《线性代数》第二章

《线性代数》第二章
《线性代数》第二章

数学史话线性代数发展史简介

数学史话线性代数发展史简介 数学史话—线性代数发展史简介 一门科学的历史是那门科学中最宝贵的一部分,因为科学只能给我们知识,而历史却能给我们智慧。 傅鹰 数学的历史是重要的,它是文明史的有价值的组成部分,人类的进步和科学思想是一致的。 F. Cajori 从事数学研究,发现新的定理和技巧是一回事;而以一种能使其他人也能掌握的方式来阐述这些定理和技巧则又是一回事。学习那些伟大的数学家们的思想,使今天的学生能够看到某些论题在过去是怎样被处理的。 V. Z.卡兹 数学不仅是一种方法、一门艺术或一种语言,数学更主要的是一门有着丰富内容的知识体系,其内容对自然科学家、社会科学家、哲学家、逻辑学家和艺术家十分有用,同时是影响政治家和神学家的学说。 M(Kline 一、了解数学史的重要意义 数学是人类文明的一个重要组成部分,是一项非常重要的人类活动。与其他文化一样,数学科学是几千年来人类智慧的结晶。在学习数学时,我们基本是通过学习教材来认识这门学科的。教材是将历史上的数学材料按照一定的逻辑结构和学习要求加以重组、取舍编撰而成,因此,数学教材往往舍去了许多数学概念和方法形成的实际背景、演化历程以及导致其演化的各种因素。由于数学发展的实际情况与教材的编写体系有着许多不同,所以,对数学教材的学习,往往难以了解数学的全貌

和数学思想产生的过程。正因为如此,许多人往往把数学当成了枯燥的符号、无源的死水,学了很多却理解得很少。 数学和任何一门科学一样,有着自身发展的丰富历史,是积累性的科学。数学的发展历史展示了人类追求理想和美好生活的力量,历史上数学家的成果、业绩和品德无不闪耀着人类思想的光辉,照亮着人类社会发展和进步的历程。 通过了解一些数学史,可以使我们了解数学科学发生、发展的规律,通过追溯数学概念、思想和方法的演变和发展过程,探究数学科学发展的规律和文化内涵,帮助我们认识数学科学与人类社会发展的互动关系以及数学概念和方法的重要意义。 二、代数学的历史发展情况 数学发展到今天,已经成为科学世界中拥有一百多个主要分支学科的庞大的“共和国”。大体说来,数学中研究数的部分属于代数学的范畴;研究形的部分,属于几何学的范筹;沟 通形与数且涉及极限运算的部分,属于分析学的范围。这三大类数学构成了整个数学的本体与核心。在这一核心的周围,由于数学通过数与形这两个概念,与其它科学互相渗透,而出现了许多边缘学科和交叉学科。本节简要介绍一下代数学的历史发展情况。 “代数”(algebra)一词最初来源于公元9世纪阿拉伯数学家、天文学家阿尔?花拉子米(al-Khwarizmī,约780,850)一本代数教程,书名的直译为《还原与对消的计算概要》(其书名中的al-jabr 这个词意为“还原”,它所指的意思是把方程式一边的负项移到方程另一端“还原”为正项;al-muqabala意即“对消”或“化简”,指方程两端可以消去相同的项或合并同类项。在翻译中把“al-jabr”译为拉丁文“aljebra”,拉丁文“aljebra”一词后来被许多国家采用,英文词“algebra”就是阿拉伯文“al-jabr”的讹用。

线性代数

线性代数 线性代数计算库使用BLAS、LAPACK、ATLAS1和cpplapack2库。BLAS和LAPACK 这两个库有很多函数,满足通常对线性代数的需求。 常见参数: trans: 转置标志 m: 行数 n: 列数 alpha: 系数 beta: 系数 A、B:矩阵(数组) lda、ldb: leading dimension of A、B。 incx、incy: 增量 x、y: 向量 work, lwork, ipiv: 计算过程中需要的临时空间 info: 返回信息 : 向量与矩阵相乘dgemv(trans,m,n,alpha,A,lda,x,incx,beta,y,incy)计算y:=alpha*A*x+beta*y, 或者y:=alpha*A’*x+beta*y 矩阵与矩阵相乘dgemm(transa,transb,m,n,k,alpha,A,lda,B,ldb,beta,C,ldc)计算 C:=alpha*op(A)*op(B)+beta*C, 其中 op(X)表示 x 和x’ 中的一个 LU 分解dgetrf(m,n,A,lda,ipiv,info) 对矩阵A进行LU分解,A=P*L*U 其中 P 是置换矩阵,L 是对角线为1的下三角矩阵

U是上三角矩阵 QR 分解dgeqr2(m,n,A,lda,tau,work,info) 对矩阵 A 进行 QR 分解, A=Q*R Q 是正交矩阵,R 是上三角矩阵 矩阵求逆先dgetrf(m,n,A,lda,ipiv,info) LU分解 再dgetri(n,A,lda,iniv,work,lwork,info) 通过 inv(A)*L=inv(U) 解出 inv(A) ; 还可通过解方程组 A*X=I,I为单位阵,来求A的逆参见“求解线性方程” 特征值与特征向量dgeev(jobvl,jobvr,n,A,lda,wr,wi,vl,ldvl,vr,ldvr,work,lwork,info)右特征向量 v(j) 满足: A*v(j)=lambda(j)*v(j) 其中 lambda(j) 是特征值 左特征向量 u(j) 满足: u(j)**H*A=lambda(j)*u(j)**H 其中 u(j)**H 是 u(j) 的共轭变换 SVD 分解dgesvd(jobu,jobvt,m,n,A,lda,S,U,ldu,vt,ldvt,work,lwork,info)其中 A=U*SIGMA*transpose(V) U,V是矩阵 A 的左右奇异值向量, SIGMA是主对角线元素不为0,其余为0的矩阵 其对角线元素是A的奇异值。 求解线性方程先dgetrf(m,n,A,lda,ipiv,info) LU分解A=P*L*U 再dgesv(n,nrhs,A,lda,ipiv,B,ldb,info)计算 A*X=B 最小二乘算法1.一般最小二乘 dgels(trans,m,n,nrhs,A,lda,B,ldb,work,lwork,info) 如果trans=’N’,m>=n:解 minimize||B-A*X||; 如果trans=’N’,m=n:解 A**T*X=B; 如果trans=’T’,m

地大《线性代数》在线作业一_答案

免费免费免费免费 地大《线性代数》在线作业一 1. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 2. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 3. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 4. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 5. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 6. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 7. A. A B. B C. C D. D

正确答案:A 满分:4 分得分:4 8. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 9. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 10. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 11. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 12. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 13. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 14. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 15.

B. B C. C D. D 正确答案:A 满分:4 分得分:4 16. A. A B. B C. C D. D 正确答案:A 满分:4 分得分:4 17. A. A B. B C. C D. D 正确答案:D 满分:4 分得分:4 18. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 19. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 20. A. A B. B C. C D. D 正确答案:B 满分:4 分得分:4 21. A. A B. B C. C D. D 正确答案:C 满分:4 分得分:4 22. A. A B. B

线性代数课后作业答案(胡觉亮版)

第一章 1.用消元法解下列线性方程组: (1)??? ??=++=++=++. 5432,9753,432321 321321x x x x x x x x x 解 由原方程组得同解方程组 12323234,23,x x x x x ++=?? +=? 得方程组的解为13232, 2 3. x x x x =-?? =-+?令3x c =,得方程组的通解为 c x c x c x =+-=-=321,32,2,其中c 为任意常数. 2.用初等行变换将下列矩阵化成行阶梯形矩阵和行最简形矩阵: (2)???? ? ??--324423211123. 解 1102 232111232551232041050124442300000000r r ? ?- ?-???? ? ? ? ? -??→--??→- ? ? ? ? ?- ????? ? ?? ? ,得 行阶梯形:????? ? ?---0000510402321(不唯一);行最简形:???? ??? ? ? ? - -00004525 10212 01 3.用初等行变换解下列线性方程组: (1)?? ? ??=+-=+-=++.3,1142,53332321321x x x x x x x x

解 2100313357214110109011320019r B ? ? ??? ? ? ?=-??→- ? ? ?- ??? ? ?? ?M M M M M M , 得方程组的解为 9 20 ,97,32321=-==x x x . (2)??? ??=+++=+++=++-. 2222,2562, 1344321 43214321x x x x x x x x x x x x 解 114311143121652032101222200001r B --???? ? ? =?? →-- ? ? ? ????? M M M M M M , 得方程组无解. 第二章 1.(2) 2 2 x y x y . 解 原式()xy y x =-. (2)01000 020 00010 n n -L L L L L L L L L . 2.解 原式1 100 020 (1) 001 n n n +=-=-L L M M M L !)1(1n n +-

线性代数 行列式

第一章 行列式 1. 排列与逆序数 (1)排列 把n 个不同的元素排成一列, 就叫作这n 个元素的全排列,简称排列。 比如231645就是这6个元素的一个排列. 注:不同的n 级排列共有n!个。 (2)逆序、逆序数、对换 ①在一个n 级排列n j j 1中,若一对数t s j j ,,大前小后,即t s j j >,则t s j j ,构成了一个逆序。一个排列中逆序的总数称为此排列的逆序数,记为)(1n j j τ。如231645的逆序数为4,记作τ(231645)=4,τ(123) =0。 ②排列n j j 1中,交换任两个数的位置,其余不变,则称对排列做了一次对换。 ③逆序数为奇(偶)数的排列,称为奇(偶)排列。 注:对换一次改变排列的奇偶性.如r(123) =0,r(321) =3。 2. n 阶行列式的定义 行列式是定义在方阵上的一种新的运算法则 n i i i i i nj j j j j nn n n n n n n ij n n n n n a a a a a a a a a a a a a a D 1) (1) (2122212121 11121121) 1() 1()(ττ∑∑-=-==?=? 计算步骤; (1)取数相乘,来自不同行不同列 (2)冠以符号,) (21)1(n j j j τ- (3)全部相加, n n nj j j j j n a a 1211) (! ) 1(τ∑-、 注:(1)当n=1时,定义11111a a D == (2)n D 是一个数值,是n!项的代数和 (3)nn a a a ,,,2211 所在的对角线称为行列式的主对角线,相应的nn a a a ,,,2211 称为主对 角元。另一条对角线称为行列式的副对角线。 3. 行列式的性质 (1) 转置:行列式行与列互换,行列式的值不变(互换后的行列式叫做行列式的转置)

线性代数的起源发展及其意义

线性代数的起源发展及其意义 线性代数是处理矩阵和向量空间的数学分支,在现代科学的各个领域都有应用。由于费马和笛卡尔的工作,线性代数基本上出现于十七世纪。直到十八世纪末,线性代数的领域还只限于平面与空间。十九世纪上半叶才完成了到n维向量空间的过渡,矩阵论始于凯莱,在十九世纪下半叶,因当时对其充分的研究和探索而使其达到了它的顶点。1888年,皮亚诺以公理的方式定义了有限维或无限维向量空间。托普利茨将线性代数的主要定理推广到任意体上的最一般的向量空间中。线性映射的概念在大多数情况下能够摆脱矩阵计算而引导到固有的推理,即是说不依赖于基的选择。不用交换体而用未必交换之体或环作为算子之定义域,这就引向模的概念,这一概念很显著地推广了向量空间的理论和重新整理了十九世纪所研究过的情况。 “代数”这一个词在中国出现较晚,在清代时才传入中国,当时被人们译成“阿尔热巴拉”,直到1859年,清代著名的数学家、翻译家李善男才将它翻译成为“代数学”,之后一直沿用。 线性代数是讨论矩阵理论、与矩阵结合的有限维向量空间及其线性变换理论的一门学科。 主要理论成熟于十九世纪,而第一块基石(二、三元线性方程组的解法)则早在两千年前出现。

线性代数在数学、物理学和技术学科中有各种重要应用,因而它在各种代数分支中占居首要地位 在计算机广泛应用的今天,计算机图形学、计算机辅助设计、密码学、虚拟现实等技术无不以线性代数为其理论和算法基础的一部分; 该学科所体现的几何观念与代数方法之间的联系,从具体概念抽象出来的公理化方法以及严谨的逻辑推证、巧妙的归纳综合等,对于强化人们的数学训练,增益科学智能是非常有用的 随着科学的发展,我们不仅要研究单个变量之间的关系,还要进一步研究多个变量之间的关系,各种实际问题在大多数情况下可以线性化,而由于计算机的发展,线性化了的问题又可以计算出来,线性代数正是解决这些问题的有力工具。 线性(linear)指量与量之间按比例、成直线的关系,在数学上可以理解为一阶导数为常数的函数,非线性(non-linear)则指不按比例、不成直线的关系,一阶导数不为常数。线性代数起源于对二维和三维直角坐标系的研究。在这里,一个向量是一个有方向的线段,由长度和方向同时表示。这样向量可以用来表示物理量,比如力,也可以和标量做加法和乘法。这就是实数向量空间的第一个例子。 现代线性代数已经扩展到研究任意或无限维空间。作

线性代数(本)习题册行列式-习题详解(修改)(加批注)

||班级: 姓名: 学号: 成绩: 批改日期: || 第 1 页 共 18 页 行列式的概念 一、选择题 1. 下列选项中错误的是( ) (A) b a d c d c b a - = ; (B) a c b d d c b a = ; (C) d c b a d c d b c a = ++33; (D) d c b a d c b a ----- =. 答案:D 2.行列式n D 不为零,利用行列式的性质对n D 进行变换后,行列式的值( ). (A)保持不变; (B)可以变成任何值; (C)保持不为零; (D)保持相同的正负号. 答案:C 二、填空题 1. a b b a log 1 1 log = . 解析: 0111log log log 1 1log =-=-=a b a b b a b a . 2. 6 cos 3sin 6sin 3 cos π π ππ = . 解析: 02cos 6sin 3sin 6cos 3cos 6 cos 3 sin 6sin 3 cos ==-=πππππππ π π 3.函数x x x x x f 1213 1 2)(-=中,3x 的系数为 ; x x x x x x g 2 1 1 12)(---=中,3x 的系数为 . 答案:-2;-2.

||班级: 姓名: 学号: 成绩: 批改日期: || 第 2 页 共 18 页 阶行列式n D 中的n 最小值是 . 答案:1. 5. 三阶行列式11342 3 2 1-中第2行第1列元素的代数余子式 等于 . 答案:5. 6.若 02 1 8 2=x ,则x = . 答案:2. 7.在 n 阶行列式ij a D =中,当i

线性代数

1线性方程组 1. 三种行初等变换 倍加变换(某一行的倍数加到另一行)对换变换(两行交换) 倍乘变换(某一行所有元素乘以同一个非零数) 2. 行等价 一个矩阵可经过一系列初等行变换成为另一个矩阵。 行变换可逆。 3. 若两个线性方程组的增广矩阵行等价,则它们有相同的解集。 4. 简化行阶梯矩阵 a) 非零行的先导元素为0 b) 先导元素1是该元素所在列的唯一非零元素 一个矩阵的简化行阶梯矩阵唯一。 5. 对应于主元列的变量称基本变量,其他变量称自由变量。 6. 向量的平行四边形法则 若R2中的向量u,v用平面上的点表示,则u+v对应于u,v,0为三个顶点的平行四边形的第四个顶点。 [思考:即使u,v不是R2而是R3甚至R n中的向量,上述结论是否仍然成立?] 7. 向量方程 x1a1+x2a2+...+x n a n=b 和增广矩阵如下的线性方程组 [a1 a2 ... a n b] 和矩阵方程 Ax=b 有相同的解集。 8. 方程Ax=b有解的条件:b是A的各列的线性组合。 9. 设A为mxn矩阵,以下命题等价: a) 对R m中每个b,Ax=b有解 b) R m中的每个b都是A的列的一个线性组合 c) A的各列生成R m(R m = Span{A各列}) d) A在每一行都有一个主元位置(注意是A的每一行,*不*是A的增广矩阵的每一行)

10. 方程Ax=0有非平凡解的条件:至少有一个自由变量。 11. 如果非齐次方程有多个解,其解可表示为一个向量(这个向量也是非齐次方程的特解)加上相应的齐次方程的解。 或者说:非齐次方程解=该方程特解+对应的齐次方程的通解 12. 若一组向量v1,v2,...,v n组成的向量方程 x1v1+x2v2+...+x n v n = 0 仅有平凡解,则这些向量线性无关;否则这些向量线性相关。 同样,仅当矩阵方程Ax=0仅有平凡解,A的各列线性无关。 13. 单个的零向量线性相关,因为0x=0有非平凡解;同理,单个的非零向量线性无关。含有零向量的向量组必定线性相关。 14. 向量集线性相关,则其中至少一个向量是其他向量的线性组合;但该集合中也有可能存在不能表示为其他向量线性组合的向量。 15. 若向量组中的向量个数超过每个向量的元素个数,那么这个向量组必定线性相关。 16. 仅存在两个向量的向量集是否线性相关很好判断:看一个是否是另一个的倍数就可以了。 17. 矩阵A与向量x的积,就是A的各列以x中对应元素为权的线性组合。下式中,A为矩阵,x为向量,x n为向量元素,a n为矩阵列。 Ax =x1a1+x2a2+...+x n a n 18. 设u,v是R3中的线性无关向量,那么span{v}是过零点和v的直线,span{u,v}是过u,v,0的平面。 19. 矩阵乘法Ax=b的另一种理解是,将矩阵A作用于向量x,产生新向量b。解方程Ax=b就是求出R n 中所有经过A的“作用”后变为b的向量x。 20. 符号T:R n->R m说明T的定义域是R n,余定义域是R m。T(x)的集合是T的值域。 21. 由R n到R m的每个线性变换都是矩阵变换,反之亦然(每个矩阵变换都是线性变换)。即对于线性变换R n->R m,存在唯一矩阵A使得T(x)=Ax(对R n中一切x )。 A可按下式求得: A = [T(e1) T(e2) ... T(e n)] 其中e j是单位矩阵I n的第j列。A称为线性变换T的标准矩阵。 22. 若T的值域是整个余定义域,T是满射;若T是一对一的,T是单射。 23. 线性映射T是一对一的条件:Ax=0仅有平凡解。 24. 若T为线性变换,A为T的标准矩阵,那么: 当且仅当A的列生成R m时,T把R n映上到R m(即将R n映射到R m上,满射); 当且仅当A的列线性无关时,T是一对一的。

线性代数发展简史论文范文

华北水利水电学院 线性代数发展简史 课程名称:线性代数 专业班级: 成员组成: 联系方式: 2011年11月6日

摘要:代数学可以笼统地解释为关于字母运算的学科。线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。 关键词:高等代数行列式矩阵向量 线性代数发展简史 1 代数学可以笼统地解释为关于字母运算的学科。在中学所学的初等代数中,字母仅用来表示数。初等代数从最简单的一元一次方程开始,一方面进而讨论二元及三元的一次方程组,另一方面研究二次以上及可以转化为二次的方程组。沿着这两个方向继续发展,代数学在讨论任意多个未知数的一次方程组,也叫线性方程组的同时,还研究次数更高的一元方程及多元方程组。发展到这个阶段,就叫做高等代数。 线性代数是高等代数的一大分支,是研究如何求解线性方程组而发展起来的。线性代数的主要内容有行列式、矩阵、向量、线性方程组、线性空间、线性变换、欧氏空间和二次型等。在线性代数中,字母的含义也推广了,它不仅用来表示数,也可以表示行列式、矩阵、向量等代数量。笼统地说,线性代数是研究具有线性关系的代数量的一门学科。线性代数不仅在内容上,更重要的是在观点和方法上比初等代数有很大提高。 在线性代数中最重要的内容就是行列式和矩阵。虽然表面上看,行列式和矩阵不过是一种语言或速记,但从数学史上来看,优良的数学符号和生动的概念是数学思想产生的动力和钥匙。 行列式出现于线性方程组的求解。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在1683年写了一部叫做《解伏题之法》的著作,标题的意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家、微积分学奠基人之一莱布尼兹(Leibnitz)。1750年克莱姆(Cramer)在他的《线性代数分析导言》中发表了求解线性方程组的重要基本公式(即人们熟悉的Cramer 克莱姆法则)。1764年,法国数学家贝佐特(Bezout)把确定行列式每一项的符号的

修订版-线性代数习题三答案

第三章 线性方程组 一、温习巩固 1. 求解齐次线性方程组??? ??=-++=--+=-++0 51050363024321 43214321x x x x x x x x x x x x 解: 化系数矩阵为行最简式 ???? ? ????→?????? ??----=000001001-0215110531631121行变换A 因此原方程同解于? ? ?=+-=0234 21x x x x 令2412,k x k x ==,可求得原方程的解为 ???? ?? ? ??+??????? ??-=1001001221k k x ,其中21,k k 为任意常数。 2. 求解非齐次线性方程组?? ? ??=+=+-=-+8 31110232 2421321321x x x x x x x x 解:把增广矩阵),(b A 化为阶梯形 ?? ? ? ? ????→?????? ??---??→?????? ??--=-6-000341110-08-3-318031110213833180311102132124),(21行变换r r b A 因此3),(2)(=<=b A R A R ,所以原方程组无解。 3. 设)1,2,1,3(),1,1,2,3(--=--=βα。求向量γ,使βγα=+32。 解:??? ? ? --=-= 31,0,35,3)2(31αβγ 4. 求向量组123(1,1,2,4),(0,3,1,2),(3,0,7,14),T T T ααα=-==4(1,1,2,0),T α=- T )6,5,1,2(5=α的秩和一个极大线性无关组。 解:将51,ααΛ作为列向量构成矩阵,做初等行变换

线性代数知识点总结

大学线性代数知识点总结 第一章 行列式 二三阶行列式 N 阶行列式:行列式中所有不同行、不同列的n 个元素的乘积的和 n n n nj j j j j j j j j n ij a a a a ...)1(21212121) ..(∑-= τ (奇偶)排列、逆序数、对换 行列式的性质:①行列式行列互换,其值不变。(转置行列式T D D =) ②行列式中某两行(列)互换,行列式变号。 推论:若行列式中某两行(列)对应元素相等,则行列式等于零。 ③常数k 乘以行列式的某一行(列),等于k 乘以此行列式。 推论:若行列式中两行(列)成比例,则行列式值为零; 推论:行列式中某一行(列)元素全为零,行列式为零。 ④行列式具有分行(列)可加性 ⑤将行列式某一行(列)的k 倍加到另一行(列)上,值不变 行列式依行(列)展开:余子式ij M 、代数余子式ij j i ij M A +-=)1( 定理:行列式中某一行的元素与另一行元素对应余子式乘积之和为零。 克莱姆法则: 非齐次线性方程组 :当系数行列式0≠D 时,有唯一解:)21(n j D D x j j ??== 、 齐次线性方程组 :当系数行列式01≠=D 时,则只有零解 逆否:若方程组存在非零解,则D等于零 特殊行列式: ①转置行列式:33 23 13 3222123121113332 31 232221 131211 a a a a a a a a a a a a a a a a a a → ②对称行列式:ji ij a a = ③反对称行列式:ji ij a a -= 奇数阶的反对称行列式值为零 ④三线性行列式:33 31 2221 13 1211 0a a a a a a a 方法:用221a k 把21a 化为零,。。化为三角形行列式

线性代数发展史

线性代数发展史 由于研究关联着多个因素的量所引起的问题,则需要考察多元函数。如果所研究的关联性是线性的,那么称这个问题为线性问题。历史上线性代数的第一个问题是关于解线性方程组的问题,而线性方程组理论的发展又促成了作为工具的矩阵论和行列式理论的创立与发展,这些内容已成为我们线性代数教材的主要部分。最初的线性方程组问题大都是来源于生活实践,正是实际问题刺激了线性代数这一学科的诞生与发展。另外,近现代数学分析与几何学等数学分支的要求也促使了线性代数的进一步发展。 行列式 行列式出现于线性方程组的求解,它最早是一种速记的表达式,现在已经是数学中一种非常有用的工具。行列式是由莱布尼茨和日本数学家关孝和发明的。1693 年4 月,莱布尼茨在写给洛比达的一封信中使用并给出了行列式,并给出方程组的系数行列式为零的条件。同时代的日本数学家关孝和在其著作《解伏题元法》中也提出了行列式的概念与算法。 1750 年,瑞士数学家克莱姆(G.Cramer,1704-1752) 在其著作《线性代数分析导引》中,对行列式的定义和展开法则给出了比较完整、明确的阐述,并给出了现在我们所称的解线性方程组的克莱姆法则。稍后,数学家贝祖(E.Bezout,1730-1783) 将确定行列式每一项符号的方法进行了系 统化,利用系数行列式概念指出了如何判断一个齐次线性方程组有非零解。 总之,在很长一段时间内,行列式只是作为解线性方程组的一种工具使用,并没有人意识到它可以独立于线性方程组之外,单独形成一门理论加以研究。 在行列式的发展史上,第一个对行列式理论做出连贯的逻辑的阐述,即把行列式理论与线性方程组求解相分离的人,是法国数学家范德蒙 (A-T.Vandermonde,1735-1796) 。范德蒙自幼在父亲的知道下学习音乐,但对数学有浓厚的兴趣,后来终于成为法兰西科学院院士。特别地,他给出了用二阶子式和它们的余子式来展开行列式的法则。就对行列式本身这一点来说,他是这门理论的奠基人。1772 年,拉普拉斯在一篇论文中证明了范德蒙提出的一些规则,推广了他的展开行列式的方法。 继范德蒙之后,在行列式的理论方面,又一位做出突出贡献的就是另一位法国大数学家柯西。1815 年,柯西在一篇论文中给出了行列式的第

线性代数发展史

线性代数发展史 线性代数是高等代数的一大分支。我们知道一次方程叫做线性方程,讨论线性方程及线性运算的代数就叫做线性代数。在线性代数中最重要的内容就是行列式和矩阵。行列式和矩阵在十九世纪受到很大的注意 , 而且写了成千篇关于这两个课题的文章。向量的概念 , 从数学的观点来看不过是有序三元数组的一个集合 , 然而它以力或速度作为直接的物理意义 , 并且数学上用它能立刻写出物理上所说的事情。向量用于梯度 , 散度 , 旋度就更有说服力。同样 , 行列式和矩阵如导数一样(虽然 dy/dx 在数学上不过是一个符号 , 表示包括△y/△x的极限的长式子 , 但导数本身是一个强有力的概念 , 能使我们直接而创造性地想象物理上发生的事情)。因此,虽然表面上看,行列式和矩阵不过是一种语言或速记,但它的大多数生动的概念能对新的思想领域提供钥匙。然而已经证明这两个概念是数学物理上高度有用的工具。 线性代数学科和矩阵理论是伴随着线性系统方程系数研究而引入和发展的。行列式的概念最早是由十七世纪日本数学家关孝和提出来的,他在 1683 年写了一部叫做《解伏题之法》的著作,意思是“解行列式问题的方法”,书里对行列式的概念和它的展开已经有了清楚的叙述。欧洲第一个提出行列式概念的是德国的数学家,微积分学奠基人之一莱布尼兹( Leibnitz ,1693 年)。 1750 年克莱姆( Cramer )在他的《线性代数分析导言》( Introduction d l'analyse des lignes courbes alge'briques )中发表了求解线性系统方程的重要基本公式(既人们熟悉的 Cramer 克莱姆法则)。 1764 年 , Bezout 把确定行列式每一项的符号的手续系统化了。对给定了含 n 个未知量的 n 个齐次线性方程 , Bezout 证明了系数行列式等于零是这方程组有非零解的条件。 Vandermonde 是第一个对行列式理论进行系统的阐述 ( 即把行列 ' 式理论与线性方程组求解相分离 ) 的人。并且给出了一条法则,用二阶子式和它们的余子式来展开行列式。就对行列式本身进行研究这一点而言,他是这门理论的奠基人。 Laplace 在 1772 年的论文《对积分和世界体系的探讨》中 , 证明了 Vandermonde 的一些规则 , 并推广了他的展开行列式的方法 , 用 r 行中所含的子式和它们的余子式的集合来展开行列式,这个方法现在仍然以他的名字命名。德国数学家雅可比( Jacobi )也于 1841 年总结并提出了行列式的系统理论。另一个研究行列式的是法国最伟大的数学家柯西 (Cauchy) ,他大大发展了行列式的理论,在行列式的记号中他把元素排成方阵并首次采用了双重足标的新记法,与此同时发现两行列式相乘的公式及改进并证明了 laplace 的展开定理。相对而言,最早利用矩阵概念的是拉格朗日( Lagrange )在 1700 年后的双线性型工作中体现的。拉格朗日期望了解多元函数的最大、最小值问题,其方法就是人们知道的拉格朗日迭代法。为了完成这些,他首先需要一阶偏导数为 0 ,另外还要有二阶偏导数矩阵的条件。这个条件就是今天所谓的正、负的定义。尽管拉格朗日没有明确地提出利用矩阵。 高斯( Gauss )大约在 1800 年提出了高斯消元法并用它解决了天体计算和后来的地球表面测量计算中的最小二乘法问题。(这种涉及测量、求取地球形状或当地精确位置的应用数学分支称为测地学。)虽然高斯由于这个技术成功地消去了线性方程的变量而出名,但早在几世纪中国人的手稿中就出现了解释如何运用“高斯”消去的方法求解带有三个未知量的三方程系统。在当时的几年里,高斯消去法一直被认为是测地学发展的一部分,而不是数学。而高斯 - 约当消去法则最初是出现在由 Wilhelm Jordan 撰写的测地学手册中。许多人把著名的数学家 Camille Jordan 误认为是“高斯 - 约当”消去法中的约当。 矩阵代数的丰富发展,人们需要有合适的符号和合适的矩阵乘法定义。二者要在大约同一时间和同一地点相遇。 1848 年英格兰的 J.J. Sylvester 首先提出了矩阵这个词,它来源于拉丁语,代表一排数。 1855 年矩阵代数得到了 Arthur Cayley 的工作培育。 Cayley 研究了线性变换的组成并提出了矩阵乘法的定义,使得复合变换 ST 的系数矩阵变为矩阵 S 和矩阵 T 的乘积。他还进一步研究了那些包括矩阵逆在内的代数问题。著名的 Cayley- Hamilton 理论即断言一个矩阵的平方就是它的特征多项式的根,就是由 Cayley 在 1858 年在他的矩阵理论文集中提出的。利用单一的字母 A 来表示矩阵是对矩阵代数发展至关重要的。在发展的早期公式 det( AB ) = det( A )det( B ) 为矩阵代数和行列式间提供了一种联系。数学家 Cauchy 首先给出了特征方程的术语,并证明了阶数超过 3 的矩阵有特征值及任意阶实对称行列式都有实特征值;给出了相似矩阵的概念,并证明了相似矩阵有相同的特征值;研究了代换理论, 数学家试图研究向量代数,但在任意维数中并没有两个向量乘积的自然定义。第一个涉及一个不可交换向量积(既 v x w 不等于 w x v )的向量代数是由 Hermann Grassmann 在他的《线性扩张论》( Die lineale Ausdehnungslehre )一书中提出的。(1844) 。他的观点还被引入一个列矩阵和一个行矩阵的乘积中,结果就是现在称之为秩数为 1 的矩阵,或简单矩阵。在 19 世纪末美国数学物理学家 Willard Gibbs 发表了关于《向量分析基础》 ( Elements of Vector Analysis ) 的著名论述。其后物

线性代数超强的总结(不看你会后悔的)

线性代数超强总结 ()0A r A n A Ax A A οο??

√ 行列式的计算: ① 若A B 与都是方阵(不必同阶),则(1)mn A A A A B B B B A A B B οο οοο *===** =- ②上三角、下三角行列式等于主对角线上元素的乘积. ③关于副对角线: (1)2 1121 21 1211 1 (1) n n n n n n n n n n n a a a a a a a a a ο οο ---* = =- √ 逆矩阵的求法: ①1 A A A * -= ②1()()A E E A -????→ 初等行变换 ③11a b d b c d c a ad bc --????=????--???? T T T T T A B A C C D B D ?? ??=???????? ④1 2 11 1121n a a n a a a a -????????????=???????? ????? ? 2 1 1 1 121 1n a a n a a a a -???? ???? ? ???=???? ??????????

线性代数知识点总结汇总

线性代数知识点总结 1 行列式 (一)行列式概念和性质 1、逆序数:所有的逆序的总数 2、行列式定义:不同行不同列元素乘积代数和 3、行列式性质:(用于化简行列式) (1)行列互换(转置),行列式的值不变 (2)两行(列)互换,行列式变号 (3)提公因式:行列式的某一行(列)的所有元素都乘以同一数k,等于用数k 乘此行列式 (4)拆列分配:行列式中如果某一行(列)的元素都是两组数之和,那么这个行列式就等于两个行列式之和。 (5)一行(列)乘k加到另一行(列),行列式的值不变。 (6)两行成比例,行列式的值为0。 (二)重要行列式 4、上(下)三角(主对角线)行列式的值等于主对角线元素的乘积 5、副对角线行列式的值等于副对角线元素的乘积乘 6、Laplace展开式:(A是m阶矩阵,B是n阶矩阵),则 7、n阶(n≥2)范德蒙德行列式

数学归纳法证明 ★8、对角线的元素为a,其余元素为b的行列式的值: (三)按行(列)展开 9、按行展开定理: (1)任一行(列)的各元素与其对应的代数余子式乘积之和等于行列式的值(2)行列式中某一行(列)各个元素与另一行(列)对应元素的代数余子式乘积之和等于0 (四)行列式公式 10、行列式七大公式: (1)|kA|=k n|A| (2)|AB|=|A|·|B| (3)|A T|=|A| (4)|A-1|=|A|-1 (5)|A*|=|A|n-1 (6)若A的特征值λ1、λ2、……λn,则 (7)若A与B相似,则|A|=|B| (五)克莱姆法则 11、克莱姆法则: (1)非齐次线性方程组的系数行列式不为0,那么方程为唯一解

(2)如果非齐次线性方程组无解或有两个不同解,则它的系数行列式必为0 (3)若齐次线性方程组的系数行列式不为0,则齐次线性方程组只有0解;如果方程组有非零解,那么必有D=0。 2 矩阵 (一)矩阵的运算 1、矩阵乘法注意事项: (1)矩阵乘法要求前列后行一致; (2)矩阵乘法不满足交换律;(因式分解的公式对矩阵不适用,但若B=E,O,A-1,A*,f(A)时,可以用交换律) (3)AB=O不能推出A=O或B=O。 2、转置的性质(5条) (1)(A+B)T=A T+B T (2)(kA)T=kA T (3)(AB)T=B T A T (4)|A|T=|A| (5)(A T)T=A (二)矩阵的逆 3、逆的定义: AB=E或BA=E成立,称A可逆,B是A的逆矩阵,记为B=A-1 注:A可逆的充要条件是|A|≠0 4、逆的性质:(5条) (1)(kA)-1=1/k·A-1 (k≠0) (2)(AB)-1=B-1·A-1 (3)|A-1|=|A|-1 (4)(A T)-1=(A-1)T (5)(A-1)-1=A

线性代数发展史

线性代数发展史 一行列式 行列式的出现已有300余年,1683年日本数学家关孝和在<解伏题之法)中首先引人此概念。 1693年,莱布尼兹(G.W.工ezbniz)著作中亦有行列式叙述,世人们仍认为此概念在西方源于数学家柯西(A.L CaMchy) 1750年,克莱姆(G cramer)出版的(线性代数分析导言>一书中已给出行列式的今日形式。 1841年,雅谷比(c.G JaMM在(论行列式形成与性质)一书中对行列式及其性质、计算作了较系统的阐述 此后.范德蒙(A.T vandeMondl)、裴蜀(E.Be肋Mt)、拉普拉斯(P.s M de I品PLace)等人在行列式研究中也作了许多工作, 但行列式在当今线性代数中似已被淡化,原因是:首先它的大多数功能已被矩阵运算取代,而矩阵(代数)理论与计算已相当成熟;再者是电子计算机的出现与飞速发展,已省去人们许多机械而繁琐的计算.然而行列式也有其自身的魅力:技巧性强、形式漂亮,因而它在历年考研中不断出现. 行列式的主要应用是:求矩阵(或向量组)的秩;解线性方程组;求矩阵特征多项式等行列式与矩阵有着密不可分的连带关系,尽管它们本质上不是一回事(短阵是数表,而行列式是数). 二矩阵代数 矩阵一词系1850年英国数学家薛尔维斯特(J—J sylves贮r)首先倡用,它原指组成行列式的数字阵列。 矩阵的性质研究是在行列式理论研究中逐渐发展的. 凯莱(A cayley)于1858年定义了矩阵的某些运算,发表<矩阵论研究报告>,因而他成了矩阵论的创始人。德国数学家弗罗伯尼(F.G.Fmbenius)于1879年引进矩阵秩的概念,且做了较丰富的工作(发表在(克雷尔杂志>上) 尔后矩阵作为一种独立的数学分支迅速发展起来. 20世纪40年代,为响应电子计算机出现而诞生厂短阵数值分析,1947年冯·纽曼(Ven Neumann)等人提出分析误差的条件数,1948年图灵(A.Turing)给出厂矩阵的Lu分解,矩阵的另一种分解QR分解的实际应用在上世纪50年代末得以实现.这一切使矩阵计算得以迅猛发展。 如今,矩阵已成为一种重要的数学工具,它的理论和方法在数学和其他科技领域(如数值分析、优化理论、微分方程、概率统计、运筹学、控制论、系统工程、数量经济等)都有广泛应用,甚至经济管理、社会科学等方而亦然。 三向量 向量概念是由复数概念扩张而来。1843年哈密顿(w.R Hsmil仍n)的“四元数”概念引入的同时,引入了向量概念,从而开创它的计算与理论研究 1844年,德国数学家格拉斯(G.H.Grassmann)发表<线性扩张论>,提出“n维超复数”概念.即n元有序数组,相当于今天的向量概念.此外他还定义了超复数的运算,且将Euclid几何的许多概念拓广至高维空间.

相关文档
最新文档