光伏并网逆变器的研究及可靠性分析

光伏并网逆变器的研究及可靠性分析
光伏并网逆变器的研究及可靠性分析

光伏并网逆变器的研究及可靠性分析

摘要:光伏逆变器是光伏发电系统的关键设备,其性能好坏直接决定整个光伏

发电系统能否安全、可靠、高效地并网发电。本文主要研究适用于并网型光伏发

电系统的逆变器。

关键词:光伏并网发电系统;逆变器;可靠性分析

光伏并网逆变器是光伏并网发电系统中必不可少的设备之一,其效率的高低、可靠性的好坏将直接影响整个光伏发电系统的性能和投资.

1光伏并网逆变器

1.1 光伏逆变器的类型

光伏逆变系统负责将光伏板产生的直流电转变为交流电输入电网或直接供给

负荷,其结构包括DC/AC主电路以及DC/DC转换电路、变压器、检测单元和控制器等外围辅助装置。为了保证光伏发电的稳定性和高效性,光伏逆变通常具备最

大功率点跟踪(MPPT)、电压频率和相位调制、防孤岛和低电压穿越等功能。

光伏逆变器的分类方式多种多样。根据逆变器的输出波形可分为方波逆变器、阶

梯波逆变器和正弦波逆变器;根据逆变控制方式可分为调频式(PFM)逆变器和

调脉宽式(PWM)逆变器;根据逆变器输出相数可分为单相逆变器和三相逆变器等;根据逆变系统直流侧所连接的光伏阵列、光伏组串和光伏组件的区别,将光

伏逆变器分为集中式逆变器、组串式逆变器和组件模块。

1.2光伏并网对逆变器的要求

作为光伏阵列和交流电网系统间进行能量交换的逆变器,其安全性、可靠性、逆变效率、制造成本等因素对光伏并网发电系统的整体投资和收益具有举足轻重

的作用。因此,光伏并网发电系统对并网逆变器有如下要求:

(1)从光伏并网发电系统角度考虑,需避免对公共电网造成污染;这就要求逆变器在并网输出时能够向电网馈入失真度小的正弦波电流。通常情况下,逆变

器的开关频率对波形的失真度有较大影响,频率越高,经过滤波器后输出电流更

接近标准的正弦波。基于DSP的数控逆变系统当中,能够将光伏并网发发电系统

逆变器的开关频率提高,使输出电流正弦度得到有效提升。与此同时,为了确保

其开关频率的性能,还有必要优化选取逆变器主功率元件[2]。若低压系统属性为

小容量,则大多数情况下应用的是功率场效应管,其存在的通态压降较低,开关

频率则较高;然而功率场效应管在电压上升的情况下,其通态电阻会加大,所以

基于高压大容量系统当中通常应用的是绝缘栅双极晶体管(IGBT);基于超大容

量系统当中,通常选取的是可关断晶闸管(SCR),以此充当功率元件。

(2)根据相关协议以及标准,并网逆变器需要拥有防孤岛效应的作用,在形成孤岛效应时,能够通过电网频率或电网电压判断产生孤岛,在规定的时间内逆

变器保护而并停止输出。孤岛效应指的是,在电网供电发生中断,光伏并网发电

系统仍在运行,并且与本地负载连接处于独立运行状态,这种现象被称为孤岛效应。从技术层面而言,要想使孤岛效应得到有效防范,需加强检测电网断电的情况。

(3)要想使电网以及逆变器在运行过程中的可靠性及安全性得到有效保障,需确保逆变器和电网之间形成有效的隔离状态,同时合理、科学地应用逆变器接

地技术。首先,在电气隔离方面通常应的是变压器。其次,基于三相输出光伏发

电系统当中,有必要根据国际电工委员会给出的相关规定,优化选取接地方式。

此外,对于用电设备外壳则经保护线和接地点金属性连接。

光伏逆变器行业现状及发展趋势前景

一、光伏逆变器产业链结构分析 图表光伏发电用逆变器产业链结构 资料来源:产研智库 一、上游原材料 逆变器企业主要外购产品包括各种电子元器件、结构件、电气元器件、电线电缆等。 逆变器的主功率元件的选择至关重要,使用较多的功率元件有达林顿功率晶体管(BJT),功率场效应管(MOSFET),绝缘栅晶体管(IGBT)和可关断晶闸管(GTO)等,在小容量低压系统中使用较多的器件为MOSFET,在大容量系统中一般均采用IGBT模块,而在高压特大容量(1000KVA以上)系统中,一般均采用IGCT、GTO等作为功率元件。 图表光伏发电用逆变器主要原料 资料来源:产研智库 二、下游需求领域 图表光伏发电逆变器国内主要应用领域

资料来源:产研智库 三、产业链各环节传导机制 光伏逆变器上游为电力电子元器件、微电子芯片、集成电路、电力电容器、电抗器、变压器、机柜、机箱壳体制造等行业。该行业与上游行业的关联性较低,上游行业的影响主要体现在本行业采购成本。 逆变器行业与下游行业的发展密切相关,下游行业对本行业的发展具有较大的牵引和驱动作用,国家光伏项目建设与投资是决定本行业未来需求的重要部分,其需求变化直接决定了本行业未来的发展状况。 二、国外光伏逆变器市场格局 光伏逆变器的主要厂商分布在光伏安装的主要区域,包括德国、中国、美国等地。2015年,全球逆变器的主要产能集中在德国、中国、美国,其中SMA、阳光电源、华为占据前三位。国外厂商逆变器项目经验丰富,产品质量高,成本也相对较高。国内自主研发的光伏逆变器,成本较低、售后服务效率更高。从地域来看,预计未来新增光伏逆变器需求将主要来自美国、日本和中国等新兴市场国家。 2015年全球逆变器市场格局在领先厂商之间日趋巩固。全球逆变器需求在2015年上涨了33%,排名前10的光伏逆变器厂商市场份额提高到了75%,产业集中度不断提高,全球光伏逆变器出货量达2010年以来的最高值。 德国SMA继续保持其2015年全球最大光伏逆变器供应商的地位,但在出货量上继续损失市场份额。虽然SMA仍然在光伏逆变器收入上处于全球领导者地位,但其从逆变器出货排行榜流失的全球需求已转向中国。2015年出货量前十名厂商中有四个是中国企业,其中华为出货量领先。SMA业绩提升的主要得益于美国和其他快速增长的公用事业规模市场,该公司还更新了其逆变器产品组合,表示其在住宅、商业和公用事业规模市场都有竞争力产品推出。 图表2015全球10大光伏逆变器厂商出货量排名

光伏并网逆变器控制方法研究(小论文)

光伏并网逆变器控制方法研究 【摘要】本文以3KW的家用型光伏并网发电系统为例,对光伏并网发电系统的核心——并网逆变器,进行控制策略的研究。在MATLAB/SIMULIINK环境下建立光伏并网发电系统的数学模型,并选用电流滞环比较控制、无差拍控制、数字PID控制进行仿真研究。仿真结果表明,三种控制策略都能得到符合并网要求的输出电流,其中无差拍控制得到的电流波形最佳。 【关键词】光伏并网,最大功率点跟踪,逆变控制,MA TLAB 1绪论 自世界上第一座光伏电站建立以来的40多年间,光伏发电产业的发展非常迅速。截至2014年,全球的光伏装机总容量超过了160GW,我国的光伏装机总量也达到了28GW。不过,在我国光伏产业发展迅速的背后,隐藏着光伏并网率低的问题。针对这一问题,本文以3KW光伏并网发电系统为例,对并网逆变器的控制方法进行研究。同时,对传统的逆变控制方法进行改进,以获得更好的逆变效果。 2光伏并网发电系统的组成 如图2.1所示,本文采用的是双级式的单相光伏并网发电系统。整个系统由光伏电池、DC/DC变换环节、DC/AC逆变环节和滤波器组成。光伏电池输出的电能进入DC/DC变换环节进行升压,同时实现最大功率点跟踪;稳定的直流电压由DC/AC逆变成交流电流,经过LC滤波器后并入电网。 Grid 图2.1 双级式单相光伏并网发电系统 3MPPT算法 最大功率点跟踪(MPPT)是指在温度、光照发生变化时,系统仍能使光伏电池的保持最大功率输出。目前,常用的MPPT控制算法有恒定电压法、电导增量法、扰动观察法[1-2]和模糊控制[3]等。 本文采用的MPPT算法是一种改进的电导增量法,电导增量法的控制原理是:通过比较光伏阵列的瞬时导抗与导抗变化量的方法来实现对最大功率的跟踪;理论依据是光伏电池 dP dU=,的P-V特性曲线是一条单峰的曲线,在最大功率点处功率对电压导数为0,即/0 dP dU的符号来确定增大或减小电压。这种判断方法需要多判断一次dU的符通过判断/ ?作为判断式,避免了分母为0的情况,号,增加了工作量。针对此问题,本文以dP dU 简化了控制过程,使算法更为简单。算法的仿真模型如图3.1所示。

太阳能逆变器开发思路和方案

内容摘要:摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研 究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。 摘要:针对光伏并网发电系统中关键部件——逆变器的结构设计与控制方法研究进行了详细分析和阐述。从电网、光伏阵列以及用户对逆变器的要求出发,分析了各种不同的逆变器拓扑结构与控制方法,比较其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟待解决的问题进行了阐述,指出光伏发电系统中并网逆变器高效可靠运行的发展方向。关键词:光伏并网发电系统;逆变器;拓扑结构;最大功率点跟踪;孤岛效应 O 引言 由于传统能源的枯竭和人们对环境的重视,电力系统正面临着巨大变革,分布式发电将成为未来电力系统的发展方向。其中,光伏发电以其独特的优点,被公认为技术含量高、最有发展前途的技术之一 。但是光伏发电系统存在着初期投资大、成本较高等缺点,因而探索高性能、低造价的新型光电转换材料与器件是其主要研究方向之一。另一方面,进一步减少光伏发电系统自身损耗、提高运行效率,也是降低其发电成本的一个重要途径。逆变器效率的高低不仅影响其自身损耗,还影响到光电转换器件以及系统其他设备的容量选择与合理配置。因此,逆变器已成为影响光伏并网发电系统经济可靠运行的关键因素, 研究其结构与控制方法对于提高系统发电效率、降低成本具有极其重要的意义[5] 。 本文从电网、光伏阵列以及用户对于并网逆变器的要求出发,分析了不同的逆变器拓扑结构与控制方法,比较了其运行效率和控制效果。对于目前国内外光伏发电系统中并网逆变器的研究现状、亟 待解决的技术问题进行了综合,进一步指出了光伏发电系统中并网逆变器高效可靠运行的发展方向。 1 光伏发电系统对逆变器的要求光伏并网发电系统一般由光伏阵列、逆变器和控制器3 部分组成。逆变器是连接光伏阵列和电网的关键部件,它完成控制光伏阵列最大功率点运行和向电网注入正弦电流两大主要任务。 1 .1 电网对逆变器的要求逆变器要与电网相连,必须满足电网电能质量、防止孤岛效应和安全隔离接地3 个要求。为了避免光伏并网发电系统对公共电网的污染, 失真度的主要因素之一是逆变器的开关频率。在数控逆变系统中采用高速DSP等新型处理 器,可明显提高并网逆变器的开关频率性能,它已成 逆变器应输出失真度小的正弦波。影响波形 为实际系统广泛采用的技术之一;同时, 逆变器主功率元件的选择也至关重要。小容量低压系统较多地使用功率场效应管(MOSFET),它具有较低的通态压降和较高的开关频率;但MOsFET随着电压升高其通态 电阻增大,因而在高压大容量系统中一般采用绝缘栅双极晶体管(IGBT);而在特大容量系 统中,一般采用可关断晶闸管(GTO)作为功率元件[6]。 依据IEEE 2000-929 [7]和UL1741[8]标准,所有并网逆变器必须具有防孤岛效应的功能。孤岛效应是指当电网因电气故障、误操作或自然因素等原因中断供电时,光伏并网发电系统 未能及时检测出停电状态并切离电网,使光伏并网发电系统与周围

太阳能光伏并网控制逆变器工作原理及控制方法

2015年6月15日 22:28 太阳能光伏并网控制逆变器工作原理及控制方 摘要:太阳能光伏发电是21世纪最为热门的能源技术领域之一,是解决人类能源危机的重要手段之一,引起人们的广泛关注。本文介绍了太阳能光伏并网控制逆变器的工作过程,分析了太阳能控制器最大功率跟踪原理,太阳能光伏逆变器的并网原理及主要控制方式。 1引言: 随着工业文明的不断发展,我们对于能源的需求越来越多。传统的化石能源已经不可能满足要求,为了避免面对能源枯竭的困境,寻找优质的替代能源成为人们关注的热点问题。可再生能源如水能、风能、太阳能、潮汐能以及生物质能等能源形式不断映入人们的眼帘。水利发电作为最早应用的可再生能源发电形式得到了广泛使用,但也有人就其的环境问题、安全问题提出过质疑,况且目前的水能开发程度较高,继续开发存在一定的困难。风能的利用近些年来也是热点问题,但风力发电存在稳定性不高、噪音大等缺点,大规模并网对电网会形成一定冲击,如何有效控制风能的开发和利用仍是学术界关注的热点。在剩下的可再生能源形式当中,太阳能发电技术是最有利用价值的能源形式之一。太阳能储量丰富,每秒钟太阳要向地球输送相当于210亿桶石油的能量,相当于全球一天消耗的能量。我国的太阳能资源也十分丰富,除了贵州高原部分地区外,中国大部分地域都是太阳能资源丰富地区,目前的太阳能利用率还不到1/1000。因此在我国大力开发太阳能潜力巨大。 太阳能的利用分为"光热"和"光伏"两种,其中光热式热水器在我国应用广泛。光伏是将光能转化为电能的发电形式,起源于100多年前的"光生伏打现象"。太阳能的利用目前更多的是指光伏发电技术。光伏发电技术根据负载的不同分为离网型和并网型两种,早期的光伏发电技术受制于太阳能电池组件成本因素,主要以小功率离网型为主,满足边远地区无电网居民用电问题。随着光伏组件成本的下降,光伏发电的成本不断下降,预计到2013年安装成本可降至1.5美元/Wp,电价成本为6美分/(kWh),光伏并网已经成为可能。并网型光伏系统逐步成为主流。 本文主要介绍并网型光伏发电系统的系统组成和主要部件的工作原理。 2并网型光伏系统结构 图1所示为并网型光伏系统的结构。并网型光伏系统包括两大主要部分: 其一,太阳能电池组件。将太阳传送到地球上的光能转化成直流电能;其二,太阳能控制逆变器及并网成套设备,负责将电池板输出直流电能转为电网可接受的交流能量。根据功率的不同太阳能逆变器的输出形式可为单相或者三相;可带隔离变压器,也可不配隔离变压器。

2018年全球光伏逆变器市场前景

2018年全球光伏逆变器市场前景 大家都知道,光伏逆变器在光伏电站中起到非常重要的作用。甚至可以称作为光伏电站的“大脑”。 光伏逆变器关系到光伏电站的长期可靠性、性能表现以及易管理性。不同的应用场景对逆变器的需求不同,并没有一个产品或者技术满足所有的应用和需求。 2017年中国电子产业连续三年位居全球逆变器出货量首位,2017年中国新增光伏装机容量达53GW,创下历史新高。 项目开发商、资产管理以及融资方在选择逆变器时更看重产品的易操作性和产品服务。逆变器厂商也试图在这两个方面做出差异化。数字化是目前逆变器产品最为热门的趋势,可帮助提高电站的性能、可靠性以及易管理性,同时允许电网公司了解电站的运行情况。

2017年零部件供应短缺加剧了本已紧张的供应形势,给一些逆变器厂商造成压力,同时也限制了逆变器价格的下降幅度。 以色列组件级电力电子(MLPE)制造商SolarEdge(纳斯达克:SEDG)继续保持强劲增长,2017年四季度毛利率创下新高。 《光伏杂志》与IHS Markit的资深太阳能分析师Cormac Gilligan共同探讨了2018年全球逆变器市场状况,并总结出影响逆变器市场格局的六大趋势。 01、中国将继续主宰逆变器市场。明年中国的逆变器出货量将达104吉瓦,占据全球市场

的半壁江山,继续领先。而住宅市场也将迅速崛起。 02、印度市场机会众多,但需考虑规模。印度正在紧随中国的脚步,给众多的国际性公司带来了机会。 03、规模固然重要,但敏捷却是关键。尽管逆变器市场有不少大佬,但小公司提供利基服务并进入一些特定市场的机会比比皆是。公司和产量规模必须伴随着敏捷性和灵活性才会更有生命力。 04、MLPE市场变得更艰难,发展性策略出现。由于中国在全球范围内加速布局其功率优化解决方案,2018年对MLPE的其他参与者而言变得更为艰难。他们必须加速与逆变器和组件供应商合作才能获得生存机会。 05、模块化设计使中央逆变器解决方案具有吸引力。模块化中央逆变器在2018年将继续稳步增长,这对特变电工和Fimer等公司是利好消息。 06、谨防零部件短缺。由于电动汽车和智能手机等产业的需求强劲,整个半导体行业均出现零部件短缺的现象。要提防此类短缺影响到逆变器市场。

光伏并网逆变器的研究概要

光伏并网逆变器的研究 【中文摘要】针对全球范围内能源紧张的局面,开发利用太阳能越来越受到重视。太阳能光伏并网发电是太阳能利用的主要形式,具有广阔的发展远景。本文就是在此背景下,对太阳能并网发电系统的核心器件并网逆变器进行重点研究。为此,论文主要对逆变器的电路拓扑结构、最大功率点跟踪、并网控制方案以及在并网过程中的反孤岛技术进行了分析研究。首先,简述了国内外光伏发电的现状和发展趋势,根据单相光伏并网发电系统的特点,本文选择了合适的主电路拓扑结构,该结构没有变压器,具有体积小、本钱低、控制方案易实现等优点。其次,通过比较分析目前太阳能电池进行最大功率跟踪的各种传统方法,运用了一种基于改进型Fibonacci线性搜索的最大功率跟踪算法。理论上证实了通过调节DC/DC升压电路的占空比可以改变太阳能电池的输出功率,以使太阳能电池工作于最大输出功率点上。本文阐述了添加反孤岛效应保护的必要性,通过对反孤岛效应的主动和被动检测方法的对比,最后采用了周期性扰动AFDPF检测方法并对其进行仿真验证。最后,本文对光伏并网逆变器的控制方案进行了分析,采用了基于SPWM的电流输出控制算法,该方法具有开关频率固定、物理意义清楚、实现方便等优点,通过MATLAB进行了仿真,结果表明了该方案的有效性和可行性。'); 【Abstract】 For the strenuous energy sources currently in the global scope,exploiting and utilizing the solar energy is paid more attention by many people than before. Photovoltaic(PV) generation,one important method of using solar energy,is very promising.Under this background,the dissertation deeply researches the PV grid-connected inverter,which is the hard core of the system.The *** analyzed the topology of the inverter,maximum power point tracing(MPPT),the control method of the inverter and the technology of grid-connected such as anti-island.Firstly,it briefly introduces the present situation and the development prospects of Photovoltaic generating at home and abroad.Based on the character of single-phase PV grid-connected system,the *** expatiated a suitable topological construction,which doesn\'t use the transformer with features which the small size, low cost and easy control strategy and so on.Secondly,by comparing many different traditional methods,this *** finds a new way to use a new Fibonacci search algorithm to realize the maximum power point tracking(MPPT).In this thesis,it is demonstrated theoretically that the maximum power-output can be matched by adjusting the duty ratio of the DC/DC circuit.This *** presents the needed of anti-islanding effect,analyses the active and passive detecting methods separately,then verifies the validity of the active frequency drift with periodical disturbance and positive feedback method.Finally,several popular control methods of inverter are simply analyzed.Based on SPWM,the scheme of current control have

太阳能光伏并网逆变器的设计原理框图

随着生态环境的日益恶化,人们逐渐认识到必须走可持续发展的道路,必须完成从补充能源向替代能源的过渡。光伏并网是太阳能利用的发展趋势,光伏发电系统将主要用于调峰电站和屋顶光伏系统。 在光伏并网系统中,并网是核心部分。目前并网型系统的研究主要集中于DC-DC和DC-AC 两级能量变换的结构。DC-DC变换环节调整光伏阵列的工作点使其跟踪最大功率点;DC-AC逆变环节主要使输出电流与电网电压同相位,同时获得单位功率因数。其中DC-AC是系统的关键设计。 太阳能光伏并网系统结构图如图1所示。本系统采用两级式设计,前级为升压斩波器,后级为全桥式逆变器。前级用于最大功率追踪,后级实现对并网电流的控制。控制都是由DSP芯片TMS320F2812协调完成。 图1 光伏并网系统结构图 逆变器的设计 太阳能并网逆变器是并网发电系统的核心部分,其主要功能是将发出的直流电逆变成单相交流电,并送入电网。同时实现对中间电压的稳定,便于前级升压斩波器对最大功率点的跟踪。并且具有完善的并网保护功能,保证系统能够安全可靠地运行。图2是并网逆变器的原理图。

图2 逆变器原理框图 控制系统以TI公司的TMS320F2812为核心,可以实现反馈信号的处理和A/D转换、DC/DC变换器和PWM逆变器控制脉冲的产生、系统运行状态的监视和控制、故障保护和存储、485通讯等功能。实际电路中的中间电压VDC、网压、并网电流和太阳能电池的电压电流信号采样后送至F2812控制板。控制板主要包括:CPU及其外围电路,信号检测及调理电路,驱动电路及保护电路。其中信号检测及调理单元主要完成强弱电隔离、电平转换和信号放大及滤波等功能,以满足DSP控制系统对各路信号电平范围和信号质量的要求。驱动电路起到提高脉冲的驱动能力和隔离的作用。保护逻辑电路则保证发生故障时,系统能从硬件上直接封锁输出脉冲信号。 在实现同频的条件下可用矢量进行计算,从图3可以看出逆变器输出端存在如图3a所示的矢量关系,对于光伏并网逆变器的输入端有下列基本矢量关系式: Vac=Vs+jωL·IN+RS·IN (1) 式中Vac—电网基波电压幅值,Vs—逆变器输出端基波幅值。 图1 光伏并网系统结构图 图3 控制矢量图 在网压Vac(t)为一定的情况下,IN(t)幅值和相位仅由光伏并网逆变器输出端的脉冲电压中的基波分量Vs(t)的幅值,及其与网压Vac(t)的相位差来决定。改变Vs(t)的幅值和相位就可以控制输入电流IN(t)和Vac(t)同相位。PWM整流器输入侧存在一个矢量三角形关系,在实际系统中RS 值的影响一般比较小,通常可以忽略不计得到如图3b所示的简化矢量三角形关系,即下式: (2) 在一个开关周期内对上式进行周期平均并假设输入电流能在一个开关周期内跟踪电流指令即可推导出下式: (3)式中K= L/TC,TC为载波周期。 从该模型即可以得到本系统所采用的图4所示的控制框图。此方法称为基于改进周期平均模型的固定频率电流追踪法。

光伏逆变器行业调研分析报告

光伏逆变器行业调研分析报告 摘要—— 该光伏逆变器行业调研报告仅针对xx区域分析,时间2016-2017年度。 目前,区域内拥有各类光伏逆变器企业794家,从业人员39700人。截至2017年底,区域内光伏逆变器产值184937.75万元,较2016年160550.18万元增长15.19%。产值前十位企业合计收入77866.50万元,较去年65007.93万元同比增长19.78%。 ...... 经过长期追赶的沉淀和积累,当今我国在相当一些领域与世界前沿科技的差距都处于历史最小时期,已经有能力并行跟进这一轮科技革命和产业变革,加速实现制造业转型升级和创新发展。《中国制造2025》始终贯穿一个主题,就是加快新一代信息通信技术与制造业的深度融合。与发达国家在工业3.0基础上迈向4.0不同,我国制造业还有相当一部分停留在3.0甚至2.0,只有部分领先行业可比肩4.0。实施《中国制造2025》,必须处理好2.0普及、3.0补课和4.0赶超的关系,强化工业基础能力,提高综合集成水平,以推广智能制造为切入点,培育新型生产方式,推动制造业数字化网络化智能化。

第一章宏观环境分析 一、宏观经济分析 1、制造业是振兴实体经济的主战场。新一轮科技革命和产业变革浪潮之下,数字经济、共享经济、产业协作正在重塑传统实体经济形态,全球制造业都处于转换发展理念、调整失衡结构、重构竞争优势的关键节点,我国制造业提质升级的任务十分紧迫。综合来看,我国的高铁、核电、信息通信等领域已经具备了全球竞争力,但其他多数领域在技术创新、质量品牌、环境友好等方面落后于发达国家,离制造强国的建设目标还有很大差距。我们务必彻底摒弃旧的思维观念和方式方法,着眼解决深层次矛盾和问题,深化供给侧结构性改革,淘汰落后产能,加快创新驱动,优化升级传统产业,培育壮大战略性新兴产业,发展更多适应市场需求的新技术、新业态、新模式,促进“中国制造”上升为“中国高端制造”。 2、2018年是贯彻党的十九大精神的开局之年,是实施“十三五”规划承上启下的关键一年。同时2018年也是改革开放40周年。我国经济发展取得历史性成就、发生历史性变革。要审视复杂局势,科学判断,正确决策,把握战略窗口期。在此背景下,要继续加快推进制造强国、网络强国建设,深入实施推进中国制造建设,解决深层次矛

毕业设计-单相光伏并网逆变器的控制原理及电路实现

第一章绪论 1.1 光伏发电背景与意义 作为一种重要的可再生能源发电技术,近年来,太阳能光伏(Photovoltaie,PV)发电取得了巨大的发展,光伏并网发电已经成为人类利用太阳能的主要方式之一。目前,我国已成为世界最大的太阳能电池和光伏组件生产国,年产量已达到100万千瓦。但我国光伏市场发展依然缓慢,截至2007年底,光伏系统累计安装100MWp,约占世界累计安装量的1%,产业和市场之间发展极不平衡。为了推动我国光伏市场的发展,国家出台了一系列的政策法规,如《中华人民共和国可再生能源法》、《可再生能源中长期发展规划》、《可再生能源十一五发展规划》等。这些政策和法规明确了太阳能发电发展的重点目标领域。《可再生能源中长期发展规划》还明确规定了大型电力公司和电网公司必须投资可再生能源,到2020年,大电网覆盖地区非水电可再生能源发电在电网总发电量中的比例要达到3%以上。对于这一目标的实现,光伏发电无疑会起到非常关键的作用。 当下,我国地方和企业正积极共建兆瓦级以上光伏并网电站,全国已建和在建的兆瓦级并网光伏电站共11个(2008年5月前估计),典型的如甘肃敦煌10MW 并网光伏特许权示范项目,青海柴达木盆地的1000MW大型荒漠太阳能并网电站示范工程,云南石林166MW并网光伏实验示范电站。可以预见,在接下来的几年里,光伏并网发电市场将会为我国摆脱目前的金融危机提供强大的动力,光伏产业依然会持续以往的高增长率,光伏市场的前景仍然令人期待。光伏并网发电系统是利用电力电子设备和装置,将太阳电池发出的直流电转变为与电网电压同频、同相的交流电,从而既向负载供电,又向电网馈电的有源逆变系统。按照系统功能的不同,光伏并网发电系统可分为两类:一种是带有蓄电池的可调度式光伏并网发电系统;一种是不带蓄电池的不可调度式光伏并网发电系统。典型的不可调度式光伏并网发电系统如图1-1所示。

光伏并网逆变器控制与仿真设计

光伏并网逆变器控制与仿真设计 为了达到提高光伏逆变器的容量和性能目的,采用并联型注入变换技术。根据逆变器结构以及光伏发电阵电流源输出的特点,选用工频隔离型光伏并网逆变器结构,并在仿真软件PSCAD中搭建光伏电池和逆变器模型,最后通过仿真与实验验证了理论的正确性和控制策略的可行性。 ?近年来,应用于可再生能源的并网变换技术在电力电子技术领域形成研究热点。并网变换器在太阳能光伏、风力发电等可再生能源分布式能源系统中具有广阔发展前景。太阳能、风能发电的重要应用模式是并网发电,并网逆变技术是太阳能光伏并网发电的关键技术。在光伏并网发电系统中所用到的逆变器主要基于以下技术特点:具有宽的直流输入范围;具有最大功率跟踪(MPPT)功能;并网逆变器输出电流的相位、频率与电网电压同步,波形畸变小,满足电网质量要求;具有孤岛检测保护功能;逆变效率高达92%以上,可并机运行。逆变器的主电路拓扑直接决定其整体性能。因此,开发出简洁、高效、高性价比的电路拓扑至关重要。 ?1 逆变器原理 ?该设计为大型光伏并网发电系统,据文献所述,一般选用工频隔离型光伏并网逆变器结构,如图1所示。光伏阵列输出的直流电由逆变器逆变为交流电,经过变压器升压和隔离后并入电网。光伏并网发电系统的核心是逆变器,而电力电子器件是逆变器的基础,虽然电力电子器件的工艺水平已经得到很大的发展,但是要生产能够满足尽量高频、高压和低EMI的大功率逆变器时仍有很大困难。所以对大容量逆变器拓扑进行研究是一种具有代表性的解决方案。作为太阳能光伏阵列和交流电网系统之间的能量变换器,其安全性,可靠性,逆变效率,制造成本等因素对于光伏逆变器的发展有着举足轻

(完整版)单相光伏并网逆变器的研究40本科毕业设计41

单相光伏并网逆变器的研究

轮机工程学院

摘要 能源危机和环境问题的不断加剧,推动了清洁能源的发展进程。太阳能作为一种清洁无污染且可大规模开发利用的可再生能源,具有广阔应用前景。并且伴随“智能电网”理论的兴起,分布式电力系统正日益受到关注,光伏逆变系统作为分布式电力系统的一种重要形式,使得对该领域的研究具有重要的理论与现实意义。 论文在分析光伏逆变系统发展现状与研究热点的基础上,探讨了光伏逆变系统的主要关键技术,对直接影响光伏逆变系统的工作效率以及工作状态的最大功率点跟踪控制、光伏逆变器控制等技术进行了详细研究。 为研究光伏逆变系统,本文建立了一套完整的光伏逆变系统模型,主要包括光伏电池模块,前级DCDC变换器,后级DCAC逆变器,以及相应的控制模块。为了提高系统模型的准确性及稳定性,论文设计了一种输出电压随温度光照改变的光伏电池模型,提出了一种基于Boost 升压变换器的最大功率点跟踪(MPPT)控制策略,并且将正弦脉冲宽度调制技术(SPWM)应用于逆变器控制。最后在MatlabSimulink软件环境下搭建了光伏逆变系统的整体模型,完成系统性的实验验证。 经过仿真实验验证,所提出的光伏逆变系统设计方案正确可行,且输出达到了设计要求,为进一步实现并网功能提供了条件,具有较高的实用参考价值。 关键词:光伏电池;最大功率点跟踪;光伏逆变系统;正弦脉冲调制技术

ABSTRACT With intensify of the energy crisis and environmental problems, the development of clean energy . The solar energy because of its friendly-environmental advantage and renewable property. With the proposition of the Smart Grid, Distributed Power System . As an important form of Distributed Power System, photovoltaic inverter system is the key of the research in this field. This paper discusses the key techniques of photovoltaic inverter system on the basis of analysis of development and research techniques such as maximum power point tracking (MPPT) which work efficiency and work condition and technology of PV inverter. In order to research PV inverter system, this paper builds an integral model, including PV battery model and DCDC converter and DCAC single phase inverter as well as corresponding control models. In order to improve the validity and the stability of the system, the paper

一文看懂光伏逆变器工作原理!

一文看懂光伏逆变器工作原理! 工作原理及特点 工作原理: 逆变装置的核心,是逆变开关电路,简称为逆变电路。该电路通过电力电子开关的导通与关断,来完成逆变的功能。 特点: (1)要求具有较高的效率。 由于目前太阳能电池的价格偏高,为了最大限度的利用太阳能电池,提高系统效率,必须设法提高逆变器的效率。 (2)要求具有较高的可靠性。 目前光伏电站系统主要用于边远地区,许多电站无人值守和维护,这就要求逆变器有合理的电路结构,严格的元器件筛选,并要求逆变器具备各种保护功能,如:输入直流极性接反保护、交流输出短路保护、过热、过载保护等。 (3)要求输入电压有较宽的适应范围。 由于太阳能电池的端电压随负载和日照强度变化而变化。特别是当蓄电池老化时其端电压的变化范围很大,如12V的蓄电池,其端电压可能在 10V~16V之间变化,这就要求逆变器在较大的直流输入电压范围内保证正常工作。 光伏逆变器分类 有关逆变器分类的方法很多,例如:根据逆变器输出交流电压的相数,可分为单相逆变器和三相逆变器;根据逆变器使用的半导体器件类型不同,又可分为晶体管逆变器、晶闸管逆变器及可关断晶闸管逆变器等。根据逆变器线路原

理的不同,还可分为自激振荡型逆变器、阶梯波叠加型逆变器和脉宽调制型逆变器等。根据应用在并网系统还是离网系统中又可以分为并网逆变器和离网逆变器。为了便于光电用户选用逆变器,这里仅以逆变器适用场合的不同进行分类。 1、集中型逆变器 集中逆变技术是若干个并行的光伏组串被连到同一台集中逆变器的直流输入端,一般功率大的使用三相的IGBT功率模块,功率较小的使用场效应晶体管,同时使用DSP转换控制器来改善所产出电能的质量,使它非常接近于正弦波电流,一般用于大型光伏发电站(>10kW)的系统中。最大特点是系统的功率高,成本低,但由于不同光伏组串的输出电压、电流往往不完全匹配(特别是光伏组串因多云、树荫、污渍等原因被部分遮挡时),采用集中逆变的方式会导致逆变过程的效率降低和电户能的下降。同时整个光伏系统的发电可靠性受某一光伏单元组工作状态不良的影响。最新的研究方向是运用空间矢量的调制控制以及开发新的逆变器的拓扑连接,以获得部分负载情况下的高效率。 2、组串型逆变器 组串逆变器是基于模块化概念基础上的,每个光伏组串(1-5kw)通过一个逆变器,在直流端具有最大功率峰值跟踪,在交流端并联并网,已成为现在国际市场上最流行的逆变器。 许多大型光伏电厂使用组串逆变器。优点是不受组串间模块差异和遮影的影响,同时减少了光伏组件最佳工作点与逆变器不匹配的情况,从而增加了发电量。技术上的这些优势不仅降低了系统成本,也增加了系统的可靠性。同时,在组串间引人"主-从"的概念,使得系统在单串电能不能使单个逆变器工作的情况下,将几组光伏组串联系在一起,让其中一个或几个工作,从而产出更多的电能。 最新的概念为几个逆变器相互组成一个"团队"来代替"主-从"的概念,使得系统的可靠性又进了一步。目前,无变压器式组串逆变器已占了主导地位。

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成

华为光伏逆变器可靠性分析_解密华为光伏逆变器如何炼成 太阳能发电系统通常直接暴露在室外环境工作,经常遇到高温、高寒、高湿、大风沙,淋雨,盐雾等恶劣气象条件。华为可靠性实验室业界首创开发出了温度、湿度、腐蚀性粉尘三综合应力试验设备,使得逆变器产品在恶劣场景应用具有卓越的适应能力。针对户外应用,采用高温、淋雨、带电温循、外场暴露等加速方法,验证了逆变器的长期可靠性,保证设备长期稳定运行。 一、温变影响机理温度不同,材料结构的分子运动的速度不同,在不同材料之间就出现膨胀系数、热传递性能的匹配差异,容易导致部件的卡紧件松弛。IGBT模块和散热器之间的热不匹配、不同材料的收缩或膨胀率不同,可诱发部件的变形或破裂、表面涂层开裂、气密性变差或泄漏、绝缘保护失效等。通常温度变化慢,影响不明显。急剧的温度变化可能会暂时或永久的影响设备的正常工作。 同时温度的快速变化,容易在单板,机壳等位置形成凝露,结水或结冰等现象,这对逆变器的运行带来较大的风险。 二、温变影响案例影响逆变器温度的主要是地域温差、昼夜温差、季节温差、天气变化如太阳、风、雨等形成的温差。同时自然散热在热源和器件、外壳之间也形成温差,导致逆变器个部件之间形成温差。在北方地区冬季温度较低,很多地方低于-20℃,夏季温度超过40℃,昼夜温差20℃、季节温差60℃,同时逆变器外壳的温升在20~30℃,内部IGBT 的温升在40~50℃。这样容易在内部腔体内形成温度差和各个部位的温度差,并且温度变化频繁,这些对产品材料的选择提出了严峻的挑战。 此外早晚开机功率输出,突变的阵雨及恶劣的天气变化,温变速率大,容易在一些部件上形成凝露,这也将影响逆变器的安全运行。 三、应对解决方案产品设计上要考虑温差的影响,同时考虑凝露风险,如单板集中、涂覆保护、内部风扇散热等多项措施。在验证方面一般采用高温淋雨试验和PTC带电温循试验来验证整机性能,作为查找薄弱点的主要方法。同时通过外场暴露来补充验证严酷环境的长期适应能力。

光伏并网逆变器分类

光伏并网逆变器分类 并网逆变器是太阳能光伏系统中的关键部件,它将太阳能电池产生的直流电通过电力电子变换技术转换为能够直接并入电网、负载的交流能量。其性能,效率直接影响整个太阳能光伏系统的效率和性能。下面将从并网逆变器的分类来进行了解。 1、按照隔离方式分类 包括隔离式和非隔离式两类,其中隔离式并网逆变器又分为工频变压器隔离方式和高频变压器隔离方式。光伏并网逆变器发展之初多采用工频变压器隔离的方式,但由于其体积、重量、成本方面的明显缺陷。近年来高频变压器隔离方式的并网逆变器发展较快,非隔离式并网逆变器以其高效率、控制简单等优势也逐渐获得认可,目前已经在欧洲开始推广应用,但需要解决可靠性、共模电流等关键问题。 2、按照输出相数分类 可以分为单相和三相并网逆变器两类,中小功率场合一般多采用单相方式,大功率场合多采用三相并网逆变器。按照功率等级进行分类,可分为功率小于1kVA的小功率并网逆变器,功率等级1kVA~50kVA的中等功率并网逆变器和50kVA以上的大功率并网逆变器。 3、按照功率流向进行分类 分为单方向功率流和双方向功率流并网逆变器两类,单向功率流并网逆变器仅用作并网发电,双向功率流并网逆变器除可用作并网发电外,还能用作整流器,改善电网电压质量和负载功率因素。近几年双向功率流并网逆变器开始获得关注,是未来的发展方向之一。 4、按照拓扑结构分类 目前采用的拓扑结构包括:全桥逆变拓扑、半桥逆变拓扑、多电平逆变拓扑、推挽逆变拓扑、正激逆变拓扑、反激逆变拓扑等,其中高压大功率光伏并网逆变器可采用多电平逆变拓扑,中等功率光伏并网逆变器多采用全桥、半桥逆变拓扑,小功率光伏并网逆变器采用正激、反激逆变拓扑。 从技术层面讲,大功率并网逆变器和小功率并网逆变器是未来的两个主要发展方向,其中小功率光伏并网逆变器——微逆变器是最具发展潜力和市场应用前景的发展方向,高频化、高效率、高功率密度、高可靠性和高度智能化是未来的发展方向。

光伏并网逆变器的电流锁相改进方案及实现

光伏并网逆变器的电流锁相改进方案及实现 摘要:基于光伏发电并网逆变器控制中电流锁相的重要性和复杂性,提出了带预锁相和遗忘算法的电流锁相方案,该方案可采用硬件锁相和软件锁相两种方式实现。建立了以MC56F8345 型DSF 为控制核心的PWM 逆变器数字化并网实验平台,对改进后的电流锁相方案进行验证。实验结果表明,该方案很好地实现了逆变器输出电流与电网电压的同步锁相控制,且输出电流的幅值、相位、频率均符合控制要求,可稳定、可靠地并网发电,并能实现网侧单位功率因数。关键词:光伏发电;并网逆变器;电流锁相1 引言在光伏发电系统中,并网逆变器输出电流的控制十分重要。有效控制逆变器输出电流可实现网侧功率因数可调。控制电流时,电流锁相十分关键,必须对电网电压的频率和相位进行实时检测,并以此控制逆变器输出电流与电网电压保持同频同相,即同步锁相。若不能稳定、可靠地锁相,则在逆变器与电网连接(并网)过程中会 产生很大的环流,对设备造成冲击,缩短设备使用寿命,严重时还会损坏设备。因此,研究光伏发电并网逆变器电流锁相改进方案及数字化实现具有现实意义。 2 光伏并网逆变器电流矢量控制策略光伏发电并网系统结构框图如图1 所示。图中上半部分为系统主电路,下半部分为系统控制电路。控制过程如下:根据PV 的输出电压、电流,由MPPT 算法获得Ud 参考值,与Ud 实际值比较后经电压调节器得到有功电流(d 轴电流)参考值。φ*为给定功率因数角,为无功电流(q 轴电流)参考值。若要求单位功率因数,则φ*=0,=0。 电流闭环控制通常采用电流矢量控制。图2 示出电流矢量控制的矢量关系图。 u,i.e 分别为逆变器输出电压、输出电流和电网电压的空间矢量。旋转坐

2015年光伏逆变器发展现状及市场前景分析

中国光伏逆变器行业调查分析及发展趋势预测报告(2015-2020年) 报告编号:1589130

行业市场研究属于企业战略研究范畴,作为当前应用最为广泛的咨询服务,其研究成果以报告形式呈现,通常包含以下内容: 一份专业的行业研究报告,注重指导企业或投资者了解该行业整体发展态势及经济运行状况,旨在为企业或投资者提供方向性的思路和参考。 一份有价值的行业研究报告,可以完成对行业系统、完整的调研分析工作,使决策者在阅读完行业研究报告后,能够清楚地了解该行业市场现状和发展前景趋势,确保了决策方向的正确性和科学性。 中国产业调研网https://www.360docs.net/doc/da17935356.html,基于多年来对客户需求的深入了解,全面系统地研究了该行业市场现状及发展前景,注重信息的时效性,从而更好地把握市场变化和行业发展趋势。

一、基本信息 报告名称:中国光伏逆变器行业调查分析及发展趋势预测报告(2015-2020年) 报告编号:1589130←咨询时,请说明此编号。 优惠价:¥7020 元可开具增值税专用发票 网上阅读:_NengYuanKuangChan/30/GuangFuNiBianQiWeiLaiFaZhanQuShiYuCe.html 温馨提示:如需英文、日文等其他语言版本,请与我们联系。 二、内容介绍 国际光伏逆变器市场仍然被外国公司寡头垄断,近年来出现的变化是过去是专业型企业主导的市场(SMA,Power-one,KACO等),现在ABB、GE、西门子、施耐德这些跨国巨头也纷纷加入,企业也在努力向欧美市场渗透,因此,行业内急剧扩容的产能对逆变器价格形成了较大的压力。 据中国产业调研网发布的中国光伏逆变器行业调查分析及发展趋势预测报告(2015 -2020年)显示,2014年全球光伏逆变器产量约为45.3GW,产量较上年同期增长11.3%。2014年受中国等市场光伏新增装机上升的影响,2014年全球光伏逆变器需求量达到44 GW,全球光伏逆变器需求增幅与生产增幅基本持平。 2013-2018年全球光伏逆变器产销统计及预测:GW 2014年全球光伏逆变器产品出货量达到44GW,较2013年同期增长11.5%,但是同期产品价格从0.17美元/瓦下降至0.15美元/瓦,产品单价降幅为11.8%。价格下滑幅度超过出货量增长幅度,因而2014年全球光伏逆变器市场规模出现小幅下滑。 2013-2018年全球光伏逆变器市场规模走势图 目前国内光伏并网逆变器市场规模较小,国内生产逆变器的厂商众多,但专门用于光伏发电系统的逆变器制造商并不多,但是不少国内企业已经在逆变器行业已经研究多年,已经具备一定的规模和竞争力,但在逆变器技术质量、规模上与国外企业仍具有较大差距。我国国内逆变器厂商进入者较多的领域是中小功率逆变器,其技术已与国外厂商处于同一水平。同时国内企业由于产能建设快,劳动力成本相对较低,在中小功率逆变器上具有较明显的竞争优势。

光伏并网逆变器控制策略的研究

题目:光伏并网逆变器控制策略的研究

光伏并网逆变器控制策略的研究 摘要 世界环境的日益恶化和传统能源的日渐枯竭,促使了对新能源的开发和发展。具有可持续发展的太阳能资源受到了各国的重视,各国相继出台的新能源法对太阳能发展起到推波助澜的作用。其中,光伏并网发电具有深远的理论价值和现实意义,仅在过去五年,光伏并网电站安装总量已达到数千兆瓦。而连接光伏阵列和电网的光伏并网逆变器便是整个光伏并网发电系统的关键。 本文通过按主电路分类、按功率变换级数分类和按变压器分类的三大类划分逆变器的方法分别介绍了每个逆变器电路的拓扑结构。之后本文首先介绍了国内外并网逆变器的研究状况以及相关并网技术标准,比较了当前主流的控制技术。然后,详细的阐述了光伏并网发电逆变器系统的整体设计和各单元模块的设计,其中包括太阳能电池组、升压斩波电路、逆变电路和傅里叶变换。 在简要介绍了系统的结构拓扑和控制要求之后,论文重点研究了基于电流闭环的矢量控制策略,阐述了其拓扑结构、工作原理及运行模式。为了深入研究控制策略,分别建立了基于电网电压定向的矢量控制和基于虚拟磁链定向的矢量控制。最后,本文针对几种产生谐波的原因,对L、LC、LCL 三种滤波器进行了比较分析。 最后,本文对光伏并网的总系统进行了MATLAB仿真,由于时间的限制,只做出了通过间接控制电流从而达到控制有功无功公功率的仿真。 关键词:光伏并网,逆变器电路拓扑,电流矢量控制,谐波

PHOTOVOLTAIC (PV) GRID INVERTER CONTROL STRATEGY RESEARCH Abstract World deteriorating environment and the increasing depletion of traditional energy sources prompted the development of new energy and development. Solar energy resources for sustainable development has been national attention, solar countries have contributed to the severity of the introduction of the new energy law developments. Among them, the photovoltaic power generation has profound theoretical and practical significance, only in the past five years,the total installed photovoltaic power plant has reached thousands of megawatts. Connected PV array and grid PV grid-connected inverter is the whole key photovoltaic power generation system. Based classification by main circuit and the power level classification and Division of three categories classified by transformer inverter of methods each inverters circuit topologies are introduced.This article introduces the domestic and foreign research on grid-connected inverters and related technical standards for grid-connected, compared the current mainstream technology.Then detail a grid-connected photovoltaic inverter system design and the modular design, including solar arrays, chop-wave circuit, inverter circuits and Fourier transform. Briefly introduces the system topology and control requirements, this paper focuses on the current loop-based vector control strategies, describes the topological structure, working principle and its operating mode.In order to study the control strategies were established based on power system voltage oriented vector control based on virtual flux-oriented vector control.Finally, for several reasons for harmonic, l, LC, LCL compares and analyses the three types of filters. Keywords:Photovoltaic, inverters circuit topologies, current vector control, harmonic

相关文档
最新文档