声幅-变密度测井原理

声幅-变密度测井原理
声幅-变密度测井原理

声幅-变密度测井原理

便携式测井操作以及测井解释方法

一、测井原理简介

声幅-变密度测井是由磁定位(CCL)、自然伽马仪

(GR)和声幅-变密度仪(CBL-VDL)组成,能够实现一次下

井,测出CCL、GR、CBL-VDL等多条组合曲线。

声幅-变密度(CBL-VDL)井下仪包括电子线路和声系两

大部分,其中声系包括一个发射器和两个接收器,源距

分别为3英尺和5英尺。

对于3英尺源距接收器,声波发射器发射声脉冲,

经过泥浆(或井液)折射入套管,产生套管波。套管波

沿最短路径传播,折射入井里泥浆(或井液)。接收器

接受声波波列中首波的幅度。经过电子线路把他转换为

相应的电压值予以记录。当仪器沿井身移动时,就测出

一条随井深变化的声幅曲线。并通过声幅曲线值的高低

对比来确定套管与水泥环胶结的好坏。

对于5英尺源距接收器,接受到的是声波的全波列,

分为三个部分,即套管波、地层波、直达波(泥浆波和

井液波),接收电子线路把信号转换为与其幅度成正比

的点信号,经电缆传至地面,检波后只保留其正半周部分,这部分电信号加到示波器或显象管上,调制其光点亮度。波幅大,电压高,光点就亮,测井图上显示条带为黑色。而光点亮度低时,测井图上显示为灰色条带。负半周电压为零,光点不亮,测井图上显示为白色条带。变密度测井图就是黑(灰)白色相见的条带,以其颜色的深浅表示接收到的信号的强弱,通过对变密度测井图上显示的套管波、地层波和直达波(泥浆波和井液波)的强弱程度分析,来确定套管与水泥环和水泥环与地层胶结质量的好坏。

※仪器测井原理(CBL)

1、声波发射器发射声脉冲被3英尺源矩接收器接收,经井液折射入套管,产生套管波;

2、套管波沿最短路径传播,折射入井液;

3、接收器接收声波波列中首波的幅度;

4、幅度到达电子线路被转换为相应的电压值并予以记录;

5、当仪器沿井身移动时,就测出一条随井深变化的声幅曲线;

6、通过声幅曲线值的高低对比来确定套管与水泥环胶结的好坏。

※仪器测井原理(VDL)

1、声波发射器发射声脉冲被5英尺源矩接收器接收声波全波列(套管波、地层波、泥浆和井液波);

2、线路把信号转换为与其幅度成正比的电信号,经电缆传至地面;

3、电信号在显像管上被调制其光点亮度,根据其波幅大小和电压高低在测井图上显示成黑白相间的条带;

4、测井图黑(灰)白相间的条带,以其颜色的深浅表示接收到信号的强弱;

5、通过对全波列的强弱程度分析,确定套管与水泥环、水泥环与地层的胶结质量。

也可以用下图加以解释,全部波列形成亮暗条纹显示在胶片上,对比度取决于正峰幅值。波列的不用部分可以在VDL测井图上被区分开来。套管波信号显示了很有规律的条纹,而地层波的条纹显得更为扭动。

二、测井资料质量控制

几个基本概念:

自由套管:未胶结的套管。

第一胶结面:套管与水泥的胶结。

第二胶结面:水泥与地层的胶结。

声幅曲线要根据套管外径尺寸的大小在自由套管处进行刻度检查,且有30-50米连续曲线,曲线变化平稳,符合质量要求,声幅重复曲线误差小于10%。不同套管外径刻度值如下:

变密度门坎合适,灰度清晰,在第一、第二交接面均好的井段,波列变化与岩性具有相关性;

测速600m/h;

变密度曲线在自由套管处应反映出套管波信号,呈现一条条黑白相见的直条带;

声幅-变密度测井时,必须带扶正器,以保证仪器居中;

测井时间一般在固井后36-48小时进行测量。

三、测井资料解释方法地层。(如下图)

2、定量解释

①根据声幅曲线的幅度值,采用相对幅度法评价第一胶结面的固井质量。即:

相对幅度C = ( 目的层段的声幅值 / 自由套管井段的声幅值 ) * 100% 当相对幅度≤20%时,确定为胶结良好;

当相对幅度20-30%时,确定为胶结中等;

当相对幅度≥30%时,确定为胶结差。

②根据变密度图上套管波显示的强弱来确定第一胶结面的胶结级别,套管波信号微弱或缺失定为第一胶结面胶结良好;套管波显示清晰,曲线粗而黑,套管接箍明显,定为第一胶结面胶结差;套管波显示较弱时定为第一胶结面胶结中等。

③根据声幅-变密度测井资料解释规程,依据变密度图上显示的地层波的强弱来确定第二胶结面的胶结级别。

对同一口井的不同井段,变密度地层波显示强确定为胶结良好;地层波微弱或缺少,确定为胶结差;地层波可以辨认出,但地层波信息不清晰,确定为胶结中等。

四、补充规定

1、对于新钻井挂尾管、套损管部分悬挂小套管等测量井段内出现套管内径不同的情况,进行CBL-VDL测井时,在不同直径的套管内实行“分别刻度,分段测量”。

2、CBL刻度值必须和所在刻度井段自由套管CBL理论响应值一致。

3、若无自由套管,在进行刻度时,可以在基本无水泥胶结的CBL值的相对较高的井段进行刻度。

4、对于全井段悬挂小套管且无自由套管的情况,可以在基本无水泥胶结的CBL值的相对较高的井段进行刻度。

5、“分别刻度,分段测量”时,两段都必须测量出悬挂器位置,且重复井段不得少于50米。

五、CSU 配接便携式CBL-VDL 测井仪

1、设备连线

测量时,便携式机箱上的接线孔下排的1、7、10分别连线对应于电缆缆芯的1、7、10,上排的10连线对应于电缆缆芯的3,未列出的接线孔没有用到。如图:

电缆各缆芯的功能如下表,未列出的没有用到:

2、仪器连接

注意:下井前一定要检查上下扶正器的销子,防止滚轮处脱开,造成卡仪器的后果。 3、软件操作

① CCS 置于测RFTA 位置,启动便携式机箱的Win98系统,进入CBL/VDL 测井程序。 ② 仪器串名称选择:声波变密度VCBL 。

③ 输出参数选择:第二组,深度采样率应为32,时间采样率为0.1,每米脉冲数为393.8。 ④ 接口控制选择:磁定位,声波变密度,单芯传输,自动逻辑,

10mA 。

⑤ 给仪器供电。通过供电器由电缆4、6芯给声幅仪器供电。电压175-180V ,电流50mA 。 ⑥ 仪器刻度采用“VBL 测试”。根据套管外径(英寸)选择合适的套管CBL 值(mV ),寻

便携式机箱

找“清水段”,即未固井段,使监视波形达到最大,可以进行“测试”,然后进行测前刻度。

⑦测试完成后,即可按照测量时的连线方式进行正常测井了。

4、测井步骤

①供电180V,电流大小视井下仪器不同而不同;

②在自由套管处刻度,声幅刻度值与套管外径(见下页)对应;

③下井过程中监视VBL值,使其不超过刻度值;

④在水泥返高处测重复曲线;

⑤下至凡尔位置,测主曲线。

用CBL/VDL资料评价薄层水泥胶结

李艳华薛梅楚泽涵李剑浩任佐斌聂国柱

摘要李艳华,薛梅,李剑浩等.用CBL/VDL资料评价薄层水泥胶结.测井技术,1999,23(3):180~185

由于分辨率的限制,声波水泥胶结评价测井(CBL/VDL)不可能解释评价厚度在3ft*以下的未胶结层段。对于未胶结层段厚度在仪器纵向分辨率以下的薄层,在源距为3ft及5ft的声系所记录到的声幅曲线上的贡献是不同的。根据不同源距声系所记录到的声幅值的差异,可定量解释评价没有水泥胶结的薄层(其厚度小于仪器的纵向分辨率)。根据水泥胶结刻度井群中的实际测量结果,作出了未胶结层段厚度与源距为3ft及5ft的声系所记录到的声幅值差异的关系图版,根据这种关系图版对大庆油田2口井的固井质量重新进行解释评价。

主题词:水泥胶结测井薄层声波全波列测井定量分析测井解释

ABSTRACT Li Yanhua,Xue Mei,Li Jianhao,et al..A Method for Thin Layers Cement Bond Evaluation with CBL/VDL Data.WLT,1999,23(3):180~185 Due to the restriction of resolution,the unbonded intervals with thickness smaller than 3 ft can not be evaluated with the Cement Bond Evaluation logging Data (CBL/VDL).As to those unbonded intervals,their contributions to the amplitude curves recorded by the acoustic sondes with spacing of 3 ft and 5 ft are different.According to the amplitude difference recorded by the sondes with different spacings,unbonded thin layers (with thickness smaller than the instrument resolution)can be quantitatively evaluated.According to the experiment results obtained from cement bond calibration wells,the relationship chart between the thickness of unbonded interval

and the amplitude difference recorded by the acoustic sondes with spacing of 3 ft and 5 ft is given.Cement bond quality of two wells in Daqing Oilfield is reevaluated with this cart.Subject Terms:cement bond logging thin layer full wavetrain acoustic logging quantitative analysis log interpretation

问题的提出

目前在水泥胶结测井评价中,用CBL/VDL方法代替在技术上陈旧的声幅测井已成为一种方向和趋势[1,2,3]。源距为3 ft的CBL方法记录井壁上套管波的幅度,并据此估算与套管外水泥胶结情况有关的套管波衰减率,并由衰减率计算出套管外水泥的胶结指数非法定计量单位,1 ft=0.3048 m,下同BI。VDL方法是在源距为5 ft的单发单收声系上记录声波变密度曲线,并据此判断套管外水泥胶结状况,但VDL的解释通常只是定性的[4]。从CBL/VDL的仪器方法原理上说,VDL可以根据所记录到的首波幅度得出一条源距为5 ft

的声幅曲线,也可以根据这条曲线计算套管波的衰减率及套管外水泥的胶结指数。

这样,在CBL/VDL测井中可以记录到源距为3 ft(CBL)及5 ft(VDL)的2条声幅测井曲线,由这2条声幅曲线都可以算出套管波的衰减率及水泥胶结指数曲线。在源距为3 ft及5 ft时,即使声学发射探头性能稳定,而且2个接收探头性能完全一致,由于2个接收探头与发射探头的距离不同,因此接收到的信号幅度是不相同的,由此计算出的套管波的衰减率及胶结指数也不相同。由于5 ft源距声系记录的声波信号幅度较小,因而计算出的套管波的衰减率较大而胶结指数较小。这样就提出一个问题:用3 ft和5 ft源距记录到的声幅曲线及由此换算出的水泥胶结指数曲线,哪一个更可靠?另外,由声波幅度曲线解释出的水泥胶结指数曲线给出的是一种渐变的结果,往往不能像确定水泥返回界面一样给出在井下可能存在的有水泥胶结和没有水泥胶结的突变面。

水泥胶结测井的另一难题是,无论源距是3 ft,还是5 ft的声系,所测得任何曲线的纵向分辩率都在3 ft以上,无法分辩3 ft以下的未胶结层段。对于目的层段厚度小于仪器纵向分辩率的薄层问题,历来是测井的难题,现有的声波水泥胶结测井未能除外。

本文提出,用现有的3 ft和5 ft源距声系记录的套管波的幅度差,可以解释评价厚度在3 ft以下的没有水泥胶结的层段,还可以确定没有水泥胶结层段的厚度。

CBL/VDL评价薄层水泥胶结的思路

CBL和VDL方法都是通过单发单收声系接收井壁套管波的幅度。套管波是在尺寸(厚度)有限的套管内传播的声波导,其物理实质是有限厚薄板中传播的板波(Lamb波)。其幅度取决于套管壁厚度、套管波(板波)信号频率,在套管壁厚和套管波频率固定的前提下,套管波的幅度

取决于套管外介质(例如固结水泥)的密度和分布范围。套管外固结的水泥对套管波起“阻尼”作用,在固井水泥密度大及水泥环厚度大时,阻尼作用强,因而套管波幅度小,反之,当固井水泥密度小及水泥环厚度变薄时,阻尼作用弱,因而套管波幅度大[5]。

从测量的角度来说,套管波幅度还取决于井内声学发射探头和接收探头的距离(源距),因为套管波在井壁上沿井轴方向传播时,即使忽略套管本身对套管波的吸收,套管波在沿井轴方向上传播时也还会略有几何扩展而衰减。另外,在源距为3 ft或5 ft时,所记录的是在井壁套管上、沿井轴方向3 ft或5 ft内套管波的平均(或积分)结果。因此,若在井壁套管上有1 ft井段没有水泥胶结,在用源距为3 ft或5 ft的声系测量时,这1 ft未胶结层段的贡献是不同的。对3 ft声系,在其纵向分辨率范围内,约有1/3的层段未胶结而对套管波的阻尼作用弱,对5 ft声系,约1/5的层段水泥未胶结而对套管波的阻尼作用强,因此用3 ft的声系记录的套管波的幅度比用5 ft的声系记录的套管波幅度大。因此,本文解决薄层水泥胶结评价的基本思路是:若在井壁套管外有某一厚度小于仪器纵向分辨率的层段,则在用源距为3 ft及5 ft的声系所记录的声幅曲线上,套管波的幅度将出现差异而且这种幅度差异与测量范围内或仪器纵向分辨范围内未胶结层段的厚度有关,一般来说,未胶结层段的厚度越大,源距不同的声系记录到的声幅曲线的差异越大。而且从方法原理上说,只要井下测量记录的精度足够高,根据不同源距声幅曲线的差异,能对厚度小于仪器的纵向分辨率的未胶结层段进行识别和评价。

根据以上讨论,在CBL/VDL仪器记录的源距为3 ft及5 ft声幅曲线上,其声幅的差异能反映套管外未胶结层段的厚度。因此,进一步的问题是建立3 ft和5 ft声幅曲线幅度差与未胶结层段厚度的对应关系。本文所建立的这种关系图版是根据在已通过原中国石油天然气总公司鉴定的水泥胶结刻度井群中用CBL/VDL仪器实际测量的结果得出。在刻度井群中,套管外未胶结层段的厚度、深度位置都是确定的,这样建立的关系比理论或模拟计算的结果更为可信。而且与通常的CBL测井解释方法相比,按照不同源距声幅差异值还能准确地划定有水泥胶结和无水泥胶结界面的深度位置,因而能较准确地认定套管外未胶结层段的厚度。

根据源距为3 ft和5 ft的声系记录的声幅值的差异,对套管外水泥未胶结层段的解释,也回答了根据3 ft和5 ft源距的声幅曲线计算出的水泥胶结指数孰更可靠的问题。实际上,源距为3 ft的声系所记录的声幅值较大,因此计算出的胶结指数较低,即判据较严;而源距为5 ft的声系所记录的声幅较小,因而计算出的胶结指数较高,即判据较宽。从理论上说,若3 ft和5 ft声系的2个接收探头的性能完全一致,则用不同源距声系记录到的幅度差来判断套管外的水泥胶结状况更为合理。

未胶结层段厚度与各声幅差异关系图版制作

辽河油田于1997年建成国内最大的水泥胶结刻度井群,并通过原中国石油天然气总公司鉴定。在刻度井中,用聚胺酯橡胶模拟套管外不同程度的胶结情况。胶结程度与用CBL/VDL 测井仪所记录的源距为3 ft和5 ft的声系所记录的套管波幅度值见表1。

由表1可见,源距为3 ft和5 ft的声系所记录的声幅值随着胶结程度的增大而减小,2种源距声系所记录到的声幅差异也随之减小。套管外不同角度胶结情况的模拟是在直径为139.7mm的套管外分别粘贴隔声橡胶360°、270°、180°、90°、45°、22.5°共6段,每段长度均为1.25 m。在建立未胶结层段厚度与不同源距声系记录的幅度差关系前,为了确定未胶结层段的厚度,本文承认在圆心角上的水泥胶结程度等效于在纵向深度上的水泥胶结程度。在刻度井中,每个模拟层段的厚度均为1.25m,在胶结程度为0时(套管周围360°均有隔声橡胶,其余90°为水泥),其未胶结层段厚度为1.25m;胶结程度为25%时(套管周围270°有隔声像胶),其未胶结层段厚度为0.94 m(0.75 m×0.125m);其它依此类推,即在胶结程度为50%、25%、12.5%时,未胶结层段的厚度为0.625、0.312 5、0.156 m。

由于声波水泥胶结测井解释评价的最后结果是水泥胶结指数,也就是说并不在套管周围的方位上或套管外的纵向深度上对水泥的分布进行区分,因此这种等效是合理的。未胶结层段厚度与不同源距声系所记录的声波幅度差的关系数据见表2,其关系图版见图1。

图1 未胶结层段厚度与声波幅度差关系图(a以未胶结层段厚度为横轴)

图1 未胶结层段厚度与声波幅度差关系图(b以幅度差为横轴)

由于本文讨论的是薄层胶结评价问题,因此解释图版制作的条件是未胶结层段的最大厚度是1.25 m,即比3 ft略大而比5 ft略小。这一方面是由于刻度井刻度条件的制约,另外,在未胶结层段厚度大于5 ft(1.5 m)时,已不属于薄层问题,而且在这种情况下源距为3 ft 和5 ft的声系所记录到的声幅值的差异应该稳定不变,例如在自由套管段。另外,在建立关系图版时所用的仪器与实际测井所用的仪器并不相同,这样,根据一支仪器测量建立的关系图版是否适用于其他仪器?对这一问题的回答是,在同一口井中,用3支仪器在同一井段进行测量,尽管不同仪器的同一源距声系测得的声幅值略有差异,但不同仪器2种源距声系测得的声幅差异却相当接近,这说明在刻度井中建立的关系图版是可用的。

解释实例

1998年7月20、21日大庆油田测井公司在南B-4-丙183井及杏7-42-630井中进行了CBL/VDL测井,除记录了3 ft的声幅曲线(CBL)外,还由VDL所记录的首波回放处理出一条源距为5 ft的声幅曲线。从这2口井的源距为3 ft及5 ft的声幅曲线上看,对水泥返回界面的判断一致,自由套管段套管接箍信号清晰,而且深度一致。此外,前文分析中提到的源距为5 ft的声系记录到的声幅值,略低于源距为3 ft的声系记录到的声幅值也得到证实。如南B-4-丙183井,2种源距的声幅曲线都可将水泥返回界面定在890m处。

无论是源距为3 ft或5 ft的声系,在自由套管段记录的接箍信号在深度坐标上所占的位置都明显大于实际套管接箍的几何尺寸(0.15~0.17m)。仍以南B-4-丙183井为例,在水泥返回界面以上,6个接箍的“视厚度”(按接箍的两个半幅点在深度坐标上的差值计算)在

源距为3 ft及5 ft的声系记录的声幅曲线上均分别为0.9 m及1.4 m。这两个数值都比套管接箍实际几何尺寸(0.15~0.17 m)大,接近源距为3 ft及5 ft声系的纵向分辨率。由此,应该提出这样一个问题,在水泥返回界面以下,CBL评价为胶结不好的层段是否可靠?是否会像对接箍的“视厚度”一样,将未胶结段的厚度估计过高。

为此,本文用在刻度井中根据未胶结层段厚度与源距为3 ft及5ft的声系所记录的声幅值差异的关系图版,对这2口井的未胶结层段的厚度重新进行解释计算,其目的是查明CBL 解释评价的未胶结层段是否过严,即将未胶结层段的厚度划得过大(像对套管接箍的“视厚度”定得过宽一样)。

解释计算的原则及步骤是:

(1)对2种源距声系所记录的声幅曲线解释评价为胶结良好或不好的层段不再重新解释;

(2)只对在用源距为3 ft的声系记录的声幅曲线解释为胶结中等(或未胶结),而源距为5 ft的声系所测声幅曲线解释为良好的层段,重新进行解释。即只对2种源距声系测量解释结果有差异的层段进行解释;

(3)对用户认为有特殊价值的层段(如油水交互频繁的主要开发层段)进行重新评价。

重新解释的一般步骤是,读出源距为3 ft及5 ft的声系所记录的幅度差,然后根据关系图版估算出未胶结层段的厚度,再换算成相应胶结指数下的等效厚度。

这种解释方法的优点在于能保留CBL解释评价的合理成分;另外,在有争议的需要特别关注的井段,采用不同源距声系所记录的声幅值的差异估算未胶结层段厚度。这一计算是立足于井下实际测量结果建立的定量关系,不会受CBL解释方法中参数选择、判据更改等人为因素的影响。

南B-4-丙183井及杏7-42-630井的若干层段重新解释计算的结果见表3、表4和表5。

注:H为未胶结层段在井中的深度;D为3 ft CBL测井图中未胶结层段的厚度;CBL-VDL为3 ft及5 ft声系CBL声幅差值;D′为根据关系图版重新计算的未胶结层段厚度;D″为将D′换为具有3 ft声系所测胶结指数时图中等效未胶结层段厚度,下同。

表3中通过计算源距为3 ft及5 ft声系所测套管波的幅度差,根据上面的关系图版计算出套管接箍厚度,此厚度与实际套管接箍厚度接近,比原解释方法准确3倍(0.9/0.288),这进一步证实这种新的解释方法是比较准确的。

由表4,即南B-4-丙183井的重新解释结果来看,根据源距为5 ft的声系测量所得声幅曲线,用原解释方法判据过宽,几乎全部井段均被判为胶结良好,而根据源距为3 ft的声系测量记录的声幅曲线对大于其径向分辨率3 ft(0.91m)的未胶结层段判据过严,大于实际未胶结层段,约为实际未胶结层段的2~3倍,对于小于其径向分辨率的未胶结层段判得过宽,约为实际未胶结层段的1/5~1/2。对于表5,即杏7-42-630井,亦可得出与上面相同的结论;另外,也表明原始解释方法对厚度约为3 ft的未胶结层段(即与仪器纵向分辨率相等的未胶结层段)有较准确的反映。对于厚度在3 ft以上的未胶结层段,源距为3 ft的声系测量记录的声幅曲线所显示的未胶结层段的厚度是按关系图版计算所得的厚度的1.6~4.6倍,如表6所示。

对于厚度小于3 ft的未胶结层段,源距为3 ft的声系所测声幅曲线所显示的未胶结层段的厚度是按关系图版计算所得的厚度的1/5~1/2,如表7所示。

对于厚度接近3 ft的未胶结层段,源距为3 ft的声系所记录的声幅曲线所显示的未胶结层段的厚度与按关系图版计算所得的未胶结层段的厚度最为接近,如表8所示。

结论与建议

因为通过关系图版重新计算出的未胶结层段的厚度实际上是纯粹的未胶结层段的厚度,要使其与原解释方法解释的未胶结层段的厚度具有可比性,还必须将它换算为源距为3 ft的声系所测的胶结指数下的等效的未胶结层段的厚度。具体方法如下,以杏7-42-630井深度611.7m处为例,该处原解释方法解释的未胶结层段厚度为1.7m,胶结指数为0.76,通过关系图版计算出的未胶结层段的厚度为0.23 m,它在3 ft的声系所测的胶结指数0.76下的等效未胶结层段的厚度应为D″=0.23/(1-0.76)=0.95m。

在资料处理过程中还需要说明的问题是,本文所处理的2条测井曲线的源距并不是标准的3 ft(0.9m)和5 ft(1.52m),而是1.0m和1.5m(即相差0.09m和0.02m),而本文所用的关系图版是通过标准的3 ft和5 ft源距条件下所测曲线得到的,因此计算出的未胶结层段厚度存在误差,但这个误差很小,基本对重新解释的结果的准确性没有影响。以幅度较大的套管接箍处的幅度为例,3 ft源距与5 ft源距声系所测声幅曲线的幅度差为5 mV,即源距相差0.61m(2 ft)时,有5 mV的幅度差,按线性方法外推,源距变化0.09 m时的幅度差为(5/0.61)×0.09=0.74 mV。根据关系图版计算出相应未胶结层段厚度的误差为0.005 3 m(即0.52 cm),对解释评价结果的影响可忽略。

①原有解释方法中源距为3 ft声系所测得的声幅曲线的幅度高于源距为5 ft声系所测得的声幅曲线的幅度,在胶结情况可疑的层段可用二者的幅度差估算未胶结层段的厚度。

②源距不同的声系测得的套管波幅度差异与测量范围内或仪器纵向分辨范围内未胶结层

段的厚度有关,一般来说,未胶结层段的厚度越大,源距不同的声系记录到的声幅的差异越大。

③原有解释方法无法准确判断未胶结层段的厚度小于3 ft的未胶结层段,用源距为3 ft 和5 ft声系记录的套管波的幅度差,可以确定厚度小于3 ft的未胶结层段的厚度。

④根据源距为3 ft的声系测量记录的声幅曲线,对厚度大于其纵向分辨率3 ft(0.91 m)的未胶结层段判据过严,约为用本文提出的解释方法求出的未胶结层段厚度的1~4倍;对于厚度小于其纵向分辨率的未胶结层段判据过宽,约为本文解释方法求出的未胶结层段厚度的1/5~1/2;对于厚度接近于其纵向分辨率的未胶结层段,两种解释方法所得结果最为接近。

⑤建立各油田自己的刻度井,在井中设计不同的未胶结层段厚度,用各油田CBL/VDL仪测出声幅曲线,修定套管首波幅度差与未胶结层段厚度的关系图版。

⑥将这种新解释方法尽快应用于生产,积累资料以提高水泥胶结测井解释评价的水平。参考文献

1 中国石油天然气总公司情报研究所.固井技术及质量评价.1989

2 倪昌新.石油水泥胶结评价测井.中国石油天然气,1995,1

3 陈晓华.声波测井固井质量评价研究.测井技术,1991,15(3)

4 楚泽涵.声波测井原理.北京:石油工业出版社,1985

5 楚泽涵,刘祝萍.声波水泥固井技术解释评价.测井技术,1994,18(6)

测井仪器方法及原理重点

精品课程作业: 第一章双测向测井 习题一 1.为什么要测量地层的电阻率? 2.测量地层电阻率的基本公式是什么? 3.普通电阻率测井测量地层电阻率要受到那些因素的影响? 4.聚焦式电阻率测井是如何实现对主电流聚焦?如何判断主电流处于聚焦 状态? 5.画出双测向电极系,说明各电极的名称及作用。 6.为什么双测向的回流电极B和参考电极N要放在无限远处?“无限远处” 的含义是什么? 7.为什么说监控回路是一个负反馈系统?系统的增益是否越高越好? 8.为什么说浅屛流源是一个受控的电压源? 9.试导出浅屛流源带通滤波器A3的传递函数。 10.已知该带通滤波器的中心频率为128Hz,求带通宽度、 11.为什么说深测向的屛流源是一个受控的电流源。 12.监控回路由几级电路组成?各起何作用? 13.试画出电流检测电路的原理框图,说明各单元的功用? 14.双测向测井仪为什么要选用两种工作频率? 15.测量地层冲洗带电阻率的意义是什么? 16.和长电极距的电阻率测井方法相比,微电阻率测井方法有什么异同? 17.为了模拟冲洗带电阻率R xo为1000Ω·m和31.7Ω·m,计算出微球形聚 焦测井仪的相应刻度电阻值R(K=0.041m)。 18.为了测量地层真电阻率,应当选用何种电极系? 19.恒流工作方式有什么优点? 20.求商工作方式有什么有缺点? 21.给定地层电阻率变化范围为0.5~5000Ω·m,电极系常数为0.8m,测量 误差δ为5%,屛主流比n为103,试计算仪器参数:G、G v、G I、W0max、W lmax、r、E(用求商式)。 第二章感应测井 习题二 1.在麦克斯韦方程组中,忽略了介质极化的影响,试分析这种做法的合理 性。 2.已知感应测井的视电导率韦500(Ms/m),按感应测井公式计算地层的真 电导率,要求相对误差小于1%。 3.单元环的物理意义是什么? 4.相敏检波器可以从感应测井信号中检出有用信号,那么,为什么在设计 线圈系时好要把信噪比作为一个重要的设计指标? 5.画出1503双感应测井仪深感应部分的电路原理框图,说明各部分电路功 能。 6.证明:在发射线圈两端并接谐振电容可以提高发射电流强度。 7.补偿刻度法的应用范围σ<X L,其中σ为电导率刻度值,X L为刻度环感抗, 用阻抗圆图的方法证明之。 8.在线圈系对称的条件下,试导出五因子褶积滤波因子的计算公式。

第8章 密度测井和岩性密度测井

第八章 密度测井和岩性密度测井 此两种测井方法是由伽马源向地层发射伽马射线,经与地层介质相互作用后,再由伽马探测器接收(即为伽马-伽马测井),地层不同,探测器记录的读数不同,从而被用来研究地层性质。 §1 密度测井、岩性密度测井的地质物理基础 一、岩石的体积密度b ρ(即真密度): V G b =ρ (单位体积岩石的质量) 对含水纯岩石: φρφρρρρφ ?+-=?+?=+=f ma f ma ma f ma b V V V V G G )1( 单位:(g/cm 3) 其中:V V V ma =+φ (1)组成岩石的骨架矿物不同,ρma 不同,如石英为2.65,方解石为2.71,白云石为2.87,对于相同孔隙度得到的体积密度也就不同,由此可判断岩性;另一方面,利用体积密度计算孔隙度时,必须得先确定岩性。 (2)孔隙性地层的密度小于致密地层,且随着φ的增加ρb 减小,由此可求φ。 且(盐水泥浆)(淡水泥浆)1.10 .1=f ρ 二、康普顿散射吸收系数∑ 中等能量γ射线与介质发生康普顿散射康普顿散射而使其强度减小的参数(康普顿减弱系数---由康普顿效应引起的伽马射线通过单位距离物质减弱程度): A N z b A e ρσ??=∑ 沉积岩中大多数核素A z 均接近于0.5(见表8-1, P 138),常见的砂岩、石灰岩、白云

岩的A z 的平均值也近似为0.5(见表8-2), 所以对于一定能量范围的伽马射线(e σ为常数),∑只与b ρ有关。 密度测井利用此关系,通过记录康普顿散射的γ射线的强度来测量岩石的密度。 三、岩石的光电吸收截面 1、线性光电吸收系数:当γ的能量大于原子核外电子的结合能时,发生光电效应的概率。 n A Z λρτ1.40089 .0= 2、岩石的光电吸收截面指数Pe 它是描述发生光电效应时物质对伽马光子吸收能力的一个参数,即伽马光子与岩石中一个电子发生光电效应的平均光电吸收截面,单位b/电子。而它与原子序数关系为: Pe=aZ 3.6 a 为常数,地层岩性不同,Pe 有不同的值,也就是说Pe 对岩性敏感,可以以来确定岩性,Pe 是岩性密度测井测量的一个参数。 3、体积光电吸收截面 体积光电吸收截面也是描述发生光电效应时物质对伽马光子吸收能力的一个参数,它是指每立方米物质的光电吸收截面,以U 来表示,单位b/cm 3。地层岩性不同,其体积光电吸收截面不同(表8-2,139页)。U 对岩性敏感,也是岩性密度测井所要确定的一个参数。岩石的体积光电吸收截面为: ∑==n i i i V U U 1 Ui 、Vi 分别为组成岩石各部分的光电吸收截面和相对体积。如孔隙度为φ的纯砂岩的光电吸收截面为: f ma U U U ??+-=)1( 体积光电吸收截面U 与光电吸收截面指数Pe 有近似关系: b U Pe ρ/≈ 故可由Pe 求得U 。 §2 地层密度测井

测井解释原理

测井解释原理 一: 储集层定义:具有连通孔隙,既能储存油气,又能使油气在一定压差下流动的岩层。 必须具备两个条件: (1)孔隙性(孔隙、洞穴、裂缝) 具有储存油气的孔隙、孔洞和裂缝等空间场所。 (2)渗透性(孔隙连通成渗滤通道) 孔隙、孔洞和裂缝之间必须相互连通,在一定压差下能够形成油气流动的通道。储集层是形成油气层的基本条件,因而储集层是应用测井资料进行地层评价和油气分析的基本对象。 储集层的分类 ?按岩性:–碎屑岩储集层、碳酸盐岩储集层、特殊岩性储集层。 ?按孔隙空间结构:–孔隙型储集层、裂缝型储集层和洞穴型储集层、裂缝-孔洞型储集层。 碎屑岩储集层 ?1、定义:–由砾岩、砂岩、粉砂岩和砂砾岩组成的储集层。 ?2、组成:–矿物碎屑(石英、长石、云母) –岩石碎屑(由母岩类型决定) –胶结物(泥质、钙质、硅质) ?3、特点:–孔隙空间主要是粒间孔隙,孔隙分布均匀,岩性和物性在横向上比较稳定。 ?4、有关的几个概念 –砂岩:骨架由硅石组成的岩石都称为砂岩。骨架成份主要为SiO 2 –泥岩(Shale):由粘土(Clay)和粉砂组成的岩石。 –砂泥岩剖面:由砂岩和泥岩构成的剖面。 碳酸盐岩储集层

?1、定义:–由碳酸盐岩石构成的储集层。 ?2、组成:–石灰岩(CaCO 3)、白云岩Ca Mg(CO 3)2)、泥灰岩 ?3、特点:–储集空间复杂 有原生孔隙:分布均匀(如晶间、粒间、鲕状孔隙等) 次生孔隙:形态不规则,分布不均匀(裂缝、溶洞等) –物性变化大:横向纵向都变化大 ?4 、分类 按孔隙结构: ?孔隙型:与碎屑岩储集层类似。 ?裂缝型:孔隙空间以裂缝为主。裂缝数量、形态及分布不均匀,孔隙度、渗透率变化大。 ?孔洞型:孔隙空间以溶蚀孔洞为主。孔隙度可能较大、但渗透率很小。 ?洞穴型:孔隙空间主要是由于溶蚀作用产生的洞穴。 ?裂缝-孔洞型:裂缝、孔洞同时存在。 碳酸盐岩储集空间的基本类型 砂泥岩储集层的孔隙空间是以沉积时就存在或产生的原生孔隙为主; 碳酸盐岩储集层则以沉积后在成岩后生及表生阶段的改造过程中形成的次生孔隙为主。 碳酸盐岩储集层孔隙空间的基本形态有三种:孔隙及吼道、裂缝和洞穴。 碳酸盐岩储集层孔隙结构类型有:孔隙型、裂缝型、裂缝- 孔隙型、及裂缝- 洞穴型 常规测井在孔隙型/裂缝型碳酸盐岩中的特征(简答): 孔隙型储集层:在曲线形状方面表现为圆滑的“U”字形,如电阻率呈“U”字形降低,这与裂缝发育段的尖刺状电阻率起伏形成强烈的反差;在测井值方面表现为二高两低,即时差、中子孔隙度增高,电阻率和岩石体积密度降低。特点:曲线光滑,单层明显是以小孔为主的储层的主要特征,分层明显,表面看较好。 裂缝型储集层: 电阻率测井响应:微电极测井曲线在裂缝发育段呈现明显的正幅度差,且常伴有显著的锯齿

测井方法原理全面.doc

测井方法原理 一名词解释 R0孔隙中100%含水时的地层电阻率;R w地层水电阻率 地层因素:F=R0 R w 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

声波变密度处理

变密度测井解释 一、数据加载 平台工具——数据管理——数据浏览解编——在网上邻居中找井(如:Z197,里面有两个文件:Z.900常规曲线和ZW.900变密度wf1、wf2)——设置解编模块,点上端第三个图标,在出来的对话框中选yocurve常规和ycydl变密度,确定——解编,先点右键解编小的,名称改为Z197;再解编大的,名称改为Z197,覆盖前一个. (注:两个文件要解编到同一个文件中,故名称要起的一样) 二、水泥胶结评价 生产测井——工程测井——水泥胶结评价——打开Z197.WIS—— 1.波形预处理 (1),选择能够编辑,改曲线名称GR——ZGR;CBL ——ZSCB; (2).调节深度棒,使之处在有曲线的范围内,点右道的“显示指定深度波形”图标——点WF1——再在波上按右键点一下——出现“显示波形”对话框——(3).双击兰棒——填入波形整体量,即需将波形整体上移的幅度大小;其它三个值分别为0、200、0,

一般不改动,视具体情况而定。 保存参数——点击处理——完成后保存为缺省模版——按否——做下一步 2.波至检测 (1)选择能够编辑,改曲线名称GR——ZGR;CBL ——ZSCB; (2).调节深度棒,使之处在有曲线的范围内;(3)对深度:根据完井的GR曲线来对深度 扫描其完井,算出需移动的深度后(方法同2.8),打开平台工具——数据管理——WIS管理器——打开井——选中GR、磁定位、声幅曲线——移动深度(4)、对尖子:将声幅曲线自由套管段的尖子与磁定位对上、 点住声幅曲线的名称——单击右键——数据编辑——选中要编辑的深度段——工具栏/单击曲线上下移动/填入要移动的量 个别尖子进行单独编辑:店中曲线——拖动鼠标——选中要编辑的曲线段——单击右键——选中要编辑的方法{曲线数据编辑、……、乘法加法因子校正} (5).填写参数卡 套管波检测开始时间:把红线放到第一个波的波谷/波峰处,其所对应的时间,取整数值,266-200.

(完整word版)测井方法原理及应用分类

测井方法的主要分类 1. 电法测井,又分自然电位测井、普通电阻率测井、侧向(聚焦电阻率)测井、感应测井、介电测井、电磁波测井、地层微电阻率扫描测井、阵列感应测井、方位侧向测井、地层倾角测井、过套管电阻率测井等(频率:从直流0~1.1GHZ)。 2. 声波测井,又分声速测井、声幅测井、长源距声波全波列测井、水泥胶结评价测井、偶极(多极子)声波测井、反射式声波井壁成像测井、井下声波电视、噪声测井等(频率由高向低发展,20KHZ~1.5KHZ)。 3. 核测井,种类繁多,主要分三大类:伽马测井、中子测井和核磁共振测井,伽马测井具体如下:自然伽马测井、自然伽马能谱测井、密度测井、岩性密度测井、同位素示踪测井等。 中子测井具体包括:超热中子测井、热中子测井、中子寿命测井、中子伽马测井、C/O比测井、PND-S测井、中子活化测井等。 发展趋势:中子源-记录伽马谱类(非弹性散射、俘获伽马、活化伽马等不同时间测量)。 4. 生产测井,主要分为三大类:生产动态测井、工程测井、产层评价测井。 1

生产动态测井方法主要有:流量计、流体密度计、持水率计、温度计、压力计、井下终身监测器等。 工程测井方法主要有:声幅、变密度测井仪、水泥胶结评价测井仪、磁定位测井仪、多臂微井径仪、井下超声电视、温度计、放射性示踪等。 产层评价方法测井:硼中子寿命、C/O比测井、脉冲中子能谱(PNDS)、过套管电阻率、地层测试器、其它常规测井方法组合等。 5. 随钻测井,大部分实现原理与常规电缆测井相同,实现方式上有许多特殊性。 2

测井方法主要特征总结归类表 3

4

5

声波变密度测井技术及其应用

声波变密度测井技术及其应用 目前油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的,其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,它包括发射探头和接收探头,仪器的源距有两种,3ft和5ft,3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20KHz,重复频率15-20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1、全波列分析 全波列测井包含声波的速度、幅度、频率等信息,我们主要对前12-14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4-6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。 2、声波变密度测井检查固井质量 (1)套管外无水泥。这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。 (2)水泥与套管和地层胶结良好。这种情况下,由于套管和固结水泥的差别较小,声波大量进入地层,因而套管波很弱,地层波很强,固井声幅为低幅值。 (3)水泥仅与套管胶结良好,与地层胶结差。这种情况声波不在套管界面反射而是进入水泥环,水泥环对声波能量衰减很大,传给地层的声波能量很小,所以套管波和地层波都很弱,但固井声幅显示低幅值。 (4)水泥与套管胶结一般。这种情况下套管把大部分声波能量反射回来,只有小部分声波能量进入地层,套管波和地层波都有一定的幅度。 3、声波变密度测井的优点 (1)能够对即套管与水泥和水泥与地层两个界面进行胶结状况的评价。 (2)施工效率提高。采用组合测井方式,缩短了作业时间,降低了劳动强度,缩短了完井周期。

声波变密度测井技术

声波变密度测井技术及其应用 目前,胜利油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的。其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,包括发射探头和接收探头。仪器的源距有两种,3ft和5ft。3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20kHz,重复频率15~20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1.全波列分析 全波列测井包含声波的速度、幅度、频率等信息。我们主要对前12~14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管

变密度声波测井技术原理

一、测井原理简介 声幅-变密度测井是由磁定位(CCL)、自然伽马仪(GR)和声幅-变密度仪(CBL-VDL)组成,能够实现一次下井,测出CCL、GR、CBL-VDL等多条组合曲线。 声幅-变密度(CBL-VDL)井下仪包括电子线路和声系两大部分,其中声系包括一个发射器和两个接收器,源距分别为3英尺和5英尺。 对于3英尺源距接收器,声波发射器发射声脉冲,经过泥浆(或井液)折射入套管,产生套管波。套管波沿最短路径传播,折射入井里泥浆(或井液)。接收器接受声波波列中首波的幅度。经过电子线路把他转换为相应的电压值予以记录。当仪器沿井身移动时,就测出一条随井深变化的声幅曲线。并通过声幅曲线值的高低对比来确定套管与水泥环胶结的好坏。对于5英尺源距接收器,接受到的是声波的全波列,分为三个部分,即套管波、地层波、直达波(泥浆波和井液波),接收电子线路把信号转换为与其幅度成正比的点信号,经电缆传至地面,检波后只保留其正半周部分,这部分电信号加到示波器或显象管上,调制其光点亮度。波幅大,电压高,光点就亮,测井图上显示条带为黑色。而光点亮度低时,测井图上显示为灰色条带。负半周电压为零,光点不亮,测井图上显示为白色条带。变密度测井图就是黑(灰)白色相见的条带,以其颜色的深浅表示接收到的信号的强弱,通过对变密度测井图上显示的套管波、地层波和直达波(泥浆波和井液波)的强弱程度分析,来确定套管与水泥环和水泥环与地层胶结质量的好坏。 ※仪器测井原理(CBL) 1、声波发射器发射声脉冲被3英尺源矩接收器接收,经井液折射入套管,产生套管波; 2、套管波沿最短路径传播,折射入井液; 3、接收器接收声波波列中首波的幅度; 4、幅度到达电子线路被转换为相应的电压值并予以记录; 5、当仪器沿井身移动时,就测出一条随井深变化的声幅曲线; 6、通过声幅曲线值的高低对比来确定套管与水泥环胶结的好坏。 ※仪器测井原理(VDL) 1、声波发射器发射声脉冲被5英尺源矩接收器接收声波全波列(套管波、地层波、泥浆和井液波); 2、线路把信号转换为与其幅度成正比的电信号,经电缆传至地面; 3、电信号在显像管上被调制其光点亮度,根据其波幅大小和电压高低在测井图上显示成黑白相间的条带; 4、测井图黑(灰)白相间的条带,以其颜色的深浅表示接收到信号的强弱; 5、通过对全波列的强弱程度分析,确定套管与水泥环、水泥环与地层的胶结质量。 也可以用下图加以解释,全部波列形成亮暗条纹显示在胶片上,对比度取决于正峰幅值。波列的不用部分可以在VDL测井图上被区分开来。套管波信号显示了很有规律的条纹,而地层波的条纹显得更为扭动。 二、测井资料质量控制 几个基本概念

声幅-变密度测井

声幅-变密度测井 (张智勇编辑整理) 一、测井原理 声幅-变密度测井是由磁定位(CCL)、自然伽马仪(GR)和声 幅-变密度仪(CBL-VDL)组成,能够实现一次下井,测出CCL、 GR、CBL-VDL等多条组合曲线。 声幅-变密度(CBL-VDL)井下仪包括电子线路和声系两大 部分,其中声系包括一个发射器和两个接收器,源距分别为3 英尺和5英尺。 对于3英尺源距接收器,声波发射器发射声脉冲,经过泥 浆(或井液)折射入套管,产生套管波。套管波沿最短路径传 播,折射入井里泥浆(或井液)。接收器接受声波波列中首波 的幅度。经过电子线路把他转换为相应的电压值予以记录。当 仪器沿井身移动时,就测出一条随井深变化的声幅曲线。并通 过声幅曲线值的高低对比来确定套管与水泥环胶结的好坏。 对于5英尺源距接收器,接受到的是声波的全波列,分为 三个部分,即套管波、地层波、直达波(泥浆波和井液波),接 收电子线路把信号转换为与其幅度成正比的点信号,经电缆传 至地面,检波后只保留其正半周部分,这部分电信号加到示波 器或显象管上,调制其光点亮度。波幅大,电压高,光点就亮, 测井图上显示条带为黑色。而光点亮度低时,测井图上显示为 灰色条带。负半周电压为零,光点不亮,测井图上显示为白色 条带。 变密度测井图就是黑(灰)白色相见的条带,以其颜色的深 浅表示接收到的信号的强弱,通过对变密度测井图上显示的套 管波、地层波和直达波(泥浆波和井液波)的强弱程度分析,来 确定套管与水泥环和水泥环与地层胶结质量的好坏。 ※仪器测井原理(CBL) 1、声波发射器发射声脉冲被3英尺源矩接收器接收,经井液折射入套管,产生套管波; 2、套管波沿最短路径传播,折射入井液; 3、接收器接收声波波列中首波的幅度; 4、幅度到达电子线路被转换为相应的电压值并予以记录; 5、当仪器沿井身移动时,就测出一条随井深变化的声幅曲线; 6、通过声幅曲线值的高低对比来确定套管与水泥环胶结的好坏。 ※仪器测井原理(VDL) 1、声波发射器发射声脉冲被5英尺源矩接收器接收声波全波列(套管波、地层波、泥浆和井液波); 2、线路把信号转换为与其幅度成正比的电信号,经电缆传至地面; 3、电信号在显像管上被调制其光点亮度,根据其波幅大小和电压高低在测井图上显示成黑白相间的条带;

声波变密度

目前,胜利油田固井质量检查的主要方法是声波幅度测井和声波变密度测井。声波变密度测井是由声幅测井发展而来的。其原理是利用水泥和泥浆(或水)声阻抗的较大差异对沿套管轴向传播的声波的衰减影响,来反映水泥与套管间、套管与地层的胶结质量。井下仪器主要包括声系和电子线路两部分。声系的功能是为了进行声波测井,包括发射探头和接收探头。仪器的源距有两种,3ft和5ft。3ft的用于声幅测量,5ft的用于变密度测量。电子线路可以挂接连续测斜仪、高分辨率声波、双侧向和双感应等探头,实现多探头组合测井。 一、声波变密度下井仪 测井仪的声系由两个压电晶体组成,一个发射,一个接收。声源的工作频率为20kHz,重复频率15~20Hz。测井时,声源发出的声脉冲在井内各个方向传播,当传播到两种介质的交界面时,会发生声波的反射和折射。 井下仪电路主要由4个单元电路组成,即逻辑单元、接收单元、低压电源及信号衰减单元、发射控制及换档脉冲检测单元。逻辑信号首先进入半峰值再生电路,检测出的逻辑信号进入逻辑形成电路,产生发射、接收直流逻辑方波,并形成同步脉冲。同步脉冲与发射逻辑共同进入逻辑控制电路,产生各种控制信号,触发脉冲送发射电路,经换能器转换成声波信号,经地层传播,被接收换能器转换成电信号而送入预放级,经隔离选择,控制晶体发射、接收,然后接收信号经增益控制、发射干扰抑制等处理,最后与发射标志脉冲经电缆传输到地面。 二、声波变密度测井能够解决的问题 1.全波列分析 全波列测井包含声波的速度、幅度、频率等信息。我们主要对前12~14个波的幅度及到达时间进行分析。一般情况下,前3个波与套管波有关,反映套管与水泥环的胶结状况;第4~6条相线与水泥环中传播的声波信号有关,它反映水泥环与地层的胶结状况。 2.声波变密度测井检查固井质量 (1)套管外无水泥。这种情况下,套管波反射能力很强,地层波较弱或没有,变密度的相线差别不大,基本均匀分布,套管接箍明显,固井声幅为高幅值。 (2)水泥与套管和地层胶结良好。这种情况下,由于套管和固结水泥的差别较小,声波大量进入地层,因而套管波很弱,地层波很强,固井声幅为低幅值。 (3)水泥仅与套管胶结良好,与地层胶结差。这种情况声波不在套管界面反射而是进入水泥环。水泥环对声波能量衰减很大,传给地层的声波能量很小,所以套管波和地层波都很弱,但固井声幅显示低幅值。(4)水泥与套管胶结一般。这种情况下套管把大部分声波能量反射回来,只有小部分声波能量进入地层,套管波和地层波都有一定的幅度。 3.声波变密度测井的优点

(完整word版)测井考试小结(测井原理与综合解释)

一、名词解释 1、测井:油气田地球物理测井,简称测井well logging ,是应用物理方法研究油气田钻井地质剖面和井的技术状况,寻找油气层并监测油气层开发的一门应用技术。 2、电法测井:是指以研究岩石及其孔隙流体的导电性、电化学性质及介电性为基础的一大类测井方法,包括以测量岩层电化学特性、导电特性和介电特性为基础的三小类测井方法。 3、声波测井:是通过研究声波在井下岩层和介质中的传播特性,来了解岩层的地质特性和井的技术状况的一类测井方法。 4、核测井:是根据岩石及其孔隙流体的核物理性质,研究钻井地质剖面,勘探石油、天然气、煤以及铀等有用矿藏的地球物理方法,是地球物理测井的重要组成部分。 5、储集层:在石油工业中,储集层是指具有一定孔隙性和渗透性的岩层。例如油气水层。 6、高侵:当地层孔隙中原来含有的流体电阻率较低时,电阻率较高的钻井液滤液侵入后,侵入带岩石电阻率升高,这种钻井液滤液侵入称为钻井液高侵,R XO

声波变密度测井技术的应用研究

龙源期刊网 https://www.360docs.net/doc/db14582469.html, 声波变密度测井技术的应用研究 作者:付冰 来源:《中国新技术新产品》2012年第21期 摘要:随着国内石油天然气勘探开发的进展,对煤层气生产井的固井质量评价精度要求 越来越高。声波测井技术经历了几十年的发展,已经成为地球物理测井学科的重要应用领域,声波变密度是声波测井的主要应用之一,用于测定地层的声波传播速度,源距较短,其资料用来计算地层孔隙度和确定气层,可测定岩层的弹性模量,其源距较长,用于求解岩层强度、检查压裂效果及固井质量等。本文将对声波变密测井新技术的应用进行总结,对提高资料综合利用价值有着重要的意义。 关键词:声波;伽马曲线;变密度 中图分类号:TU459+.3 文献标识码:A 1声波测井简介 声幅-变密度测井是由磁定位(CCL)、自然伽马仪(GR)和声幅-变密度仪(CBL-VDL)组成,能够实现一次下井,测出CCL、GR、CBL-VDL等多条组合曲线。声波发射器 发射声脉冲,经过泥浆折射入套管,产生套管波。套管波沿最短路径传播,折射入井里泥浆(或井液)。接收器接受声波波列中首波的幅度。经过电子线路把它转换为相应的电压值予以记录。超声成像测井仪实现井周直观、快速成像,可以直观地识别裂缝、溶孔溶洞,可检测套管腐蚀、变形,检测射孔、水力割缝质量。该仪器已经在乌孜别克斯坦应用于实际测井,取得了优质的测井资料。 声波变密度测井也属于声波测井的一种,其原理是利用水泥和泥浆(或水)其声阻抗的较大差异对沿套管轴向传播的声波的衰减影响来反映水泥与套管间、套管与地层的胶结质量。在我国远探测声波反射波成像测井技术以辐射到井外地层中的声场能量作为入射波,探测从井旁裂缝或小构造反射回来的声场。通过分析探测器接收到的全波列信号,技术人员犹如有了“顺风耳”可以了解井旁介质的构造信息,具有性能可靠、方便快捷、时效高的特点。这项技术可以和5700测井系统直接挂接测井,最大的特点是源距可变,径向探测深度为3米至10米,是其它测井方法无法比拟的。2009年6月,远探测声波反射波成像测井技术首次应用于塔里木 油田,在井壁储层不发育的情况下发现井旁裂缝性储层,试油获高产工业油气流。在随后的多口井中应用都取得了较好效果,为甲方试油决策提供了依据,得到油田用户的信任。 2声波变密度的应用 2.1全波列分析

测井方法原理

测井方法原理 一名词解释 地层因素:F=孔隙中100%含水时的地层电阻率;地层水电阻率 视电阻率:电阻率值既不可能等于某一岩层的真电阻率,,也不是电极周围各部分介质电阻率的平均值,而是在离电极装置一定距离范围内各介质电阻率综合影响的结果。 岩石体积物理模型:根据测井方法的探测特性和储集层的组成,按其物理性质的差异,把实际岩石简化为对应的性质均匀的几个部分,研究每一部分对测量结果的贡献,并把测量结果看成是各部分贡献的总和。 绝对渗透率:岩石孔隙中只有一种流体时测量的渗透率。 有效渗透率:当两种或两种以上的流体同时通过岩石时,对其中某一流体测得的渗透率。相对渗透率:岩石的有效渗透率与绝对渗透率之比值称为相对渗透率。 周波跳跃:在正常情况下,第一接收器R1和第二接收器R2应该被弹性振动的同一个波峰的前沿所触发。由于某种原因,造成声波的能量发生严重衰减。当首波衰减到只能触发接收器R1而不能触发接收器R2时,接收器R2便可能被第二个或者后续波峰所触发,于是造成时波差值显著增大。由于每跳越一个波峰,在时间上造成的误差正好是一个周期。故称之为周波跳跃。 标准测井:在一个油田或一个区域内,为了研究岩性变化、构造形态和大段油层组的划分等工作,常使用几种测井方法在全地区的各口井中,用相同的深度比例(1:500)及相同的横向比例,对全井段进行测井,这种组合测井叫标准测井。 减速长度:由快中子减速成热中子所经过的直线距离的平均值。 扩散长度:从产生热中子起到其被俘获吸收为止,热中子移动的距离。 热中子寿命:从热中子生成开始到它被俘获吸收为止所经过的平均时间叫热中子寿命。 含氢指数:单位体积的任何岩石或矿物中氢核数与同样体积的淡水中氢核数的比值。 统计起伏(放射性涨落):由于地层中放射性元素的衰变是随机的,因此,在一定时间间隔内衰变的原子核数,即放射出的伽马射线数,不可能完全相同。但从统计的角度来看,它基本上围绕着一个平均值在一定的范围内波动。 二、填空 1.根据勘探目的不同,通常分为石油测井、煤田测井、金属和非金属测井、水文测井、工程测井等几大类。 2.测井技术发展根据采集系统特点大致可以分为模拟测井、数字测井、数控测井、成像测井。 3.测井包括岩性测井(自然电位SP、自然伽马GR、井径测井CAL);孔隙度测井(声波、密度DEN、中子测井CNL);电阻率测井(普通视电阻率测井Ra、微电极系列测井ML、侧向测井LL、感应测井IL)。 4.整个测井工作可以分为两个阶段:资料录取阶段和资料解释阶段。 5.井内自然电位产生的原因:①地层水和泥浆含盐浓度不同而引起的扩散电动势和吸附电动势。②地层压力与泥浆柱压力不同而引起的过滤电动势。 6.电极系可以分为梯度电极系和电位电极系。 7.深三侧向电阻率测井主要反映原地层电阻率;浅三侧向电阻率测井主要反映侵入带的电阻率。 8.主电极的长度决定电流层的厚度,即主电极长度决定了分层能力。电极系直径小,泥浆层

声幅-变密度测井原理

声幅-变密度测井原理 便携式测井操作以及测井解释方法 一、测井原理简介 声幅-变密度测井是由磁定位(CCL)、自然伽马仪 (GR)和声幅-变密度仪(CBL-VDL)组成,能够实现一次下 井,测出CCL、GR、CBL-VDL等多条组合曲线。 声幅-变密度(CBL-VDL)井下仪包括电子线路和声系两 大部分,其中声系包括一个发射器和两个接收器,源距 分别为3英尺和5英尺。 对于3英尺源距接收器,声波发射器发射声脉冲, 经过泥浆(或井液)折射入套管,产生套管波。套管波 沿最短路径传播,折射入井里泥浆(或井液)。接收器 接受声波波列中首波的幅度。经过电子线路把他转换为 相应的电压值予以记录。当仪器沿井身移动时,就测出 一条随井深变化的声幅曲线。并通过声幅曲线值的高低 对比来确定套管与水泥环胶结的好坏。 对于5英尺源距接收器,接受到的是声波的全波列, 分为三个部分,即套管波、地层波、直达波(泥浆波和 井液波),接收电子线路把信号转换为与其幅度成正比 的点信号,经电缆传至地面,检波后只保留其正半周部分,这部分电信号加到示波器或显象管上,调制其光点亮度。波幅大,电压高,光点就亮,测井图上显示条带为黑色。而光点亮度低时,测井图上显示为灰色条带。负半周电压为零,光点不亮,测井图上显示为白色条带。变密度测井图就是黑(灰)白色相见的条带,以其颜色的深浅表示接收到的信号的强弱,通过对变密度测井图上显示的套管波、地层波和直达波(泥浆波和井液波)的强弱程度分析,来确定套管与水泥环和水泥环与地层胶结质量的好坏。 ※仪器测井原理(CBL) 1、声波发射器发射声脉冲被3英尺源矩接收器接收,经井液折射入套管,产生套管波; 2、套管波沿最短路径传播,折射入井液; 3、接收器接收声波波列中首波的幅度;

声波测井方法原理-复习

一、名词解释 杨氏模量:按广义胡克定律,在弹性限度内,被当做弹性体处理的岩石在发生伸长或压缩形变时,拉伸或压缩应力与同方向上的相对伸长或压缩,即外加应力方向上的线应变成正比,其比例系数即为杨氏模量E。 泊松比:物体在弹性限度内,在受拉伸应力时,受力方向上发生伸长,其形变用纵向线应变(x轴方向)表示,而在于受力方向垂直的方向上发生缩短,其形变用横向线应变和(y轴和z轴方向)表示,其横向线应变(缩短)与纵向线应变(伸长)的比值即为泊松比。 滑行纵波:折射纵波的折射角为90°,产生的折射纵波沿界面传播称为滑行纵波 孔隙度:岩石所有空隙体积占岩石总体积的百分比 声波时差:在物理声学中,声速的倒数1/v称为慢度,在声波测井中称为声波时差(声波信号在1m 厚的岩层中传播所用时间) 周波跳跃:声波时差测井曲线上出现声波时差值抖动性增加 滑行横波:折射横波的折射角为90°,产生的折射横波沿界面传播称为滑行横波 全波列:指滑行纵波、滑行横波、瑞利波、管波、斯通波的总和 瑞利波:在固体的自由表面上,传播方向沿表面的波 瑞利角:θr=arcsinV*/Vr,并认为在井内声波以瑞利角入射时,在井壁地层的表面产生瑞利波 斯通滤波(管波):井内流体中传播的波 自由套管:套管内外都是空气或水(或低密度钻井液)的套管 弯曲波:在井壁地层中传播时,井壁上地层中的质点在与井轴垂直方向上的位移与扭转波德位移不在一个平面内,而是沿井的半径方向,即与井壁表面垂直传播时,井壁产生弯曲形变 扭转波:在井壁地层中传播时,井壁上质点存在沿水平方向上的位移,而且在井壁相对表面位移相反方向传播时,井壁地层产生扭转形变 各向异性(TI):介质中有一个对称平面(如垂直于地面的井轴)在沿该轴方向上和与该轴垂直方向上介质的声波速度、弹性力学性质有差异,而与该轴垂直的水平面上,各个方向介质的声波速度和弹性力学性质可以认为是相同的 横向各向异性(HTI):与井轴垂直的水平面上,在各个不同的方位上呈现出的各向异性 第一、第二临界角:①产生滑行纵波时,入射波的入射角θ1*=arcsin(VP1/VP2) ②产生滑行横波是,入射波的入射角θ2* = arcsin(VP1/VS2) 二、简述题 1.声波在两种介质的分界面处是如何传播的,请画图说明? 2.什么是滑行纵波,如何产生滑行纵波? 在井壁上沿井轴方向以纵波模式传播,即介质中质点的振动方向与波的传播方向一致的波叫滑行纵波。在低速介质中的声源发出的声波向高速介质入射时,其入射角为第一临界角,则可产生滑行纵波。 3.证明Fermat原理。P257 4.推导测量滑行纵波和滑行横波的临界源距。P258

声波变密度测井技术及固井质量评价方法应用

声波变密度测井技术及固井质量 评价方法应用 冯啸辰 摘要随着套管井测井技术应用向着多元化发展,声波变密度测井在油田监测固井质量方面主要采用声幅测井和声波变密度测井。通过对声波理论研究深入,声波信息与岩层参数关系的研究,数字测井技术和测井资料数据处理技术的发展,设计了声波全波列测井。声波全波列测井不仅能够通过声幅及胶结指数(BI 值)曲线对套管与水泥的胶结进行评价,而且能够依据VDL图像对水泥与地层的胶结进行评价,从而克服了普通声幅测井的片面性,提高了解释的可靠性。既能反映一界面胶结状况,又能提供二界面胶结信息。本文首先阐述了声波变密度测井原理及仪器技术原理,然后结合声波变密度测井中一些典型实例资料进行了剖析,针对影响固井质量测井的因素提出了对各种干扰的判断和解决方法,对不同固井质量作出评价解释;在此基础上探究声波变密度测井技术优缺点。最后,以期提搞人们对声波变密度水泥胶结测井技术的认识程度,提高其资料综合利用价值。 关键词声波变密度测井固井质量评价水泥胶结测井测井解释 Variable Density Acoustic Logging Technology And Quality Evaluation Method Applied Cementing Abstract With the cased hole logging technology toward diversification, variable density acoustic monitoring of logging in the oil field cementing the sound quality of the main pieces of logging and the use of acoustic variable density log. Through in-depth theoretical study of acoustic, acoustic rock parameters of the relationship between information and research, digital logging data logging technology and data processing technology development, design of full-wave acoustic logging. Full-wave acoustic logging not only by the sound amplitude and cementation index (BI value) curve of the casing and cement bond evaluation, but also based on VDL image formation on the cement and cement evaluation, the sound amplitude to overcome the common test Well one-sidedness, improving the reliability of interpretation. Both reflect an interface bond conditions, but also provide two interface bond information. This paper describes the principles of acoustic variable density logging and instrumentation works, and then combined with some acoustic variable density log data were analyzed a typical example, for logging the factors affecting the quality of cementing a variety of proposed solutions and determine the interference , to assess the quality of the interpretation of different cementing; on the basis of variable density acoustic logging techniques to explore the advantages and disadvantages. Finally, in order to put people out on the acoustic cement bond logging technology variable density level of awareness, improve utilization of its information value. Keyword Acoustic variable density log Cementing quality assessment Cement bond log Log interpretation 冯啸辰,渤海钻探油气井测试分公司研究中心,生产测井解释,助理工程师,1986年11月出生,资源勘查工程专业,联系电话: O引言 固井质量好坏需要通过测试手段作出评价,评价固井胶结的手段很多,目前最普遍使用的是声波变密度水泥胶结测井(CBL-VDL)。声变测井既能测得首波声幅曲线,又能获取全波列变密度图像。声变测井曲线中包含了诸多测试信息和地质信息。在声变资料解释方面,我们往往只解释胶结指数值(由首波幅度或声波衰减值计算出来),而忽视了对变密度图像进行分析,这就使得声变资料的信息利用率大大折扣。事实上,胶结指数仅仅是声幅的变相计算值,它只能反映一界面胶结信息,无法说明二界面胶结情况;变密度图像是全波列声波信号叠加的结果,它既能定性展示一界面胶结情况,又能给出二界面声波耦合信息。 1声波变密度测井原理及仪器技术原理 HC-SGC声幅变密度自然伽玛节箍组合测井仪是一种单发双收的声波测井仪。主要包括声

相关文档
最新文档