超级电容组的均压问题

超级电容组的均压问题
超级电容组的均压问题

超级电容组的电压由串联的电容器数量决定,而功率则是由并联的电容器数量决定。超级电容和电动汽车动力电池类似,每个超级电容单体的电压范围为

1~3.0V(和电容器类型有关),所以,需要将超级电容串联使用才能得到所需的电压。理想状态时,每个超级电容单体性能应该是一致的,即每个超级电容单体的电压是一样的。但是,由于制造误差、自放电率等因素,电容器单体之间的电压是有差异的。在制造时和整个产品寿命周期内,电容值的变化和泄漏电流影响电容器电压的分布,所以,使用超级电容单体管理电路来提高串联使用的超级电容单体的性能和寿命,是最有效的管理超级电容单体的方法(另一种管理方法是把过压的单体放电达到保护超级电容的目的,但也产生了其他问题)。一个好的均衡电路可以对异常的单体迅速做出响应,超级电容单体平衡方法有两种,即被动均衡式(图5-15)和主动均衡式(图5-16)。

1.被动均衡电路

(1)电阻直接与超级电容并联的结构

这种方式如图5-15 (a)所示,在每个超级电容单体上并联一个电阻来抑制泄漏电流,实际上,就是使用公差很小的电阻强制单个模块的电压一致。

超级电容在充电过程中,内阻决定充电电流的大小以及最终电压。超级电容充电之后,自放电内阻是一个重要参数,用一个小的电阻就可以实现超级电容单体之间的电压平衡。电阻阻值应比超级电容的内阻大许多,但比自放电电阻小。不同的电阻值,电压的平衡过程可能花几分钟到几小时。

这种方法最适合低负荷运行工况,如UPS电源,充电电流不大,充电时间长,可以延长超级电容的使用寿命。该方法具有结构简单和低成本的优点,最大的确点是在外电阻上产生很大的功率损失,这个损失与电阻值和电流大小有关。如果充电时间足够长可以完成均衡过程,在电动汽车上也可应用,但是

用峰值功率进行充电时可能会引起过压,这个电路对防止过压无能为力。

2)开关控制的电阻并联的结构

这种方式如图5-15 (b)所示,在上一种结构的电阻上串联一个开关,当单体电压高于预先设定的电压值时,开关接通;当单体电压低于预先设定的电压值时,开关关闭。这种结构需要测量单体电压,会增加成本。

(3)采用DC/DC变换器的结构

这种方式如图5-15 (c)所示,在相邻的单体之间接人DC/DC变换器,平衡具体的电压。除变换器的损失外,没有其他损失,效率高于上述两种平衡方式。但由于硬件实现和控制成本高的原因,这种结构没有引起人们太多的兴趣。

(4)采用齐纳(Zener)二极管的结构

这种方式如图5-15 (d)所示,在单体上并联一个齐纳二极管,只要达到齐纳二极管的工作电压,单体电压就保持不变。这种结构的主要缺点是二极管的功率损失很大,而且二极管本身的电压与温度有很大关系,所以无法大量

2.主动均衡电路

如图5-16(a)主动均衡电路所示,主动均衡需要的时间比被动均衡需要的时间短,电压分配精确相等,而且寄生损失小。如果达到极限电压,电路通过一个并联在超级电容上的小功率电阻的旁路作用进行均衡。这个电阻的作用与被动均衡式相同,但是,由于均衡电流大,均衡的过程很短。在低于极限电压时,电阻不起作用,充电电流可以很大。在旁路部分起作用时,电流可以较高,但是这要受并联电阻的限制(一般上限电流达1A)。因此,这个电路不能在车辆上应用,因为车辆制动时,制动回馈产生的充电电流远大于1A,这会损坏整个电路。

图5-16(b)是使用辅助电流源的结构,即用两个辅助电流源调节超级电容的充放电电流,根据充放电时超级电容的电压,确定均衡电流。

超级电容器串联应用中的均压问题及解决方案

超级电容器串联应用中的均压问题及解决方案 摘要:本文详尽的分析了超级电容器串联应用中影响各单体电容器上电压的一致性的原因,对不同的电压均衡的方法及存在的问题,提出使用的电压均衡电路单元,最后给出了实验结果。 关键词:超级电容器电压均衡温度系数 Abstract: In this papper the reason has been analysed that si the ultra capacitor in series infkuence the consistency of the voltage of each unit capacitor in detailed .For different methods of the voltage balance and the questions existing,the voltage balance citcuit unit and the test result has been provided . Keywords: Ultra Capacitor Voltage Balance Temperature Coeffcient 1. 问题的提出 超级电容器的额定电压很低(不到3V),在应用中需要大量的串联。由于应用中常需要大电流充放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。如果不采取必要的均压措施,会引起各个单体电容器上电压较大,采取更多的串联数来解决问题是不可取的。影响均压的因素主要有: 1.1 容量的偏差对电容器组的影响 通常超级电容器容量偏差为-10%--+30%,上下偏差1.44。当电容器组中出现容量偏差较大时,在充电时容量最小的电容器首先到达额定电压而电容量偏差最大的仅充到69%的额定电压,其储能为最小容量电容器的0.69%。如式(1) (1) 其中C min为最大负偏差电容量。电容器组的平均储能为: (2)

近十年超级电容器领域的重大突破

近十年超级电容器领域的重大突破 中国储能网讯:与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。 随着社会的快速发展和人口的急剧增长,资源消耗日益增加,能源危机迫在眉睫,因此,寻找清洁高效的新能源与能源存储技术及装置已成为备受关注的研究课题。与传统电容器相比,超级电容器具有更大的比电容、更高的能量密度、更长的使用寿命等特点,而与锂离子电池相比,超级电容器又具有更高的功率密度、更长的使用寿命及绿色环保等优点。超级电容器在未来储能器件领域占有绝对的优势,在军事、混合动力汽车、智能仪表等诸多领域具有广泛的应用前景。 超级电容器是一种介于传统电容器和电池之间的新型储能

器件,通过在电极材料和电解质界面快速的离子吸脱附或完全可逆的法拉第氧化还原反应来存储能量,根据储能与转化机制的不同可将超级电容器分为双电层电容器(Electric double layer capacitors,EDLC)和法拉第准电容器(又叫赝电容器,Pseudocapacitors)。双电层电容器是建立在双电层理论基础之上的,1879年,Helmholz发现了电化学界面的双电层电容性质;1957年,Becker申请了第一个由高比表面积活性炭作电极材料的电化学电容器方面的专利(提出可以将小型电化学电容器用做储能器件);1962年,标准石油公司(SOHIO)生产了一种6V的以活性碳(AC)作为电极材料、以硫酸水溶液作为电解质的超级电容器,1969年,该公司首先实现了碳材料电化学电容器的商业化;1979年,NEC公司开始生产超级电容(Super CaPACitor),开始了电化学电容器的大规模商业应用。随着材料与工艺关键技术的不断突破,产品质量和性能不断得到稳定和提升,到了九十年代末开始进入大容量高功率型超级电容器的全面产业化发展时期。超级电容器作为电化学能源存储领域的前沿研究方向之一,近十年内有多个突破性工作,其发展也向着小型化、柔性化、平面化等方向发展。 石墨烯在实验室中是2004年被发现的,当时英国曼彻斯特

超级电容器原理及电特性

超级电容器原理及电特性 Principle & Electric characteristics of Ultra capacitor 辽宁工学院陈永真孟丽囡宁武 Chen Yongzhen Liao Ning Institute of Technology 摘要:叙述了超级电容器的基本结构和工作原理,比较全面地介绍了超级电容器的特点和在特定测试条件下的电特性,分析了如较大的ESR、发热等特殊电特性产生的原因,提出一些注意事项。 关键词:超级电容器 ESR 放电电流 Abstract:Basic structure & principle of ultra-capacitor are described in this paper. The characteristics about ultra-capacitor and electric characteristics in special measuring conditions are also introduced in detail. Some reasons of special electric characteristics are analyzed, such as big ESR and heat, at last some attentions are also put forward. Key words: ultra-capacitor ESR Discharging current 超级电容器是一种高能量密度的无源储能元件,随着它的问世,如何应用好超级电容器,提高电子线路的性能和研发新的电路、电子线路及应用领域是电力电子技术领域的科技工作者的一个热门课题。 1. 级电容器的原理及结构 1.1 超级电容器结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如丙烯碳酸脂(propylene carbonate)或高氯酸四乙氨(tetraetry lanmmonium perchlorate)。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s是电极界 面的表面面积。 由图中可见,其多孔化电极是使用多孔性的活性碳有极大的表面积在电解液中吸 附着电荷,因而将具有极大的电容量并可以存储很大的静电能量,超级电容器的这一 特性是介于传统的电容器与电池之间。电池相较之间,尽管这能量密度是5%或是更 少,但是这能量的储存方式,也可以应用在传统电池不足之处与短时高峰值电流之中。 这种超级电容器有几点比电池好的特色。 图1超级电容器结构框图 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到 超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 2.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点:

电容器的工作原理及结构

电容器工作原理这得从电容器的结构上说起。最简单的电容器是由两端的极板和中间的绝缘电介质(包括空气)构成的。通电后,极板带电,形成电压(电势差),但是由于中间的绝缘物质,所以整个电容器是不导电的。不过,这样的情况是在没有超过电容器的临界电压(击穿电压)的前提条件下的。我们知道,任何物质都是相对绝缘的,当物质两端的电压加大到一定程度后,物质是都可以导电的,我们称这个电压叫击穿电压。电容也不例外,电容被击穿后,就不是绝缘体了。不过在中学阶段,这样的电压在电路中是见不到的,所以都是在击穿电压以下工作的,可以被当做绝缘体看。但是,在交流电路中,因为电流的方向是随时间成一定的函数关系变化的。而电容器充放电的过程是有时间的,这个时候,在极板间形成变化的电场,而这个电场也是随时间变化的函数。实际上,电流是通过场的形式在电容器间通过的。 电容 diànróng 1. [capacitance;electric capacity]:电容是表征电容器容纳电荷的本领的物理量,非导电体的下述性质:当非导电体的两个相对表面保持某一电位差时(如在电容器中),由于电荷移动的结果,能量便贮存在该非导电体之中 2. [capacitor;condenser]:电容器的俗称 [编辑本段]概述 定义: 电容(或称电容量[4])是表征电容器容纳电荷的本领的物理量。我们把电容器的两极板间的电势差增加1伏所需的电量,叫做电容器的电容。电容从物理学上讲,它是一种静态电荷存储介质(就像一只水桶一样,你可以把电荷充存进去,在没有放电回路的情况下,刨除介质漏电自放电效应/电解电容比较明显,可能电荷会永久存在,这是它的特征),它的用途较广,它是电子、电力领域中不可缺少的电子元件。主要用于电源滤波、信号滤波、信号耦合、谐振、隔直流等电路中。 电容的符号是C。 在国际单位制里,电容的单位是法拉,简称法,符号是F,常用的电容单位有毫法(mF)、微法(μF)、纳法(nF)和皮法(pF)(皮法又称微微法)等,换算关系是: 1法拉(F)= 1000毫法(mF)=1000000微法(μF) 1微法(μF)= 1000纳法(nF)= 1000000皮法(pF)。 相关公式: 一个电容器,如果带1库的电量时两级间的电势差是1伏,这个电容器的电容就是1法,即:C=Q/U 但电容的大小不是由Q或U决定的,即:C=εS/4πkd 。其中,ε是一个常数,S为电容极板的正对面积,d为电容极板的距离,k则是静电力常量。常见的平行板电容器,电容为C=εS/d.(ε为极板间介质

超级电容器的结构及其特点

超级电容器结构及特点 超级电容器( supercapacitor,ultracapacitor),又名电化学电容器(Electrochemical Capaci-tors)、黄金电容、法拉电容,超级电容器通过极化电解质来储能。它是一种电化学元件,但在其储能的过程并不发生化学反应,其储能过程是可逆的,可以反复充放电数十万次。超级电容器是20世纪七八十年代发展起来的一种新型的储能装置。它是一种介于传统电容器与蓄电池之间、具有特殊性能的电源,主要依靠双电层和氧化还原原理储存电能,因而不同于传统的化学电源。 超级电容器其容量可达法拉级甚至数千法拉,它兼有常规电容器功率密度大,比普通蓄电池能量密度高的优点,并且具有充放电时间短,循环性能好,使用寿命长,使用温度范围宽,对环境无污染等特点。因此,从某种意义上讲,超级电容器有着传统电容器和蓄电池的双重功能,弥补了两个传统技术间的空白,因此具有很大的发展潜力。 超级电容器的准确名称是化学或双电屡电容器(具体名称取决于制造商),简称EDLC。超级电容器的表现与传统电容器(包括多层陶瓷电容器、钽电容器、电解电容器等)相似,但能量密度更高。这是由具有极大的电荷存储表面积的多孔炭电极与专门的电解质提供的极薄的板分离层相结合而形成的。 超级电容器属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其他种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容器可以被视为悬浮在电解质中的两个无反应活性的多孔电极板,在极板上加电,正极板吸引电解质中的负离子,负极板吸引正离子,实际上形成两个容性存储层,被分离开的正离子在负极板附近,负离子在正极板附近,如图3-6所示。 超级电容器的能量储存在双电层和电极内部,当用直流电源为超级电容器单体充电时,电解质中的正、负离子取向聚集到固体电极表面,形成电极/溶液双电层,用以贮存电荷。 虽然,目前全球已有许多家超级电容器生产商,可以提供许多种类的超级电容器产品,但大部分产品都是基于一种相似的双电层结构,超级电容器在结构上与电解电容器非常相似,它们的主要区别在于电极材料。

超级电容器原理和应用

超级电容器原理和应用 分类:移动互联的基本知识或讲座 2007.6.13 20:14 作者:kimberye | 评论:0 | 阅读:5029 超级电容器简介(图) 作者:Maxwell Technologies Bobby Maher 随着社会经济的发展,人们对于绿色能源和生态环境越来越关注,超级电容器作为一种新型的储能器件,因为其无可替代的优越性,越来越受到人们的重视。在一些需要高功率、高效率解决方案的设计中,工程师已开始采用超级电容器来取代传统的电池。 电池技术的缺陷 Li离子、NiMH等新型电池可以提供一个可靠的能量储存方案,并且已经在很多领域中广泛使用。众所周知,化学电池是通过电化学反应,产生法拉第电荷转移来储存电荷的,使用寿命较短,并且受温度影响较大,这也同样是采用铅酸电池(蓄电池)的设计者所面临的困难。同时,大电流会直接影响这些电池的寿命,因此,对于要求长寿命、高可靠性的某些应用,这些基于化学反应的电池就显出种种不足。 超级电容器的特点和优势 超级电容器的原理并非新技术,常见的超级电容器大多是双电层结构,同电解电容器相比,这种超级电容器能量密度和功率密度都非常高。同传统的电容器和二次电池相比,超级电容器储存电荷的能力比普通电容器高,并具有充放电速度快、效率高、对环境无污染、循环寿命长、使用温度范围宽、安全性高等特点。 除了可以快速充电和放电,超级电容器的另一个主要特点是低阻抗。所以,当一个超级电容器被全部放电时,它将表现出小电阻特性,如果没有限制,它会拽取可能的源电流。因此,必须采用恒流或恒压充电器。 10年前,超级电容器每年只能卖出去很少的数量,而且价格很贵,大约1~2美元/法拉,现在,超级电容器已经作为标准产品大批量供应市场,价格也大大降低,平均0.01~0.02美元/法拉。在最近几年中,超级电容器已经开始进入很多应用领域,如消费电子、工业和交通运输业等领域。

电容工作原理

电容工作原理 电容串联可以隔直通交,并联可以滤波。 电容器就是两片不相连的金属板.电容器在电子线路中的作用一般概括为:通交流、阻直流。电容器通常起滤波、旁路、耦合、去耦、转相等电气作用,是电子线路必不可少的组成部分。滤波电路是把脉冲通到地去了,不是通到输出端。 正因为通交流,才能把交流成分通向地,保留直流成分. 一般情况下,电解电容的作用是过滤掉电流中的低频信号,但即使是低频信号,其频率也分为了好几个数量级。因此为了适合在不同频率下使用,电解电容也分为高频电容和低频电容(这里的高频是相对而言)。 低频滤波电容主要用于市电滤波或变压器整流后的滤波,其工作频率与市电一致为50Hz;而高频滤波电容主要工作在开关电源整流后的滤波,其工作频率为几千Hz到几万Hz。当我们将低频滤波电容用于高频电路时,由于低频滤波电容高频特性不好,它在高频充放电时内阻较大,等效电感较高。因此在使用中会因电解液的频繁极化而产生较大的热量。而较高的温度将使电容内部的电解液气化,电容内压力升高,最终导致电容的鼓包和爆裂。 其实主要是充放电的工作原理。其实电容就相当于 一个水库,让过来的有波动的水变的很平稳 电解电容的作用有滤波,一般用在整流桥的后面。 你可以看一下电容是并连还是串连在回路里,并联的话是率除高频,串联的话是率除低频。还有降压电容。还有隔直的作用,一般做保护用! 电容串联和并联在电路中各有什么作用? 电容的作用是储存、释放电荷,可起到隔直通交、滤波、振荡作用 电容在电路中:如串联使用一般作为交流信号隔离,如音频功放、视频放大器等 如并联使用一般作为滤波,如电源、信号处理电路中噪声去除等 如与电感或其他芯片并联可组成振荡回路,如无线信号发射、接收、调制、解调等 电容并联可增大电容量,串联减小。比如手头没有大电容,只有小的,就可以并起来用,反之,没有小的就可以用大的串起来用。 在集成电路、超大规模集成电路已经大行其道的今天,电容器作为一种分立式无源元件仍然大量使用于各种功能的电路中,其在电路中所起的重要作用可见一斑。 作贮能元件也是电容器的一个重要应用领域,同电池等储能元件相比,电容器可以瞬时充放电,并且充放电电流基本上不受限制,可以为熔焊机、闪光灯等设备提供大功率的瞬时脉冲电流。 电容器还常常被用以改善电路的品质因子,如节能灯用电容器。 隔直流:作用是阻止直流通过而让交流通过。 旁路(去耦):为交流电路中某些并联的元件提供低阻抗通路。 耦合:作为两个电路之间的连接,允许交流信号通过并传输到下一级电路 滤波:将整流以后的锯齿波变为平滑的脉动波,接近于直流。 温度补偿:针对其它元件对温度的适应性不够带来的影响,而进行补偿,改善电路的稳定性。计时:电容器与电阻器配合使用,确定电路的时间常数。 调谐:对与频率相关的电路进行系统调谐,比如手机、收音机、电视机。 整流:在预定的时间开或者关半闭导体开关元件。

超级电容器的结构

超级电容器的结构 1. 超级电容器的结构 图一为超级电容器的模型,超级电容器中,多孔化电极采用活性炭粉和活性炭和活性炭纤维,电解液采用有机电解质,如碳酸类或乙腈类。工作时,在可极化电极和电解质溶液之间界面上形成的双电层中聚集的电容量c 由下式确定: 其中ε是电解质的介电常数,δ是由电极界面到离子中心的距离,s 是电极界面的表面面积。 由图1中可见,其多孔化电极是使用多孔性的活性碳有极大的表面 积在电解液中吸附着电荷,因而将具有极大的电容量并可以存储很大的 静电能量,超级电容器的这一特性是介于传统的电容器与电池之间。电 池相较之间,尽管这能量密度是5%或是更少,但是这能量的储存方式, 也可以应用在传统电池不足之处与短时高峰值电流之中。这种超级电容 器有几点比电池好的特色。 1.2 工作原理 超级电容器是利用双电层原理的电容器,原理示意图如图2。当外加电压加到超级电容器的两个极板上时,与普通电容器一样,极板的正电极存储正电荷,负极板存储负电荷,在超级电容器的两极板上电荷产生的电场作用下,在电解液与电极间的界面上形成相反的电荷,以平衡电解液的内电场,这种正电荷与负电荷在两个不同相之间的接触面上,以正负电荷之间极短间隙排列在相反的位置上,这个电荷分布层叫做双电层,因此电容量非常大。当两极板间电势低于电解液的氧化还原电极电位时,电解液界面上电荷不会脱离电解液,超级电容器为正常工作状态(通常为3V 以下),如电容器两端电压超过电解液的氧化还原电极电位时,电解液将分解,为非正常状态。由于随着超级电容器放电 ,正、负极板上的电荷被外电路泄放,电解液的界面上的电荷响应减少。由此可以看出:超级电容器的充放电过程始终是物理过程,没有化学反应。因此性能是稳定的,与利用化学反应的蓄电池是不同的。 1.3 主要特点 由于超级电容器的结构及工作原理使其具有如下特点: ①.电容量大,超级电容器采用活性炭粉与活性炭纤维作为可极化电极与电 解液接触的面积大大增加,根据电容量的计算公式,那么两极板的表面积越大, 则电容量越大。因此,一般双电层电容器容量很容易超过1F ,它的出现使普通 电容器的容量范围骤然跃升了3~4个数量级,目前单体超级电容器的最大电容 量可达5000F 以上。 ②.充放电寿命很长,可达500 000次,或50000小时,而蓄电池的充放电 寿命很难超过2000次, ③.可以提供很高的放电电流(如2700F 的超级电容器额定放电电流不低于 950A ,放电峰值电流可达1680A ,一般蓄电池通常不能有如此高的放电电流一 些高放电电流的蓄电池在杂如此高的放电电流下的使用寿命将大大缩短。 图1 超级电容器结构框图 图2 超级电容器结构框图

超级电容器的工作原理

超级电容器的工作原理 根据存储电能的机理不同,超级电容器可分为双电层电容器(Electric double layer capacitor, EDLC)和赝电容器(Pesudocapacitor)。 2.1 双电层电容器原理 双电层电容器是通过电极与电解质之间形成的界面双层来存储能量的新型元器件,当电极与电解液接触时,由于库仑力、分子间力、原子间力的作用,使固液界面出现稳定的、符号相反的双层电荷,称为界面双层。 双电层电容器使用的电极材料多为多孔碳材料,有活性炭(活性炭粉末、活性炭纤维)、碳气凝胶、碳纳米管。双电层电容器的容量大小与电极材料的孔隙率有关。通常,孔隙率越高,电极材料的比表面积越大,双电层电容也越大。但不是孔隙率越高,电容器的容量越大。保持电极材料孔径大小在2,50 nm 之间提高孔隙率才能提高材料的有效比表面积,从而提高双电层电容。 2.2 赝电容器原理 赝电容,也叫法拉第准电容,是在电极材料表面或体相的二维或准二维空间上,电活性物质进行欠电位沉积,发生高度可逆的化学吸附/脱附或氧化/还原反应,产生与电极充电电位有关的电容。由于反应在整个体相中进行,因而这种体系可实现的最大电容值比较大,如吸附型准电容为2 000×10–6 F/cm2。对氧化还原型电容器而言,可实现的最大容量值则非常大[9],而碳材料的比容通常被认为是20×10–6 F/cm2,因而在相同的体积或重量的情况下,赝电容器的容量是双电层电容器容量的10,100 倍。目前赝电容电极材料主要为一些金属氧化物和导电聚合物。

金属氧化物超级电容器所用的电极材料主要是一些过渡金属氧化物, 如:MnO2、V2O5、 2、NiO、H3PMo12O40、WO 3、PbO2和Co3O4等[10]。金属氧化物作为超级电容器电RuO2、IrO 极材料研究最为成功的是RuO2,在H2SO4电解液中其比容能达到700,760 F/g。但RuO2稀有的资源及高昂的价格限制了它的应用。研究人员希望能从MnO2及NiO等贱金属氧化物中找到电化学性能优越的电极材料以代替RuO2。用导电聚合物作为超级电容器的电极材料是近年来发展起来的。聚合物产品具有良好的电子电导率,其典型的数值为1,100 S/cm。一般将共轭聚合物的电导性与掺杂半导体进行比较,采用术语“p掺杂”和“n掺杂”分别用于描述电化学氧化和还原的结果。导电聚合物借助于电化学氧化和还原反应在电子共轭聚合物链上引入正电荷和负电荷中心,正、负电荷中心的充电程度取决于电极电势[9]。导电聚合物也是通过法拉第过程大量存储能量。目前仅有有限的导电聚合物可以在较高的还原电位下稳定地进行电化学n型掺杂,如聚乙炔、聚吡咯、聚苯胺、聚噻吩等。现阶段的研究工作主要集中在寻找具有优良的掺杂性能的导电聚合物,提高聚合物电极的充放电性能、循环寿命和热稳定性等方面。 超级电容器作为一种新型的储能元件,具有如下优点: (1)超高的容量。超级电容器的容量范围为0.1,6 000 F,比同体积的电解电容器容量大2 000,6 000倍。 (2)功率密度高。超级电容器能提供瞬时的大电流,在短时间内电流可以达到几百到几千安培,其功率密度是电池的10,100倍,可达到10×103 W/kg左右。 (3)充放电效率高,超长寿命。超级电容器的充放电过程通常不会对电极材料的结构产生影响,材料的使用寿命不受循环次数的影响,充放电循环次数在105以

电容补偿柜的作用与工作原理

电容补尝柜的作用和工作原理 一. 电容补偿柜之作用: 用于补偿发电机无功电流、减轻发电机工作负荷,增加发电机可使用容量,可减少工厂一定的用电量、节省工业电力,提高发供电设备的供电质量和供电能力。 二. 电容柜工作原理 用电设备除电阻性负载外,大部分用电设备均属感性用电负载(如日光灯、变压器、马达等用电设备)这些感应负载,使供电电源电压相位发生改变(即电流滞后于电压),因此电压波动大,无功功率增大,浪费大量电能。当功率因数过低时,以致供电电源输出电流过大而出现超负载现象。电容补偿柜内的电脑电容控制系统可解决以上弊端,它可根据用电负荷的变化,而自动设置。电容组数的投入,进行电流补偿,从而减低大量无功电流,使线路电能损耗降到最低程度,提供一个高素质的电力源。 三. 电容补偿技术: 在工业生产中广泛使用的交流异步电动机,电焊机、电磁铁工频加热器导用点设备都是感性负载。这些感性负载在进行能量转换过程中,使加在其上的电压超前电流一个角度。这个角度的余弦,叫做功率因数,这个电流(既有电阻又有电感的线圈中流过的电流)可分解为与电压相同相位的有功分量和落后于电压90 度的无功分量。这个无功分量叫做电感无功电流。与电感无功电流相应的功率叫做电感无功功率。当功率因数很低时,也就是无功功率很大时会有以下危害:

?增长线路电流使线路损耗增大,浪费电能。 ?因线路电流增大,可使电压降低影响设备使用。 ?对变压器而言,无功功率越大,则供电局所收的每度电电费越贵,当功率因数低于0.7 时,供电局可拒绝供电。 ?对发电机而言,以310KW 发电机为例。 310KW 发电机的额定功率为280KW ,额定电流为530A ,当负载功率因数0.6 时 功率= 380 x 530 x 1.732 x 0.6 = 210KW 从上可看出,在负载为530A 时,机组的柴油机部分很轻松,而电球以不堪重负,如负荷再增加则需再开一台发电机。加接入电容补偿柜,让功率因数达到0.96 ,同样210KW 的负荷。 电流=210000/ (380x1.732x0.96 )=332A 补偿后电流降低了近200A ,柴油机和电球部分都相当轻松,再增加部分负荷也能承受,不需再加开一台发电机,可节约大量柴油。也让其他机组充分休息。从以上可看出,电容补偿的经济效益可观,是低压配电系统中不可缺少的重要成员。 原理:把具有容性负荷的装置与感性负荷并联接在同一电路,当容性负荷释放能量时,感性负荷吸收能量;而感性负荷释放能量时,容 性负荷却在吸收能量,能量在两种负荷之间互相交换.这样,感性负荷 所吸收的无功功率可由容性负荷输出的无功功率中得到补偿,这就是他的补偿原理

超级电容器均压电路状况与展望

超级电容器均压电路状况与展望 摘要:本文分析了现有的超级电容器限幅型均压电路和动态均压电路的特点与实用性以及存在的问题,其本质就是均压电流远低于充电电流,导致分流效果差。针对这些问题提出了改进的方法,采用加大均压电流方式减缓单体电压在充电过程中可能出现的过电压。最后提出非能量损耗型均压电路是解决超级电容器电压均分的最好方法。 关键词:超级电容器;限幅型均压电路;动态均压电路;非能量损耗型均压电路 引言 超级电容器的额定电压很低(不到3V),在应用中需要大量的串联。由于应用中常需要大电流充、放电,因此串联中的各个单体电容器上电压是否一致是至关重要的。影响超级电容器电压是否均分的因素主要有:电容量、ESR、漏电流等,尽管超级电容器在应用初期这些参数对超级电容器的电压均分的影响比较小,但是在超级电容器应用的中后期,随着这些参数的离散性变大,对超级电容器电压均分的影响越来越大,最终导致超级电容器寿命的急剧缩短。如果不采取必要的均压措施,会引起各个单体电容器上电压较大,采取更多的串联数来解决问题是不可取的。 1 超级电容器常用的均压方法及存在的问题

目前超级电容器均压电路主要有两种:限幅型均压电路和动态电压均压电路。 1.1 限幅型均压电路及特点 限幅型均压电路如图1。从图中可以看到,当电压低于转折电压时,电路处于“阻断”状态,仅有很小的漏电流;而电压达到并超过转折电压后,流过电路的电流将随电压的增加而急剧增加,呈现稳压二极管特性,以达到分流充电电流或泄放过充的电荷,最终超级电容器的电压被限制在转折电压以下。 图1 限幅型均压电路 这种电路的优点是电路工作原理简单,工作可靠,参数一致性好,一般的最大工作电流在1A以下。这种特性也带来了应用时的问题,也就是充电过程超级电容器组中的某些超级电容器单体会出现比较严重的过电压。

超级电容组的均压问题

超级电容组的电压由串联的电容器数量决定,而功率则是由并联的电容器数量决定。超级电容和电动汽车动力电池类似,每个超级电容单体的电压范围为 1~3.0V(和电容器类型有关),所以,需要将超级电容串联使用才能得到所需的电压。理想状态时,每个超级电容单体性能应该是一致的,即每个超级电容单体的电压是一样的。但是,由于制造误差、自放电率等因素,电容器单体之间的电压是有差异的。在制造时和整个产品寿命周期内,电容值的变化和泄漏电流影响电容器电压的分布,所以,使用超级电容单体管理电路来提高串联使用的超级电容单体的性能和寿命,是最有效的管理超级电容单体的方法(另一种管理方法是把过压的单体放电达到保护超级电容的目的,但也产生了其他问题)。一个好的均衡电路可以对异常的单体迅速做出响应,超级电容单体平衡方法有两种,即被动均衡式(图5-15)和主动均衡式(图5-16)。 1.被动均衡电路 (1)电阻直接与超级电容并联的结构 这种方式如图5-15 (a)所示,在每个超级电容单体上并联一个电阻来抑制泄漏电流,实际上,就是使用公差很小的电阻强制单个模块的电压一致。 超级电容在充电过程中,内阻决定充电电流的大小以及最终电压。超级电容充电之后,自放电内阻是一个重要参数,用一个小的电阻就可以实现超级电容单体之间的电压平衡。电阻阻值应比超级电容的内阻大许多,但比自放电电阻小。不同的电阻值,电压的平衡过程可能花几分钟到几小时。 这种方法最适合低负荷运行工况,如UPS电源,充电电流不大,充电时间长,可以延长超级电容的使用寿命。该方法具有结构简单和低成本的优点,最大的确点是在外电阻上产生很大的功率损失,这个损失与电阻值和电流大小有关。如果充电时间足够长可以完成均衡过程,在电动汽车上也可应用,但是

超级电容器工作原理

超级电容器工作原理 超级电容器既拥有与传统电容器一样较高的放电功率,又拥有与电池一样较大的储存电荷的能力。但因其放电特性仍与传统电容器更为相似,所以仍可称之为“电容”。到现在为止,对于超级电容器的名称还没有统一的说法,有的称之为“超电容器”,有的称之为“电化学电容器”“双电层电容器”,有的还称之为“超级电容器”,总之名称还不统一。但是有人提出根据其储能机理,分为双电层电容器(靠电极 -电解质界面形成双电层)和赝电容器(靠快速可逆的化学吸-脱附或氧化-还原反应产生赝电容)两类。 (一)双电层电容器的基本原理 双电层电容器是利用电极材料与电解质之间形成的界面双电层 来存储能量的一种新型储能元件。当电极材料与电解液接触时,由于界面间存在着分子间力、库仑力或者原子间力的相互作用,会在固液界面处出现界面双电层,是一种符号相反的、稳定的双层电荷。对于一个电极-溶液体系来说,体系会因电极的电子导电和电解质溶液的离子导电而在固液界面上形成双电层。当外加电场施加在两个电极上后,溶液中的阴、阳离子会在电场的作用下分别向正、负电极迁移,而在电极表面形成所谓的双电层;当外加电场撤销后,电极上具有的正、负电荷与溶液中具有相反电荷的离子会互相吸引而使双电层变得更加稳定,这样就会在正、负极间产生稳定的电位差。 在体系中对于某一电极来说,会在电极表面一定距离内产生与电极上的电荷等量的异性离子电荷,来使其保持电中性;当将两极和外

电源连接时,由于电极上的电荷迁移作用而在外电路中产生相应的电流,而溶液中离子迁移到溶液中会呈现出电中性,这就是双电层电容器的充放电原理。 从理论上说,双电层中存在的离子浓度要大于溶液本体中离子浓度,这些浓度较高的离子受到固相体系中异性电荷吸引的同时,还会有一个扩散回溶液本体浓度较低区域的趋势。电容器的这种储能过程是可逆的,因为它是通过将电解质溶液进行电化学极化实现的,整个过程并没有产生电化学反应。双电层电容器的工作原理如下图所示: (二)法拉第准电容器的基本原理 法拉第准电容器是在双电层电容器后发展起来的,有人将其简称为准电容。这种电容的产生是因为电极活性物质在其表面或者体相中

电容式传感器的结构及工作原理

电容式传感器——将被测非电量的变化转换为电容量变化的传感器。把被测的机械量,如位移、压力等转换为电容量变化的传感器。它的敏感部分就是具有可变参数的电容器。其最常用的形式是由两个平行电极组成、极间以空气为介质的电容器。下面就让艾驰商城小编对电容式传感器的结构及工作原理来一一为大家做介绍吧。 若忽略边缘效应,平板电容器的电容为εS/d,式中ε为极间介质的介电常数,S为两极板互相覆盖的有效面积,d为两电极之间的距离。d、s、ε 三个参数中任一个的变化都将引起电容量变化,并可用于测量。 因此电容式传感器可分为极距变化型、面积变化型、介质变化型三类,即变极距型电容传感器、变面积型电容传感器和变介质型电容传感器。极距变化型一般用来测量微小的线位移或由于力、压力、振动等引起的极距变化。面积变化型一般用于测量角位移或较大的线位移。介质变化型常用于物位测量和各种介质的温度、密度、湿度的测定。 典型的电容式传感器由上下电极、绝缘体和衬底构成。当薄膜受压力作用时,薄膜会发生一定的变形,因此,上下电极之间的距离发生一定的变化,从而使电容发生变化。但电容式压力传感器的电容与上下电极之间的距离的关系是非线性关系,因此,要用具有补偿功能的测量电路对输出电容进行非线性补偿。 艾驰商城是国内最专业的MRO工业品网购平台,正品现货、优势价格、迅捷配送,是一站式采购的工业品商城!具有10年工业用品电子商务领域研究,以强大的信息通道建设的优势,以及依托线下贸易交易市场在工业用品行业上游供应链的整合能力,为广大的用户提供了传感器、图尔克传感器、变频器、断路器、继电器、PLC、工控机、仪器仪表、气缸、五金工具、伺服电机、劳保用品等一系列自动化的工控产品。 如需进一步了解图尔克、奥托尼克斯、科瑞、山武、倍加福、邦纳、亚德客、施克等各类传感器的选型,报价,采购,参数,图片,批发信息,请关注艾驰商城https://www.360docs.net/doc/db1348478.html,/

超级电容器基本原理及性能特点

聚焦超级电容选型与应用 上网时间:2010-05-27 作者:Zoro 来源:电子元件技术网 超级电容和电池都是能量的存储载体,但二者有不同的特点。超级电容通过介质分离正负电荷的方式储存能量,是物理方法储能,电池是通过化学反应的方法来储能。超级电容充放电次数可达百万次,而电池只有1000次,显然超级电容寿命要远大于电池,降低维护成本且有利于环保。 超级电容充放电速度快,能够在机车启动时提供能量,刹车时捕获能量,因为超级电容充放电的时间在1秒左右,正好与机车刹车或启动的时间匹配。其他设备比如风力发电中,风轮机变桨的时候要提供能量也是在这个时间段。而电池的充放电大概在1小时到10个小时左右,而传统用于滤波的电容,充放电为0.03秒。 超级电容放电速度快,而且容量大,能够瞬间释放巨大的能量,能够用作备用电源,在系统突然断电时,在极短时间内为系统提供能量。超级电容也可以用作发动机或动力电池的辅助,提高发动机的运行效率和能量利用效率。在系统启动时,超级电容将捕获的能量释放,满足峰值功率要求,从而减轻电池或发动机的负担。 除此之外,超级电容还能用于自动抄表系统中的智能电表(水表,燃气表)、相机闪光灯、混合动力汽车。超级电容节能、环保、高效的特点迎合了当下节能减碳的设计诉求。本期半月谈聚焦超级电容,通过以下三个方面介绍超级电容:

超级电容器基本原理及性能特点 超级电容属于双电层电容器,它是世界上已投入量产的双电层电容器中容量最大的一种,其基本原理和其它种类的双电层电容器一样,都是利用活性炭多孔电极和电解质组成的双电层结构获得超大的容量。 超级电容与电池的比较 相对铅酸电池、镍镉电池、锂离子电池,超级电容具有节能、超长使用寿命、安全、环保、宽温度范围、充电快速、无需人工维护等优点。本文通过图表来对比各种不同储能产品的特点。 超级电容的典型应用与选型 超级电容容量大,充放电速度快,而且充放电循环可达百万次,非常适合用作备用电源和提供峰值功率。本文介绍超级电容的工作原理,并着重介绍在集装箱龙门吊车和智能电表上的应用。

超级电容均压技术

本文每一章内容安排如下: 第一章:绪论部分,主要介绍了本文研究背景及现状,阐述了超级电容器的概念和优缺点等相关知识,简要介绍了几种电压均衡方案" 第二章:理论基础部分,介绍了超级电容器的构成!原理和相关参数,分析研究了超级电容器的输入输出特性" 第三章:仿真分析部分,对几种常用的电压均衡方案进行详细的介绍和仿真分析,全面比较几种电压均衡方案的优劣" 第四章:均衡方案确定和改进部分,结合仿真比较和实际情况选择合适的电压均衡方案,针对此方案存在的不足之处提出改进意见并分析其可行性" 第五章:稳压方案设计部分,设计合适的超级电容器输出电压稳压方案,保证其两端输出电压恒定不变" 第六章:硬件搭建部分,在前几章分析讨论的基础上搭建充放电控制系统的 硬件电路,给出硬件的设计过程和调试结果" 第七章:总结展望部分,简要总结论文的主要研究工作,展望超级电容器储 能系统应用的发展前景" 超级电容器作为近年来兴起的一种新型电力储能元件,在电动汽车、有轨列车、新能源等领域的应用日益广泛。但由于超级电容器的电压值很低 ( 1.6-3 V) ,不能满足一些大功率储能系统的要求,所以需要将大量的超级电容器单体进行串联以提高电压等级。生产工艺等原因造成了各个电容单体参数的分散性,导致在串联工作时,各个单体上的电压大小不一,即有可能在储能系统充放电过程中出现过电压和欠电压两种不健康状态。欠电压状态的超级电容器,其容量不能得到充分地利用,存在浪费现象。而处于过电压状态会很大程度上缩短超级电容器的使用寿命,严重时还会发生爆炸。所以必须对超级电容器组引入均压技术,来提高超级电容器组的利用率和可靠性[3-5],同时使超级电容器的使用寿命得以延长。 影响超级电容电压不均衡的原因 1)容量偏差 超级电容器的电压u 、电流i 、电量Q 以及容量W 满足以下的关系式: 2 21 u C W du C dt i Q dt du C i ??=?=?=? =

超级电容组详解

超级电容组 电容单元的主要参数: 型号:4-BMOD2600-6 额定电压:60Vdc 容量:108F 可用能量:150kJ 超级电容是由4个超级电容组串联而成的。下面着重介绍超级电容组。 1.绪论 430F,16V的超级电容能量存储模块是一个独立的能量存储设备,最多能够存储55kJ(15.3Whr)的能量。能量存储模块由6个独立的超级电容单元、激光焊接的母线连接器和一个主动的、完整的单元平衡电路组成。单元可以串联连接以获得更高的工作电压(215F,32V;143F,48V;107.5F,64V等)。也可以并联连接提供更大的能量输出(860F,16V;1290F,16V等)或者是串联和并联的组合来获得更高的电压和更大的能量输出。当串联连接的时候,单元到单元之间的电压平衡问题可以通过使用我们提供的双线平衡电缆来加以解决。 超级电容模块的包装是一个耐损耗的冲压铝外壳。这样一个外壳是永久封装的,不需要维护。3个集电极开路逻辑输出端是选购件,其中2个用于显示过压程度,另外一个用于显示过温。 2.安装 2.1机械方面 模块可以以任意方向安装、工作。只用两个设计好的安装法兰来支撑模块。也可以用4个绝缘子支座把模块安装到一个平面上。关于绝缘子支座的安装位置请看数据表。 模块面板上有一个M4的螺纹通气孔。从出厂到运输过程中,用一个螺杆把这个孔塞住。这个通气孔是可选组件。当单元发生灾难性故障时,单元会释放电解液和气体。如果应用环境要求远程通风的话,附件中会提供一个M4的螺纹软管。拿下螺杆换上软管。把一个4mm 的软管系到hose barb上然后把软管导到一个安全的地方通风。图1给出了通风口的情况。

超级电容器原理介绍及实验分析

五、结果与分析 1、实验过程总结与知识点查阅 ○1超级电容器的结构:[1] 超级电容器主要由三部分组成:电极、电解液和隔膜,其中电极由集流体和电极材料组成。本实验中,集流体为泡沫镍,集流体起到降低电极内阻的作用,活性物质为三维石墨烯-Co3O4复合材料。 ○2超级电容器的分类及原理 分为双电层电容器和赝电容器 双电层电容器:充电时,电解液中的带电粒子被吸附在电极表面,形成双电层结构,从而将能量储存起来。在双电层电容器工作的过程中,电解液中的粒子只发生电迁移、扩散、传质,完全是物理过程,不会和电极发生氧化还原反应。在充电时,接正极的电极集流体和活性物质带正电,活性物质吸附电解液中的负离子从而形成双电层结构。同样的,接负极的活性物质带负电,吸引电解液中的阳离子形成双电层结构。整个超级电容器相当于两个电容器串联。循环性能好,比电容较低。 赝电容器:由于电解液中粒子与电极材料发生高度可逆的氧化还原反应,形成不稳定的产物,将能量储存起来。在充电时,活性物质与电解液中的粒子在电极表面或者电极表面及内部发生高度可逆的化学吸附;在放电时则进行解吸附的过程。循环性能差,比电容高。 ○3超级电容器的电极材料[2]: (1)炭材料:活性炭、碳纳米管、石墨烯等。主要用于双电层电容器,比容量较低,而且能量密度与功率密度也较低。 ( 2 )过渡金属氧化物和导电聚合物,主要用于赝电容器,比容量与能量密度较高,导电性能和循环稳定性相对活性炭较差。 (3)改进材料:制备碳材料与金属氧化物或导电聚合物的复合材料,同时拥有比电容高和循环性能好的优点,如本实验中的三维石墨烯-Co3O4复合材料。 ○4循环伏安法测试及其原理 循环伏安法是指在工作电极和参比电极之间施加三角波扫描电压,记录工作电极上响应电流与施加电位之间的关系曲线,即循环伏安图。从伏安图的波形、氧化还原电流的数值及

电容器基本原理

电容器基本原理 电容器的电路符号很形象的表明了它的根本功能:隔直通交。电容器的一切功用都源自于此。对于恒定直流电来说,理想的电容器就像一个断开的开关,表现为开路状态;而对于交流电来讲,理想电容器则为一个闭合开关,表现为通路状态。 在上面的图中详细描述了直流电受电容器阻隔的原因。事实上,电容器并非立刻将直流电阻隔,当电路刚接通时,电路中会产生一个极大的电流值,然后随着电容器不断充电,极板电压逐渐增强,电路中的电流在不断减小,最终电容器电压和电源电压相等且反向,从而达到和电源平衡的状态。 而在交流电方面,为方便记忆,我们可以不太严谨但形象的认为交流电能够“跳过”电容器这道“峡谷”,从而保持“正常传导”。 这里有很关键的一点需要明确:无论是直流环境还是交流环境,理想的电容器内部是

不会有任何电荷(电流)通过的,只是两极板电荷量对比发生了变化,从而产生了电场。 要想了解电容器的各种功用,我们还需要了解一下傅立叶级数。各位苦于微积分的朋友不用头晕,我们不需要去研究那些复杂的数学公式,仅仅是需要一个简单的结论:任何一个波,都可认为是多个不同的波形叠加之产物。即,一个波可以拆分成多个振幅、频率都不相同的波(包括振幅和频率为零的波)。这其实正如一个数字也能被拆分成多个其他数字的组合一样,例如3 = 1+2 = 1+1+1 = 0+3。 振幅或频率为零的波是什么?直线。对于电来说,那就是直流电,即电压恒定不变。正如世界上没有绝对的直线一样,世界上也没有绝对的直流电。尽管人们在追求尽可能理想的直流电,但直流和交流总是同时存在的。直流电中含有交流成分,交流电中也包含直流成分。当直流成分占主导地位时,就认为其乃直流电;当交流成分占主导地位时,就认为是交流电。这很像太极所描述的阴中有阳,阳中有阴。 直流和交流总是共存的 事物的具体应用都是由基本原理派生出的,哪怕你不理解只是死记硬背,同样也能够很容易得理解它的具体应用。毕竟,对于基本原理来说,往往仅仅需要知其然即可,例如1+1=2。对于电容器来说,我们需要明白两点:隔直通交和不走电荷。 基于电容器隔直通交和不走电荷的原理,其应用方式也就应运而生了。在目前我们在电脑板卡上常见的电容器应用主要有:电源滤波、耦合与去藕、信号滤波。 电容器的应用:电源滤波 正如之前所说,世界上没有绝对的直流电,为了给设备提供尽可能理想化的直流供电,我们需要一些途径将交流成分尽量剔除。因此,供电滤波电路成为了每一块主板和显卡必备的电路组成部分,没了它们,我们的电脑就无法正常工作。

相关文档
最新文档