 v(最粗级) 注:倒圆半径与倒角高度的含义参见GB6403.4。 5 线性尺寸的一般公差的表示方法 采用GB/T1804规定的一般公差,在图样上、技术文件或标准中用国家标准号和公差等级 符号表示。例如选用中等级时,表示为:GB/T1804-m 2

机械设计中形位公差的确定及选择

机械设计中形位公差的确定及选择 摘要:在进行机械设计时,如何保证机械产品零件的精度,是设计人员必须要考虑的问题。形位公差是控制机械产品零件几何精度技术的条件。正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。文章就机械设计过程中如何合理选用形位公差进行了一些探讨。 关键词:机械设计;形状公差;位置公差;标注公差;选择;控制 在机械与仪器仪表设计及制造工艺的设计中,公差配合与技术测量与设计、制造及质量控制等方面密切相关,其精度的要求是靠尺寸公差、形状公差、位置公差来保证的,是优化产品质量的可靠保障。在现代工业飞速发展、产品换代频繁的新形势下,其重要性尤为明显。如何合理并正确地确定被测要素的形状位置公差公差值,是一项十分慎重的工作。 1 形位公差和位置公差的关系及选择 经过加工的机械零件表面,不但会有尺寸偏差,而且会有形状和相对位置的误差,这些误差会影响零件的互换性。为此,国家标准规定了形状和位置的允许变动量。 位置公差是关联实际要素的方向或位置对基准所允许的变动全量,形状公差是单一实际要素的形状所允许的变动全量,位置公差的公差带包容整个被测要素,因此,在很多情况下,位置公差是能够控制形状误差的。如在定位公差中,同轴度可以控制轴线的形状误差,对称度和位置度可以控制平面度误差。又如在跳动公差中,端面全跳动可以控制平面度误差,径向跳动可以控制圆度误差,径向全跳动可以控制圆度、直线度,圆柱度误差。所以.在确定形状公差和位置公差过程中,一旦位置公差给定后,当作用上已能够控制相应的形状误差,且能满足使用要求时,就不必再提形状公差的要求了。 2 形位公差值的确定 正确选择形位公差项目和合理确定其公差等级及公差值,能保证零件的使用要求,提高经济效果。 确定形位公差值的方法,有类比法和计算法两种。常用的是类比法。计算法一般很少使用.只有在高精度要求的场合才用。在零件加工中,由于受到机床精度的限制,故在己加工完成的零件上,所有要素都存在形位误差,但不是所有要素都要在图纸上规定形位公差。只对高精度要求的要素才注公差值,而对精度要求比未注公差值还低的也应注出,表示不必提高要求。在选用公差值时,以满足零件的功能要求为前提,兼顾经济性和测量条件等因素,尽量选用较大的公差值。并应注意以下的一些问题。

(机械制造行业)机械设计形位公差表示

概况 xingwei gongcha 形位公差 包括形状公差和位置公差。任何零件都是由点、线、面构成的,这些点、线、面称为要素。机械加工 形位公差 后零件的实际要素相对于理想要素总有误差,包括形状误差和位置误差。这类误差影响机械产品的功能,设计时应规定相应的公差并按规定的标准符号标注在图样上。20世纪50年代前后,工业化国家就有形位公差标准。国际标准化组织(I SO)于1969年公布形位公差标准,1978年推荐了形位公差检测原理和方法。中国于1980年颁布形状和位置公差标准,其中包括检测规定。 形状公差和位置公差简称为形位公差 形状公差 形状公差是指单一实际要素的形状所允许的变动全量。 形状公差用形状公差带表达。形状公差带包括公差带形状、方向、位置和大小等四要素。

形位公差 形状公差项目有:直线度、平面度、圆度、圆柱度、线轮廓度、面轮廓度等6项。 通俗点就是,和形状有关的要素。 位置公差 位置公差是指关联实际要素的位置对基准所允许的变动全量。定向公差定向公差是指关联实际要素对基准在方向上允许的变动全量。这类公差包括平行度、垂直度、倾斜度3项。 跳动公差 跳动公差是以特定的检测方式为依据而给定的公差项目。跳动公差可分为圆跳动与全跳动。 定位公差 定位公差是关联实际要素对基准在位置上允许的变动全量。这类公差包括同轴度、对称度、位置度3项。 零件的形位公差图标及其涵义

零件的形位公差共14项,其中形状公差6个,位置公差8个,列于下表。 零件的形位公差图标 直线度直线度是表示零件上的直线要素实际形状保持理想直线的状况。也就是通常所说的平直程度。 直线度公差是实际线对理想直线所允许的最大变动量。也就是在图样上所给定的,用以限制实际线加工误差所允许的变动范围。 平面度平面度是表示零件的平面要素实际形状,保持理想平面的状况。也就是通常所说的平整程度。 平面度公差是实际表面对平面所允许的最大变动量。也就是在图样上给定的,用以限制实际表面加工误差所允许的变动范围。

机械设计中公差配合经验

答:是用来确定公差带相对于零线位置的上偏差或下偏差,一般指靠近零线的那个偏差。当公差带位于零线上方时,其基本偏差为下偏差;位于零线下方时,其基本偏差为上偏差。见图1 图1 14.什么称为标准公差? 答:国标规定的,用以确定公差带大小的任一公差。 15.什么称为配合? 答:是指基本尺寸相同的、互相结合的孔和轴公差带之间的关系。16.什么称为基孔制? 答:是基本偏差为一定的孔的公差带,与不同基本偏差的轴的公差带形成种配合的一种制度。 17.什么称为基轴制? 答:是基本偏差为一定的轴的公差带,与不同基本偏差的孔的公差带形成各种配合的一种制度。 18.什么称为配合公差? 答:是允许间隙的变动量,它等于最大间隙与最小间隙之代数差的绝对值,也等于互相配合的孔公差带与轴公差带之和。

答:孔的公差带完全在轴的公差带之上,即具有间隙的配合(包括最小间隙等于零的配合)。 20.什么称为过盈配合? 答:孔的公差带完全在轴的公差带之下,即具有过盈的配合(包括最小过盈等于零的配合)。 21.什么称为过渡配合? 答:在孔与轴的配合中,孔与轴的公差带互相交迭,任取其中一对孔和轴相配,可能具有间隙,也可能具有过盈的配合。 22.基孔制配合为H11/c11或基轴制基孔制配合为C11/h11时,优先配合特性是什么? 答:间隙很大,用于很松的、转动很慢的动配合;要求大公差与大间隙的外露组件;要求装配方便的很松的配合。相当于旧国标的D6/dd6。23.基孔制配合为H9/d9或基轴制基孔制配合为D9/h9时,优先配合特性是什么? 答:间隙很大的自由转动配合,用于精度非主要要求时,或有大的温度变动、高转速或大的轴颈压力时。相当于旧国标D4/de4。 24.基孔制配合为H8/f7或基轴制基孔制配合为F8/h7时,优先配合特性是什么? 答:间隙不大的转动配合,用于中等转速与中等轴颈压力的精确转动;也用于装配较易的中等定位配合。相当于旧国标D/dc。 25.基孔制配合为H7/g6或基轴制基孔制配合为G7/h6时,优先配合特性是

机械设计及公差

机械设计及公差 课 程 设 计 姓名: 学号: 班级: 指导老师:

目录 一、序言…………………………………………………… 二、减速器传动轴的分析………………………………… 三、减速器传动轴精度分析……………………………… 1.1与轴承配合的轴颈处精度设计………………… 2.轴环左右两轴肩处精度设计……………………… 3.与齿轮配合处精度设计…………………………… 4.与带轮配合处精度设计…………………………… 5.键槽精度设计……………………………………… 6.未注公差…………………………………………… 四、光滑极限量规设计…………………………………… 1.轴用光滑极限量规设计…………………………… 2.孔用光滑极限量规设计…………………………… 五、零件图………………………………………………… 六、设计总结……………………………………………… 七、参考文献资料…………………………………………

一、序言 通过课程设计使学生学会综合运用机械设计基础课程及其它相关的先修课程知识,起到巩固、加强、融会及拓展有关机械设计方面知识的作用。 通过课程设计的实践,培养学生分析和解决工程实际问题的能力,使学生掌握机械零件、机械传动装置或简单机械的基本设计方法和步骤,初步培养学生独立分析、解决设计工程设计问题的能力,树立正确的设计思想,为以后进行设计工作打下良好的基础。 提高学生的有关设计能力、绘图能力、计算机辅助设计能力以及计算机应用能力,使学生能够熟练的应用设计资料(手册、图册等),熟悉有关标准、规范、经验估算等机械设计的基本知识。 二、减速器传动轴的分析 减速器的传动轴属于台阶类零件,由齿轮、圆柱面、圆锥面、轴肩、螺纹、螺尾退刀槽和键槽等组成。轴肩一般采用来确定安装在轴上零件的轴向位置,并使加工中磨削外圆或车螺纹时退刀方便;键槽用于安装键,以传递扭矩;螺纹用于安装各种锁紧螺母和调整螺母。 轴的结构设计就是要根据轴的具体工作条件,确定出轴的合理形状和结构尺寸。 减速器中的轴在工作时既受弯矩又受转矩,属于转轴。其

机械设计中尺寸标注大全

机械设计中尺寸标注类知识 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。

2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。 在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。

3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。 在标注叉架类零件的尺寸时,通常选用安装基面或零件的对称面作为尺寸基准。尺寸标注方法参见图。

机械产品设计中公差与配合的选择

机械设计中公差与配合的选择 许秀兰 (潍坊工商职业学院机电工程系,山东诸城 262234) 摘要:公差与配合的选择在机械产品的设计与制造中非常重要,它直接影响产品的使用性能和加工成本。在选用公差与配合时,应遵循三个基本选用原则,即基准制选用原则、公差等级选用原则和公差带及配合选用原则。 关键词:基准制;公差等级;配合类别 公差与配合的选择在机械产品的设计与制造中非常重要,它直接影响产品的使用性能和加工成本。在选用公差与配合时,应遵循三个基本选用原则,即基准制选用原则、公差等级选用原则和公差带及配合选用原则。 一、基准制的选择 1.一般情况优先选用基孔制 这主要从工艺性和经济性来考虑。 孔通常用定值刀具(如钻头、铰刀、拉刀等)加工,用极限量规(塞规)检验。当孔的基本尺寸和公差等级相同而基本偏差改变时,就需要更换刀具、量具。而一种规格的磨轮或车刀,可以加工不同偏差的轴,轴还可以用通用量具进行测量。所以,为了减少定值刀具、量具的规格和数量,利于生产,提高经济性,应优先选用基孔制。 2.有明显经济效益时应选用基轴制 (1)当在机械制造中采用具有一定公差等级(IT7~IT9)的冷拉钢材,其外径不经切削加工即能满足使用要求时,就应选择基轴制,再按配合要求选用适当的孔公差带加工孔就可以了。 (2)由于结构上的优点,宜采用基轴制。如图a所示的发动机活塞销轴与连杆铜套孔和活塞孔之见的配合,根据工作需要,活塞销轴与活塞孔应为过渡配合,而活塞销轴与连杆之间由于有相对运动应为间隙配合。若采用基孔制配合,如图b,销轴将做成阶梯状,这样既不便于加工,又不利于装配。若采用基轴制配合,如图c,销轴做成光轴,既方便加工,又利于装配。 3.与标准件配合时,应服从标准件的既定表面 标准件通常由专业工厂大量生产,在制造时起配合部位的基准制已确定。所以与其配合的轴和孔一定要服从标准件既定的基准制。例如,与滚动轴承内圈配合的轴应选用基孔制,而与滚动轴承外圈外径相配合的外壳孔应选用基轴制。 4.在特殊需要时可采用非基准制配合

机械设计轴承与轴的公差配合轴承与孔的公差配合

做非标这么久,轴承与轴的公差配合,以及轴承与孔的公差配合,一直都是用微小间隙配合即能实现功能,且好装好拆。但是局部零件还是需要有一定的配合精度。 配合公差(fit tolerance)是指组成配合的孔、轴公差之和。它是允许间隙到过盈的变动量。 孔和轴的公差带大小和公差带位置组成了配合公差。孔和轴配合公差的大小表示孔和轴的配合精度。孔和轴配合公差带的大小和位置表示孔和轴的配合精度和配合性质。 一、公差等级的选择 与轴承配合的轴或轴承座孔的公差等级与轴承精度有关。 与P0级精度轴承配合的轴,其公差等级一般为IT6,轴承座孔一般为IT7。对旋转精度和运转的平稳性有较高要求的场合(如电动机等),应选择轴为IT5,轴承座孔为IT6。 二、公差带的选择 当量径向载荷P分成“轻”、“正常”和“重”载荷等几种情况。 其与轴承的额定动载荷C之关系为:轻载荷P≤0.06C 正常载荷 0.06C <P≤ 0.12C 重载荷 0.12C<P 1) 轴公差带

安装向心轴承和角接触轴承的轴的公差带参照相应公差带表。 就大多数场合而言,轴旋转且径向载荷方向不变,即轴承内圈相对于载荷方向旋转的场合,一般应选择过渡或过盈配合。静止轴且径向载荷方向不变,即轴承内圈相对于载荷方向是静止的场合,可选择过渡或小间隙配合(太大的间隙是不允许的)。 2)外壳孔公差带 安装向心轴承和角接触轴承的外壳孔公差带参照相应公差带表。 选择时注意对于载荷方向摆动或旋转的外圈,应避免间隙配合。当量径向载荷的大小也影响外圈的配合选择。 3) 轴承座结构形式的选择 滚动轴承的轴承座除非有特别需要,一般多采用整体式结构。 剖分式轴承座只是在装配上有困难,或在装配上方便的优点成为主要考虑点时才采用,但它不能应用于紧配合或较精密的配合,例如K7和比K7更紧的配合,又如公差等级为IT6或更精密的座孔,都不得采用剖分式轴承座。 三、轴承与轴的配合公差标准 ①当轴承内径公差带与轴公差带构成配合时

机械设计中尺寸标注讲解

机械设计中尺寸标注 机械设计中尺寸标注类知识,毕业前一定读懂它 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体

上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如表达出来。如图中所示就增加了一个外形和均布结构左视图、右视图或俯视图)把零件的. 左视图,以表达带圆角的方形凸缘和四个均布的通孔。 在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,,采用剖面比较合适。字形肋T而对于

机械设计,制造过程中的公差

机械设计,制造过程中的公差 零件在加工过程中,不可避免地会产生各种误差,想把同一规格的一批零件的几何参数做得完全一致是不可能的,也是不必要的,实际上,只要把几何参数的误差控制在一定范围内,就能满足互换性的要求。 1、有关尺寸的术语及定义 以特定单位表示线性尺寸的数值称为尺寸。由设计给定的尺寸,称为基本尺寸。通过测量获得的某一孔、轴的尺寸,称为实际尺寸。允许尺寸变化的两个极限值,称为极限尺寸。两个极限尺寸中,较大的一个称为最大极限尺寸,较小的一个称为最小极限尺寸。图1所示。 图1极限尺寸 2、有关偏差和公差的术语及定义 尺寸偏差(简称偏差) 某一尺寸(实际尺寸、极限尺寸)减其基本尺寸所得的代数差,简称偏差。 极限偏差 极限偏差包括上偏差和下偏差。孔的上、下偏差代号用大写字母ES、EI表示,轴的上、下偏差代号用小写字母es、ei表示,如图2所示。 最大极限尺寸减其基本尺寸的代数差称为上偏差(ES、es),最小极限尺寸减其基本尺寸的代数差称为下偏差(EI、ei)。 实际偏差

实际尺寸减其基本尺寸的代数差,称为实际偏差。合格零件的实际偏差应在规定的极限偏差范围内。由于极限尺寸可以大于、等于或小于基本尺寸,所以偏差可以为正值、零或负值。偏差值除零外,应标上相应的“+”号或“-”号,极限偏差用于控制实际偏差。 尺寸公差(简称公差) 最大极限尺寸与最小极限尺寸的代数差,称为尺寸公差,也等于上偏差与下偏差的代数差的绝对值。它是允许尺寸的变化量,尺寸公差是个没有符号的绝对值。 (a) (b) 图2尺寸、偏差和公差 公差与偏差是两个不同的概念:公差代表制造精度的要求,是指上下尺寸的变动范围,反映加工难易的程度,当基本尺寸相同时,公差越大,制造难度越低加工越容易,不同尺寸不同公差值时,可用相对尺寸精度来测量其制造难易程度;而偏差是表示偏离基本尺寸的多少与加工的难易程度无关。公差是不为零的绝对值;而偏差可以为正、负或零。公差影响配合的精度。而偏差影响配合的松紧程度。 零线和公差带 图2是公差与配合的一个示意图,它表示了两个相互结合的孔、轴的基本尺寸、极限尺寸、极限偏差与公差的相互关系。在应用中,为简单起见,一般以公差与配合图解来表示。

机械设计资料

干机械设计这一行的入门和不可缺少的资料 1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

机械设计常识

1.轴套类零件 这类零件一般有轴、衬套等零件,在视图表达时,只要画出一个基本视图再加上适当的断面图和尺寸标注,就可以把它的主要形状特征以及局部结构表达出来了。为了便于加工时看图,轴线一般按水平放置进行投影,最好选择轴线为侧垂线的位置。 在标注轴套类零件的尺寸时,常以它的轴线作为径向尺寸基准。由此注出图中所示的Ф14 、Ф11(见A-A断面)等。这样就把设计上的要求和加工时的工艺基准(轴类零件在车床上加工时,两端用顶针顶住轴的中心孔)统一起来了。而长度方向的基准常选用重要的端面、接触面(轴肩)或加工面等。 如图中所示的表面粗糙度为Ra6.3的右轴肩,被选为长度方向的主要尺寸基准,由此注出13、28、1.5和26.5等尺寸;再以右轴端为长度方向的辅助基,从而标注出轴的总长96。 2.盘盖类零件 这类零件的基本形状是扁平的盘状,一般有端盖、阀盖、齿轮等零件,它们的主要结构大体上有回转体,通常还带有各种形状的凸缘、均布的圆孔和肋等局部结构。在视图选择时,一般选择过对称面或回转轴线的剖视图作主视图,同时还需增加适当的其它视图(如左视图、右视图或俯视图)把零件的外形和均布结构表达出来。如图中所示就增加了一个左视图,以表达带圆角的方形凸缘和四个均布的通孔。

在标注盘盖类零件的尺寸时,通常选用通过轴孔的轴线作为径向尺寸基准,长度方向的主要尺寸基准常选用重要的端面。 3.叉架类零件 这类零件一般有拨叉、连杆、支座等零件。由于它们的加工位置多变,在选择主视图时,主要考虑工作位置和形状特征。对其它视图的选择,常常需要两个或两个以上的基本视图,并且还要用适当的局部视图、断面图等表达方法来表达零件的局部结构。踏脚座零件图中所示视图选择表达方案精练、清晰对于表达轴承和肋的宽度来说,右视图是没有必要的,而对于T字形肋,采用剖面比较合适。

相关主题
相关文档
最新文档