光纤测量仪器简介

光纤测量仪器简介
光纤测量仪器简介

光纤测量仪器简介

光纤测量仪器简介

光纤特性的参数测量一般要经历电--光(E/O)变换,再由光--电(O/E)变换这一过程来完成。光纤特性参数的测量和一般的电子元件参数的测量有所不同,前者一般需要多台测量仪器组合才能测量一个光纤参数,而后者用一台仪器就可测量一个或多个电子元件参数。现介绍几种常用的光纤测量仪: 稳定化光源

1、稳定化光源

稳定化光源在光纤测量中是作为光源使用的,就像电子电路测试时用振荡器作为信号源一样,只是它输出的是高稳定的光波。输出的光波靠发光元件产生,用半导体激光二极管(LD)和发光二极管(LED)作发光元件时可输出近红外0.85μm、1.3μm和1.55μm波长的单色光。用氦氖激气体激光器作发光元件时输出0.63μm单色可见红光,用卤钨灯作发光元件时输出白色光。所以稳定化光源以发光元件进行分类,输出波长不同的各型稳定化光源可按测试工作波长的需要进行选用。

光信号发生器

2、光信号发生器

它主要供光纤通信测试用,与稳定化光源的区别只在它加有调制部分,可作为光纤通信测试的信号源。

光功率计

3、光功率计

光功率计是测量光功率大小的仪器,它是由光探测器(探头)和主机(放大和指示)的一种光电转换(E/O)仪器。探头一般是光电二极管(PIN管),由于在不同波长需用不同的PIN管,在短波段用硅(Si)光电二极管,在长波段用锗(Ge)光电二极管,一般一台光功率计都配有而个或多个供不同波长测试用的探头。

光功率计的基本原理是当被测光照射到光探测器上,产生相应的光电流,然后经放大并以光功率值为刻度显示出被测光的光功率值。

光功率计可直接测量光功率,与稳定化光源配合使用还可测量光纤的传输损耗和光纤元件的插入损耗。若与其它仪器设备配合使用,则可对光纤的其它各主要参数进行测量。可以说在光纤的各项测试中几乎都要用到它。

光万用表

4、光万用表

将光功率计和稳定光源组合在一起被称为光万用表。用来测量光纤链路的光功率损耗。一般有以下两种光万用表:

(1)、由独立的光功率计和稳定光源组成。

(2)、光功率计和稳定光源结合为一体的集成测试系统。

光时域反射计

5、光时域反射计

光时域反射计简称OTDR,又称背向散射仪,是利用背向散射技术的一种仪表。与光功率计和光万用表的两端测试不同,OTDR仅通过光纤的一端就可以非破坏性的从光纤的一端进行测量光纤衰减常数(损耗)、光纤接头损耗、光纤故障点定位及光纤长度等参数。

借助于OTDR,技术人员能够看到整个系统轮廓,识别并测量光纤的跨度、接续点和连接头。在诊断光

纤故障的仪表中,OTDR是最经典的,也是最昂贵的仪表。OTDR轨迹线给出系统衰减值的位置和大小,如:任何连接器、接续点、光纤异形、或光纤断点的位置及其损耗大小。OTDR可被用于以下三个方面: (1)、在敷设前了解光缆的特性(长度和衰减)。

(2)、得到一段光纤的信号轨迹线波形。

(3)、在问题增加和连接状况每况愈下时,定位严重故障点。

光谱仪

6、光谱仪

光谱分析仪是光纤技术中基本的测量仪器,光纤光缆及几乎所有的光波元器件的性能评定均需要进行光谱分析。

光谱分析仪也是一种光电转换(E/O)仪器,但它的光学部分具有分光装置,它是集精密光学仪器和电子仪器与一身的贵重仪器。

光谱分析仪是由光衍射部分、衍射光栅驱动部分、光接收部分和处理显示部分等组成。输入光由光衍射部分分离成光谱,并由光接收部分转变成一个电信号,然后经处理部分处理后送显示器显示。

测量仪器说明书

目录 一、GeoPluse浅地层剖面仪操作规程 (1) 1、仪器简介 (1) 1)功能简介 (1) 2)系统配置 (1) 2、GeoPluse浅地层剖面仪系统配置连接 (1) 1)换能器安装 (1) 2)5430A收发机与5210A接收机连接 (2) 3)接通电源 (4) 3、5210A与5430A收发机功能键简介 (4) 1)5430A收发机功能键简介 (5) 2)5210A接收机功能键简介 (5) 4、数据采集后处理 (7) 二、Knudsen 320Ms双频测深仪操作规程 (14) 1、仪器简介 (14) 1)工作原理 (14) 2)功能简介 (14) 2、系统配置连接 (15) 1)换能器连接 (15) 2)Knudsen 320Ms主机与电脑的连接 (15) 3)接通电源 (16) 3、Knudsen 320Ms菜单结构 (16) 4、数据采集后处理 (21) 三、TideMaster型潮位仪操作规程 (29) 1、仪器硬件设置 (29) 1)主要设备仪器 (29) 2)操作及安装使用 (31) 2、临时验潮站站址选择原则 (31) 3、仪器的软件设置 (31) 四、GPS操作规程 (41) 1、工作原理 (41) 2、基准站操作 (41) 1)仪器架设 (41) 2)用手簿启动基准站 (44) 3、Trimble SPS461 GPS罗经设置及使用说明 (46) 1)网络连接方法设置461 (46)

2)SPS461 信标机定位定向仪液晶屏设置说明 (51) 五、海底管线铺设导航、定位技术 (64) 1、GPS定位原理 (64) 2、海洋定位技术 (65) 1)差分GPS技术 (65) 2)信标差分技术 (65) 3、GPS 控制网及基准站的设立解算 (66) 1)基准站的选定和设立 (66) 2)GPS控制网的布设、施测和解算 (67) 3)测区的坐标七参数的解算 (68) 4)利用转化参数转换坐标 (69) 4、海底管道施工导航定位技术 (69) 1)海底管线临时定位桩施工 (69) 2)铺管船法海底管线铺设导航定位 (71) 六、海底管线预、后调查方案 (75) 1、概述 (75) 1)项目概述 (75) 2)海底管线状态简介 (75) 2、使用检测仪器进行海底管线铺设后调查内容 (76) 1)海底管线外观检查 (76) 2)经处理后的完工调查 (77) 3、后调查作业设备及选用原则 (77) 1)测深设备 (77) 2)旁侧声纳 (78) 3)浅地层剖面仪 (78) 4、调查作业施工 (79) 1)作业准备 (79) 2)计划线布设 (79) 3)作业方法和步骤 (80) 4)作业注意事项 (82) 5、数据采集、记录以及报告 (83) 1)数据采集 (83) 2)数据处理 (84) 6、组织机构与职责 (85)

空间光通信技术简介

空间光通信技术简介 空间光通信又称为激光无线通信或无线光通信。根据用途又可分为卫星光通信和大气光通信两大类。自从60年代激光器问世开始,人们就开研究激光通信,这时的研究也主要集中在地面大气的传输中,但因各种困难未能进入实际应用。低损耗光纤波导和实用化半导体激光器的诞生为激光通信的实际应用打开了大门,目前光纤通信已经遍布世界各国的各个城市。由于对无线通信的需求的增长,再有卫星激光通信的快速发展,自从90年代开始,人们又开始重新对地面无线光通信感兴趣,进行了大量的研究,并且开发出可以实用的商业化产品。 一、开展空间光通信研究的意义及应用前景 1.作为卫星光通信链路地面模拟系统的技术组成部分 卫星光通信链路系统在上卫星前必须有地面模拟演示系统,以保障电子系统、光学系统、机械自动化控制系统等各子系统的良好工作。在链路捕捉完成以后,与以太网相连的无线光通信系统借助于光链路的桥梁,源源不断地输送以太网上的信息,这是考验光链路稳定性能的重要指标。 2.为低轨道卫星与地面站间的卫星光通信打下良好的技术基础 低轨道卫星与地面站的通信会受到天气的影响,选择干旱少雨地区建立地面站在相当程度上缓解了这一矛盾,再通过地面站之间的光纤网可以把卫星上信息送到所需地点,这从技术上牵涉到空间光通信网与光纤网连接问题,这方面问题已经基本得到解决。 3.空间光通信具有巨大的潜在市场和商业价值 ●可以克服一些通常容易碰到的自然因素障碍 当河流、湖泊、港湾、马路、立交桥和其它自然因素阻碍铺设光纤时,无线光通信系统可跨越宽阔的河谷,繁华的街道,将两岸或者岛屿与陆地连接起来。 ●提供大容量多媒体宽带网接入 用无线光通信系统作为接入解决方案,不需耗资、耗时地铺设光纤就能满足对办公大楼或商业集中区大容量接入的需要。 ●可为大企业、大机关提供部大容量宽带网 无线光通信系统能在企业、机关围为建筑物与建筑物之间的大容量连接提供一种开放空间传送的解决方案。 ●为公安、军队等重要部门提供高速宽带通信。 ●支持灾难抢救的应急系统 无线光通信系统可为灾难抢救提供一种大容量的临时通信解决方案 ●为一时性大规模的重要活动提供临时的大规模通信系统 例如,奥运会和其他体育运动会、音乐会、大型会议以及贸易展览会等专门活动往往需要大容量宽带媒体覆盖。无线光通信系统能提供一种迅速、经济而有效的解决方案,不受原有通信系统的带宽限制,也不用再去办理光纤铺设许可证。 二、空间光通信的优势 1.组网机动灵活 无线光通信设备将来可广泛适用于数据网(Ethernet,Token Ring,Fast Ethernet,FDDI,ATM,STM-x等)、网、微蜂窝及微微蜂窝(E1/T1—E3/T3,OC-3等)、多媒体(图像)通信等领域。可以把这些网上信息加载在光波上,在空气中直接传输出去,这种简便的通信方式对于频率拥挤的环境是非常理想的,例如:城市、大型公司、大学、政府机构、办公楼群等。

光纤-英文简介

Optical fibers and their application 李慕姚1351626 The optical fiber is short for an optical waveguide fiber, and is a light transmission tool adopting the principle of total reflection of light in fibers made of glass orplastics. The inside part of optical fibers called core,it is usually made of glasswhich has high refractive index.And the diameter of multimode fiber core is 50um or 62.5um. The outer layer called coating, which is made of resin to protect the inside layers. And the part between the core and coating called caldding, whose diameter isusually 125 um. The operation of fiber lasersis based on the principle of total internal reflection. When the light is transmitted in the core,the angle of the incident light is greater than the critical angle of total reflection,Light can not through the interface and will be reflected back. The classification of the optical fiber is mainly from the working wavelength, the refractive index distribution, the transmission mode, the raw material and the manufacturing method. According to the working wavelength, it can be divided into UV fiber, considerable fiber, fiber optic near infrared and infrared optical fiber.According to the transmission mode, it can be divided into Single-mode fiber and multimode fiber.Etc. Optical fiber transmission has many outstanding advantages such as wide bandwidth, low loss, light weight, strong anti-interference ability, reliable performance.So it used in a lot of field. First of all,optical fiber can be used in optical fiber communication technology incommunications technology.Optical communication system transmitted large capacity of the information, rapid transmission speed,strong anti-interference ability, this makes communication system reliability and validity are has been greatly improved. Secondly, it can be used in medical field,the endoscope is made of optical fiber can help doctor to inspectdiseases of the stomach. Last but not least, fiber optic lighting can be used in the art field.

1,光纤通信简介与光纤的导光原理介绍。

什么是光纤通信 所谓光纤通信,就是利用光纤来传输携带信息的光波以达到通信之目的。 要使光波成为携带信息的载体,必须对之进行调制,在接收端再把信息从光波中检测出来。然而,由于目前技术水平所限,对光波进行频率调制与相位调制等仍局限在实验室内,尚未达到实用化水平,因此目前大都采用强度调制与直接检波方式(IM-DD)。又因为目前的光源器件与光接收器件的非线性比较严重,所以对光器件的线性度要求比较低的数字光纤通信在光纤通信中占据主要位置。 典型的数字光纤通信系统方框图如图下所示。 从图中可以看出,数字光纤通信系统基本上由光发送机、光纤与光接收机组成。发送端的电端机把信息(如话音)进行模/数转换,用转换后的数字信号去调制发送机中的光源器件LD,则LD 就会发出携带信息的光波。即当数字信号为“1”时,光源器件发送一个“传号”光脉冲;当数字信号为“0”时,光源器件发送一个“空号”(不发光)。光波经低衰耗光纤传输后到达接收端。在接收端,光接收机把数字信号从光波中检测出来送给电端机,而电端机再进行数/模转换,恢复成原来的信息。就这样完成了一次通信的全过程。 光纤的导光原理 光是一种频率极高的电磁波,而光纤本身是一种介质波导,因此光在光纤中的传

输理论是十分复杂的。要想全面地了解它,需要应用电磁场理论、波动光学理论、甚至量子场论方面的知识。但作为一个光纤通信系统工作者,无需对光纤的传输 理论进行深入探讨与学习。 为了便于理解,我们从几何光学的角度来讨论光纤的导光原理,这样会更加直观、形象、易懂。更何况对于多模光纤而言,由于其几何尺寸远远大于光波波长,所以可把光波看作成为一条光线来处理,这正是几何光学的处理问题的基本出发 点。 全反射原理 我们知道,当光线在均匀介质中传播时是以直线方向进行的,但在到达两种不同介质的分界面时,会发生反射与折射现象,如图下所示。

光纤基础知识简介

光纤简介 一、光纤概述 光纤是光导纤维的简写,是一种利用光在玻璃或塑料制成的纤维中的全反射原理而达成的光传导工具。微细的光纤封装在塑料护套中,使得它能够弯曲而不至于断裂。通常,光纤一端的发射装臵使用发光二极管(light emitting diode,LED)或一束激光将光脉冲传送至光纤,光纤另一端的接收装臵使用光敏元件检测脉冲。 二、光纤工作波长 光是一种电磁波。可见光部分波长范围是:390nm—760nm(纳米),大于760nm部分是红外光,小于390nm部分是紫外光。光纤的工作波长有短波长0.85μm、长波长1.31μm和1.55μm。光纤损耗一般是随波长加长而减小,0.85μm的损耗为2.5dB/km,1.31μm的损耗为0.35dB/km,1.55μm的损耗为0.20dB/km,这是光纤的最低损耗,波长1.65μm以上的损耗趋向加大。 三、光纤分类 光纤的分类主要是从工作波长、折射率分布、传输模式、原材料和制造方法上作一归纳的,各种分类如下。 (1)工作波长:紫外光纤、可观光纤、近红外光纤、红外光纤(0.85μm、1.3μm、1.55μm)。 (2)折射率分布:阶跃(SI)型光纤、近阶跃型光纤、渐变(GI)型光纤、其它(如三角型、W型、凹陷型等)。 (3)传输模式:单模光纤(含偏振保持光纤、非偏振保持光纤)、多模光纤。 (4)原材料:石英光纤、多成分玻璃光纤、塑料光纤、复合材料光纤(如塑料包层、液体纤芯等)、红外材料等。按被覆材料还可分为无机材料(碳等)、金属材料(铜、镍等)和塑料等。 (5)制造方法:预塑有汽相轴向沉积(VAD)、化学汽相沉积(CVD)等,拉丝法有管律法(Rod intube)和双坩锅法等。

光纤通讯基础简介(上)

光纤通讯基础简介(上) 一、光通讯简介 1、使用光通讯技术的优点︰ 它是以光当作载波,透过光纤当传输介质将信息传递至远方。若以铜质同轴电缆与光纤作一比较,同轴电缆是搭配电磁波以数百MHz至数个GHz频率,以模拟的方式来传递信息,但其载波频率会受到20GHz理论值的限制;若以长距离光纤通讯而言,光的载波频率可达193,000GHz。而传输信息的频宽取决于载波频率,因此,若同轴缆线最大上限可以传输两个10GHz的频道,理论上,光纤则可以传输数以千计的10GHz的频道。此外,光纤质轻直径小,在光缆铺设过程中可以节省空间,加上在传输的过程中的衰减比铜质导线低,以单模光纤而言,每公里衰减约为0.2~0.5dB,且对于光讯号在光纤传输过程中,对于电磁波的干扰较不敏感,因此适合高容量及长距离通讯。 2、应用的层次︰ 光通讯主要应用在电信网络、有线电视及数据传输方面,而电信方面的应用是最早的,例如越洋的通信,因其高容量及可靠度的优点,并可以在长距离(600km以上需要中继器,最大可达9000km)传输时载上数以万计的通话信号,因而有效的提升通话负载量及品质的问题。有线电视方面,因所需求的频宽较高,每个频道的所需的影像频宽约为6MHz(声音频道约为8KHz),以光纤传递模拟影像讯号,可以达到一百个以上的频道,其中包括声音、影像及互动的数据传输。而数据通信(Datacommunication)上面,则是现在最热门的话题,随着信息时代的来临,网际网络需要大量的频宽来传递多媒体的信息,从短距离(1~500m)的Gigabit网络卡、LAN,到中距离(1~20km)的MAN以至于长距离(60~600km以上)的越洋光缆都需要光纤的大容量来解决频宽不足的问题,近年来,因网际网络Interent的盛行及远距教学等实施,对于数据通讯的需求每年以倍数成长,而光纤通信系统架构则是最佳的选择。 3、基本光纤通讯架构︰ 图一为点对点光纤通讯的基本架构,基本上是由光收发模块及光纤所组成,首先我们利用数字或模拟调变的方式将信息载在发射器上,以光波为载波透过光纤将讯号传递至远方,若距离较长,光纤则透过联结器(Connector)或接合器(splice)方式延长,最后到达光传感器端,在注重噪声与讯号比(S/N Ratio)情况下,并用clock recover的方式下将光讯号转回电讯号,而将信息解调回来。

0804仪器科学与技术一级学科简介

0804仪器科学与技术一级学科简介 一级学科(中文)名称:仪器科学与技术 (英文)名称:Instrumentation Science and Technology 一、学科概况 仪器科学与技术学科是一个古老而又极具生命力的学科。它伴随着人类最早的生产和社会活动的开始而萌生。古代的测量器具尽管简单,但也基本具备了测量单位、标准量和标准量与被测量比对过程等测量的基本属性,如我国氏族社会已有“结绳记事”、“契木计时”的记载;大禹治水时使用了准绳与规矩;公元前221年,我国秦朝已形成量值统一的度量衡制度和器具;《汉书·律历志》中用“累黍定尺”和“黄钟律管”对长度进行了定义,其中用发出固定音高的“黄钟律管”之长来定长度标准是我国古代伟大的发明创造,这种方法与几千年后的今天,世界上采用光波波长定义长度基准,从基本原理上有惊人的相似之处;此外还产生了朴素的测量方法,如利用平行光投影的相似现象间接地测量物体的长度;进而产生了以测量单位、标准量、测量量值与被测量值转换关系为基础的测量方法和测量仪器,如日晷和浑天仪等。在这个漫长的历史过程中,尽管该学科在促进生产力发展与社会进步中发挥了巨大作用,但仍处于学科的萌芽阶段。 直至1898年国际米制公约建立,初步形成了以米和公斤等为基本计量单位、相应的计量标准器与测量仪器、量值溯源方法与测量理论;进而衍生出作为该学科理论基础的测量误差理论和计量学等,学科基本理论框架初步形成。随着近代测量科学与仪器技术的学术价值和实验价值显著提升,近代测量科学逐渐从近代物理学和化学等基础学科中分离出来,并逐渐形成为一门独立的学科,成为近代科学的重

要基础学科之一。门捷列夫曾有著名论断:“科学是从测量开始的”,“没有测量就没有科学”,“测量是科学的基础”。 现代测量学是前沿科学领域中最活跃和最有生命力的学科之一。测量科学研究的重大突破性进展和新原理仪器的发明直接或间接地引发了前沿重大科学问题的突破。这在历届诺贝尔奖的研究成果中得到集中体现。到2011年为止,诺贝尔物理学奖、化学奖、生理学和医学奖获奖项目总数为352项,获奖总人数为547名,直接因测量科学研究成果或直接发明新原理仪器而获奖的项目总数为37(占 1 0.5%),总人数为50(占9.1%),如电子显微镜、质谱仪、CT断层扫描仪、扫描隧道显微镜和原子力显微镜等;同时69%的物理学奖、75%的化学奖、92%的生理学和医学奖都是借助于各种先进的高端仪器完成的。 仪器科学与技术的发展,一直与和物理学、化学、生理学和医学等基础学科和前沿学科的发展与重大前沿科学问题的突破紧密地联系在一起。每次科学技术研究取得的重大进展都会推动仪器科学与技术产生跨越式发展。传统仪器科学与技术以牛顿力学、电磁学、经典光学、热力学、化学等为理论基础,建立了长度、力学、热工、电磁、光学、声学、电子、时间频率、电离辐射等计量测试专业与相应的测量仪器技术产业。 现代仪器科学与技术以电动力学、量子力学、现代光学、电子学等为理论基础,同时借助于现代新技术的突破性进展,如微电子技术、计算机技术、激光技术、光子技术、光电子技术和超导技术等,使仪器科学与技术进入以量子计量为标志的新阶段,如激光干涉测量技术、原子频标计量技术、基于电子隧道效应的扫描隧道显微仪器技术、基于量子化霍尔效应的电参量计量技术研究等相继迅速取得突破,并发展成为新的仪器技术,进而促进仪器科学与技术的迅速发展。 仪器科学与技术学科具有与众多相关学科紧密交叉与融合的特

光纤通信技术

光纤通信技术 摘要:光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 关键字:光纤;光纤通信器件;传输技术 Abstract: optical fiber communication is the carrier for the use of light, the optical fiber transmission medium as the message from one place to another means of communication. In 1966 the Chinese British doctor Gao Kun made an epoch-making the paper, he presented with cladding material quartz glass optical fibers, can be used as a communication medium. Since then, pioneered the field of optical fiber communication research. In 1977 the United States of America in Chicago being 7000 meters of two Telephone Bureau, first used successfully for multimode optical fiber optical fiber communication test. 85 micron band multimode fibers for the first generation of optical fiber communication system. 1981 has two telephone interoffice using 1.3 microns multimode fiber communication system, as the second generation of optical fiber communication system. In 1984 1.3 micron single-mode optical fiber communication system, namely the third generation of optical fiber communication system. In the late 80 's and 1.55 micron single-mode optical fiber communication system, namely the fourth generation of optical fiber communication system. Using WDM increase rate, light amplification growth propagation distance of the system, as the fifth generation of optical fiber communication system. The new system, the system of coherent optical fiber communication, has reached the field experimental level, will be applied. Optical soliton communication system can achieve extremely high speed, at the end of twentieth Century or the beginning of twenty-first Century may reach utility. In the system with optical fiber amplifier has the potential to achieve high speed and extremely long distance optical fiber communication. Keywords: optical fiber; optical fiber communication device; transmission technique 1 引言 光纤通信的发展极其迅速,至1991年底,全球已敷设光缆563万千米,到1995年已超过1100万千米。光纤通信在单位时间内能传输的信息量大。一对单模光纤可同时开通

常用测量仪器的介绍

螺旋测微器 螺旋测微器又称千分尺(micrometer)、螺旋测微仪、分厘卡,是比游标卡尺更精密的测量长度的工具,用它测长度可以准确到0.01mm,测量范围为几个厘米。它的一部分加工成螺距为0.5mm的螺纹,当它在固定套管B的螺套中转动时,将前进或后退,活动套管C和螺杆连成一体,其周边等分成50个分格。螺杆转动的整圈数由固定套管上间隔0.5mm的刻线去测量,不足一圈的部分由活动套管周边的刻线去测量。 螺旋测微器简介 一种机械千分尺(螺旋测微器) 知名品牌:安一量具、哈量、成量、青量、上工、瑞士TESA、日本Mitutoyo等。 右图为一种常见的螺旋测微器。 螺旋测微器的分类 一种电子千分尺(螺旋测微器) 螺旋测微器分为机械式千分尺和电子千分尺两类。①机械式千分尺。简称千分尺,是利用精密螺纹副原理测长的手携式通用长度测量工具。1848年,法国的J.L.帕尔默取得外径千分尺的专利。1869年,美国的J.R.布朗和L.夏普等将外径千分尺制成商品,用于测量金属线外径和板材厚度。千分尺的品种很多。改变千分尺测量面形状和尺架等就可以制成不同用途的千分尺,如用于测量内径、螺纹中径、齿轮公法线或深度等的千分尺。②电子千分尺。也叫数显千分尺,测量系统中应用了光栅测长技术和集成电路等。电子千分尺是20世纪70年代中期出现的,用于外径测量。 螺旋测微器的组成

螺旋测微器组成部分图解 图上A为测杆,它的活动部分加工成螺距为0.5mm的螺杆,当它在固定套管B的螺套中转动一周时,螺杆将前进或后退0.5毫米,螺套周边有50个分格。大于0.5毫米的部分由主尺上直接读出,不足0.5毫米的部分由活动套管周边的刻线去测量。所以用螺旋测微器测量长度时,读数也分为两步,即(1)从活动套管的前沿在固定套管的位置,读出主尺数(注意0.5毫米的短线是否露出)。(2)从固定套管上的横线所对活动套管上的分格数,读出不到一圈的小数,二者相加就是测量值。 螺旋测微器的尾端有一装置D,拧动D可使测杆移动,当测杆和被测物相接后的压力达到某一数值时,棘轮将滑动并有咔咔的响声,活动套管不再转动,测杆也停止前进,这时就可以读数了。 不夹被测物而使测杆和小砧E相接时,活动套管上的零线应当刚好和固定套管上的横线对齐。实际操作过程中,由于使用不当,初始状态多少和上述要求不符,即有一个不等于零的读数。所以,在测量时要先看有无零误差,如果有,则须在最后的读数上去掉零误差的数值。 螺旋测微器原理和使用 螺旋测微器是依据螺旋放大的原理制成的,即螺杆在螺母中旋转一周,螺杆便沿着旋转轴线方向前进或后退一个螺距的距离。因此,沿轴线方向移动的微小距离,就能用圆周上的读数表示出来。螺旋测微器的精密螺纹的螺距是0.5mm,可动刻度有5 0个等分刻度,可动刻度旋转一周,测微螺杆可前进或后退0.5mm,因此旋转每个小分度,相当于测微螺杆前进或推后0.5/50=0.01mm。可见,可动刻度每一小分度表示0.01mm,所以以螺旋测微器可准确到0.01mm。由于还能再估读一位,可读到毫米的千分位,故又名千分尺。

光纤通信技术介绍

光纤通信技术介绍 光纤通信是利用光波作载波,以光纤作为传输媒质将信息从一处传至另一处的通信方式。1966年英籍华人高锟博士发表了一篇划时代性的论文,他提出利用带有包层材料的石英玻璃光学纤维,能作为通信媒质。从此,开创了光纤通信领域的研究工作。1977年美国在芝加哥相距7000米的两电话局之间,首次用多模光纤成功地进行了光纤通信试验。85微米波段的多模光纤为第一代光纤通信系统。1981年又实现了两电话局间使用1.3微米多模光纤的通信系统,为第二代光纤通信系统。1984年实现了1.3微米单模光纤的通信系统,即第三代光纤通信系统。80年代中后期又实现了1.55微米单模光纤通信系统,即第四代光纤通信系统。用光波分复用提高速率,用光波放大增长传输距离的系统,为第五代光纤通信系统。新系统中,相干光纤通信系统,已达现场实验水平,将得到应用。光孤子通信系统可以获得极高的速率,20世纪末或21世纪初可能达到实用化。在该系统中加上光纤放大器有可能实现极高速率和极长距离的光纤通信。 就光纤通信技术本身来说,应该包括以下几个主要部分:光纤光缆技术、光交换技术传输技术、光有源器件、光无源器件以及光网络技术等。 光纤技术的进步可以从两个方面来说明: 一是通信系统所用的光纤; 二是特种光纤。早期光纤的传输窗口只有3个,即850nm(第一窗口)、1310nm(第二窗口)以及1550nm(第三窗口)。近几年相继开发出第四窗口(L波段)、第五窗口(全波光纤)以及S波段窗口。其中特别重要的是无水峰的全波窗口。这些窗口开发成功的巨大意义就在于从1280nm到1625nm 的广阔的光频范围内,都能实现低损耗、低色散传输,使传输容量几百倍、几千倍甚至上万倍的增长。这一技术成果将带来巨大的经济效益。另一方面是特种光纤的开发及其产业化,这是一个相当活跃的领域。 1. 有源光纤 这类光纤主要是指掺有稀土离子的光纤。如掺铒(Er3+)、掺钕(Nb3+)、掺镨(Pr3+)、掺镱(Yb3+)、掺铥(Tm3+)等,以此构成激光活性物质。这是制造光纤光放大器的核心物质。不同掺杂的光纤放大器应用于不同的工作波段,如掺饵光纤放大器(EDFA)应用于1550nm附近(C、L波段);掺镨光纤放大器(PDFA)主要应用于1310nm波段;掺铥光纤放大器(TDFA)主要应用于S波段等。这些掺杂光纤放大器与喇曼(Raman)光纤放大器一起给光纤通信技术带来了革命性的变化。它的显著作用是:直接放大光信号,延长传输距离;在光纤通信网和有线电视网(CATV网)中作分配损耗补偿;此外,在波分复用(WDM)系统中及光孤子通信系统中是不可缺少的关键元器件。正因为有了光纤放大器,才能实现无中继器的百万公里的光孤子传输。也正是有了光纤放大器,不仅能使WDM传输的距离大幅度延长,而且也使得传输的性能最佳化。 2. 色散补偿光纤(Dispersion Compensation Fiber,DCF) 常规G.652光纤在1550nm波长附近的色散为17ps/nm×km。当速率超过2.5Gb/s时,随着传输距离的增加,会导致误码。若在CATV系统中使用,会使信号失真。其主要原因是正色散值的积累引起色散加剧,从而使传输特性变坏。为了克服这一问题,必须采用色散值为负的光纤,即将反色散光纤串接入系统中以抵消正色散值,从而控制整个系统的色散大小。这里的反色散光纤就是所谓的色散补偿光纤。在1550nm处,反色散光纤的色散值通常在-50~200ps/nm×km。为了得到如此高的负色散值,必须将其芯径做得很小,相对折射率差做得很大,而这种作法往往又会导致光纤的衰耗增加(0.5~1dB/km)。色散补偿光纤是利用基模波导色散来获得高的负色散值,通常将其色散与衰减之比称作质量因数,质量因数当然越大越好。为了能在整个波段均匀补偿常规单模光纤的色散,最近又开发出一种既补偿色散又能补偿色散斜率的"双补偿"光纤(DDCF)。该光纤的特点是色散斜率之比(RDE)与常规光纤相同,

光缆基本知识介绍

光缆基本知识介绍 Company number:【WTUT-WT88Y-W8BBGB-BWYTT-19998】

光缆基本知识介绍 一、光纤的组成与分类 1、光纤按其制造材料的不同可分为石英光纤和塑料光纤,石英光纤即通常使用的光纤,石英光纤按其传输模式的不同分为单模光纤和多模光纤。塑料光纤全部由塑料组成,通常为多模短距离应用,还处于起步阶段,未有大规模应用。 2、石英光纤的结构:石英光纤由纤芯、包层及涂覆层组成,其结构如图: 光纤中光的传输在纤芯中进行,因包层与纤芯石英的折射率不同,使光在纤芯与包层表面产生全反射,使光始终在纤芯中传输,而塑料涂覆层起保护石英光纤及增加光纤强度的作用,因石英很脆,若没有塑料的保护则无法在实际中得到应用,正因为光纤的结构如此,所以光纤易折断,但有一定的抗拉力。 3、 石英光纤的分类 单模光纤 G.652A(简称B1) (简称B1) G.652C() () G.655A光纤(B4)(长途干线使用) 光纤(B4)(长途干线使用) 多模光纤 50/125(A1a简称A1)

125(A1b) 二、光缆的结构 1、室外光缆主要有中心管式光缆、层绞式光缆及骨架式光缆三种结构,按使用光纤束与光纤带又可分为普通光缆与光纤带光缆等6种型式。每种光缆的结构特点: ①中心管式光缆(执行标准:YD/T769-2003):光缆中心为松套管,加强构件位于松套管周围的光缆结构型式,如常见的GYXTW型光缆及GYXTW53型光缆,光缆芯数较小,通常为12芯以下。 ②层绞式光缆(执行标准:YD/T901-2001):加强构件位于光缆的中心,5~12根松套管以绞合的方式绞合在中芯加强件上,绞合通常为SZ绞合。此类光缆如GYTS等,通过对松套管的组合可以得到较大芯数的光缆。绞合层松套管的分色通常采用红、绿领示色谱来分色,用以区分不同的松套管及不同的光纤。层绞式光缆芯数可较大,目前本公司层绞式光缆芯数可达216芯或更高。 ③骨架式光缆:加强构件位于光缆中心,在加强构件上由塑料组成的骨架槽,光纤或光纤带位于骨架槽中,光纤或光纤带不易受压,光缆具有良好的抗压扁性能。该种结构光缆在国内较少见,所占的比例较小。 ④ 8字型自承式结构,该种结构光缆可以并入中心管式与层绞式光缆中,把它单独列出主要是因为该光缆结构与其它光缆有较大的不同。通常有中心管式与层绞式8字型自承式光缆。 5 煤矿用阻燃光缆(执行标准:Q/M01-2004 企业标准):与普通光缆相比,提高了光缆阻燃性能的要求,并经过特殊的设计使光缆适用于矿井环境下使用,通常外护套颜色采用兰色,以利于矿井中对光缆的识别。按结构可分入中心管式光缆与层绞式光缆两类结构中。

工程测量仪器简述

工程测量仪器简述 工程建设的规划设计、施工及经营管理阶段进行测量工作所需用的各种定向、测距、测角、测高、测图以及摄影测量等方面的仪器。 经纬仪测量水平角和竖直角的仪器。由望远镜、水平度盘与垂直度盘和基座等部件组成。按读数设备分为游标经纬仪、光学经纬仪和电子(自动显示)经纬仪。经纬仪广泛用于控制、地形和施工放样等测量。中国经纬仪系列 有:DJ07、DJ1、DJ2、DJ6、DJ15、DJ60六个型号(“DJ”表示“大地测量经纬仪”,“07、1、2、……”分别为该类仪器以秒为单位表示的一测回水平方向的中误差)。在经纬仪上附有专用配件时,可组成:激光经纬仪、坡面经纬仪等。此外,还有专用的陀螺经纬仪、矿山经纬仪、摄影经纬仪等。 水准仪测量两点间高差的仪器。由望远镜、水准器(或补偿器)和基座等部件组成。按构造分:定镜水准仪、转镜水准仪、微倾水准仪、自动安平水准仪。水准仪广泛用于控制、地形和施工放样等测量工作。中国水准仪的系列标准有: DS05、DS1、DS3、DS10、DS20等型号(“DS”表示“大地测量水准 仪”,“05、1、3、……”分别为该类仪器以毫米为单位表示的每公里水准测量高差中数的偶然中误差)。在水准仪上附有专用配件时,可组成激光水准仪。 平板仪地面人工测绘大比例尺地形图的主要仪器。由照准仪、平板和支架等部件组成。在照准仪上附加电磁波测距装置,可使作业更为方便迅速。 电磁波测距仪应用电磁波运载测距信号测量两点间距离的仪器。测程在5~20公里的称为中程测距仪,测程在5公里之内的为短程测距仪。精度一般 为 5mm+5ppm,具有小型、轻便、精度高等特点。60年代以来,测距仪发展迅速。近年来,生产的双色精密光电测距仪精度已达 0.1mm+0.1ppm。电磁波测距仪已广泛用于控制、地形和施工放样等测量中,成倍的提高了外业工作效率和量距精度。 电子速测仪由电子经纬仪、电磁波测距仪、微型计算机、程序模块、存储器和自动记录装置组成,快速进行测距、测角、计算、记录等多功能的电子测量仪器。有整体式和组合式两类。整体式电子速测仪为各功能部件整体组合,可自动显示斜距、角度,自动归算并显示平距、高差及坐标增量,具有较高的自动化程度。组合式电子速测仪,即电子经纬仪,电磁波测距仪,计算机及绘图设备等分离元件,按需要组合,既有较高的自动化特性,又有较大的灵活性。电子速测仪适用于工程测量和大比例尺地形测量。并能为建立数字地面模型提供解析数据,使地面测量趋于自动化,还可对活动目标做跟踪测量,例如对于港口工程中的船舶进出港口的航迹观测。

光纤简介

第2章光纤简介 2.1 光纤结构 光纤,又称介质圆波导,是由一种高度透明的石英或其它光学材料经复杂的工艺拉制而成的光波导材料,光纤的一般结构如图2.1所示。纤芯和包层为光纤的主体,对光波的传播起着决定性作用。涂敷层和护套则主要用于隔离杂光,提高光纤强度,保护光纤。在某些特殊的应用场合不加涂敷层和护套的光纤称为裸体光纤,简称裸纤。 图2.1 光纤结构示意图 μ,材料主体是二氧化硅(SiO2),其中掺杂极微量其纤芯直径一般为5~75m 他材料,例如二氧化锗(GeO2)、五氧化二磷(P2O5)等以提高纤芯的折射率。包层为紧贴纤芯的材料层,其折射率略小于纤芯材料的折射率。包层总直径一般为μ。包层材料一般也是二氧化硅,有时也掺杂微量三氧化二硼(B2O3) 100~200m 或四氧化硅(Si2O4),以降低包层的折射率。涂敷层的材料一般为硅酮、丙烯酸μ,用于隔离杂光、增强光纤的柔韧性、机械强度和耐老化盐,外径约为250m 特性。护套的材料一般为尼龙或是其他的有机材料,用于增加光纤的机械强度,保护光纤。 2.2 光纤类型[1] 光纤类型多样,其分类方法也很多,常见的有以下三种方法。

2.2.1 按折光纤射率分布分类 ⑴ 阶跃折射率(Step Index, SI)光纤,纤芯和包层折射率都是均匀的,纤芯折射率1n 高于包层折射率2n ,在两者分界处折射率突变,如图2.2(a)。 ⑵ 渐变折射率(Gradient Index, GI)光纤,纤芯折射率是渐变的,中心折射率最高,沿径向逐渐减小,包层折射率是均匀的,如图2.2(b)。目前GI 光纤纤芯折射率大多呈抛物线分布。 ⑶ W 型光纤,纤芯折射率可以是均匀的,也可以是渐变的,主要区别是包层折射率又出现阶跃变化,形成双包层或多包层结构。其折射率分布曲线似字母“W”而得名,它的特点是可以进一步减小色散,增大通信容量。 (a) SI 光纤 (b) GI 光纤 图2.2 光纤的横截面及折射率分布 2.2.2 按传输模式分类 根据光纤中的传输模式,可将光纤分为多模光纤和单模光纤。多模光纤可传播数百到上千个模式,根据折射率在纤芯和包层上的径向分布情况,又可细分为阶跃多模光纤和渐变多模光纤。单模光纤对给定的工作波长只能传输一个模式。国际电报电话咨询委员会(CCITT)建议单模光纤与多模光纤的外径(包层直径)均为125μm ,多模光纤芯径为50μm ,单模光纤芯径为8~10μm 。

光纤通信传输简介

光纤通信传输简介 随着近年来对光纤光缆、光器件。光系统的大力研究和开发,光纤性能更加完善,品种更加多元化,光纤通信已成为信息高速公路的传输平台,通信网络也在向全光网络发展。这篇论文旨在了解并简要介绍这个通信传输的主力军。 首先是光纤通信的介质:电缆。电缆又分为三种。 第一种为双绞线电缆,双绞线(TP)是一种最常用的传输介质。双绞线是由两根具有绝缘保护的铜导线组成,把两根绝缘铜导线,按一定的密度互相绞在一起,可以减少串扰及信号放射影响的程度,每一根导线在导电传输中放出的电波会被另一根线上发出的电波所抵消。 双绞线由两根22号至26号绝缘铜导线相互缠绕而成,而将一对或多对双绞线安置在一个套桷中,便形成了双绞线电缆。 双绞线电缆广泛应用于传统的通信领域。在计算机网络通信的早期阶段,点到点传输方式均使用双绞线电缆。随着技术的进步,双绞线电缆所能支持的通信速率不断提高。目前三类双绞线电缆能支持10Mbps100米,即10BASE-T标准,五类双绞线支持100Mbps速率100米,即CDDI标准甚至能支持155Mbps的ATM速率。根据最新的研究结果,双绞线能支持600Mbps以上的速率。 a、非屏蔽双绞线电缆

非屏蔽双绞线电缆是由多对双绞线和一个塑料外皮构成。国际电气工业协会(EIA)为双绞线电缆定义了五种不同的质量级别。 计算机网络中常使用的是第三类和第五类以及超五类非屏蔽双绞线电缆。 第三类双绞线适用于大部分计算机局域网络,而第五类双绞线利用增加缠绕密度、高质量绝像材料,极大地改善了传输介质的性质。 由于继承了声音电信通信的办法,计算机网络用的非屏蔽双绞线电缆在安装上通常与大部分电话系统相同,采用同一种方法,一个用户设备,通过RJ-45(4对线)或RJ-11(2对线)的电话连接器端口与非屏蔽双绞线电缆相连。目前,非屏蔽双绞线可在100米内,使数据传输率达到100Mbps(每秒百万位)。 b、屏蔽双绞线电缆 屏蔽双绞线电缆的内部与非屏蔽双绞线电缆一样是双绞铜线,外层由铝箔包着。 Apple计算机公司以及IBM公司所用的各种传输介质都要求使用屏蔽双绞线电缆。屏蔽双绞线相对来讲要贵一些,但它仍然比同轴粗缆和光缆便宜些。它的安装要比非屏蔽双绞线电缆难一些,类似同轴电缆。它必须配有支持屏蔽功能的特殊连接器和相应的安装技术。它具有较高的传输速率,100米以内达500Mbps,但是通常使用的传输率都不超过155Mbps。目前使用最普遍的速率是 16Mbps。屏蔽双绞线电缆的最大使用距离也限制在百米之内。

精密尺寸测量仪器知识介绍

精密尺寸测量仪器知识介绍 一、精密尺寸测量仪器概念 所谓的精密测量就是以微米为计量单位的测量技术,它是随着高标准的工业设计对加工制造行业提出越来越高的技术要求而形成的。所谓的尺 寸就是以几何元素点、直线、线段、圆、圆弧、角、面、球体等为基本要 素的几何关系。所以精密尺寸测量仪器就是以满足精益求精的设计及加工 制造的要求而形成的计量分析管控这种几何关系的仪器。 二、精密尺寸测量仪器分类 精密尺寸测量仪器种类很多,但大致可以分成接触式精以测量仪器和非接触式精密测量仪器。接触式精密测量仪器以三坐标为主,并衍生出一 维高度计和二维高度计。非接触式精密测量仪器早期以投影测量仪为代表,但是随着计算机软件技术和高像素光感传感器的飞速发展,投影测量仪逐 渐被淘汰,从而形成新的代表仪器——二次元影像测量仪。 三、仪器原理 1、三坐标测量机原理 三坐标测量机是由三个互相垂直的运动轴X,Y,Z建立起的一个直角坐标系,测头的一切运动都在这个坐标系中进行,测头的运动轨迹由测球中心来表示。测量时,把被测零件放在工作台上,测头与零件表面接触,三坐标测量机的检测系统可以随时给出测球中心点在坐标系中的精确位置。当测球沿着工件的几何型面移动时,就可以得出被测几何面上各点的坐标值。将这些数据送入计算机,通过相应的软件进行处理,就可以精确地计算出被测工件的几何尺寸,现状和位置公差等。

三坐标结构图测量侧头结构图 2、二次元影像测量仪原理 二次元影像仪通过的CCD光学传感器将光信号转化为数字信号记录影像 和光栅尺记录位移参数,再利用视频采集处理器和数据采集处理器将数字型号 传输至电脑,之后经过影像测量仪软件在电脑上由操作人员逆向绘图并测量。影像仪之所以被称之为二次元是因为它实际绘制测量出来的只是当时产品放 在仪器工作台上的俯视图,只能完成x和y方向上的二维尺寸测量或z方向 上的高度测量。 二次元影像测量仪结构图工作台结构图

相关文档
最新文档