复数的基本概念及其运算

复数的基本概念及其运算
复数的基本概念及其运算

复数的基本概念及其运算

一、考点:

(1) 复数的概念

(2) 复数的几何意义。

(3)复数的运算法则,能正确地进行复数的运算 二、主要内容

1.引人:实数的局限性,比如说:在实数范围内-2没有平方根,那么-2真的没有平方根吗? 2.复数的有关概念和性质:

(1)i 称为虚数单位,规定2

1i =-,形如a+bi 的数称为复数,其中a ,b ∈R . (2)复数的分类(下面的a ,b 均为实数)

(3)复数的相等设复数1112221122,(,,,)z a b i z a b i a b a b R =+=+∈,那么12z z =的充要条件是:1122a b a b ==且.

注:两个不全为实数的复数不能比较大小(如:2i>i,2i=i,2i

(4)复数的几何意义表示复数z=a+bi (a ,b ∈R )可用平面直角坐标系内点Z(a ,b)来表示.这时称此平面为复平面,x 轴称为实轴,y 轴除去原点称为虚轴.这样,全体复数集C 与复平面上全体点集是一一对应的.

复数z=a+bi (),a b R ∈.在复平面内还可以用以原点O 为起点,以点Z(a ,b)

向量所成的集合也是一一对应的(例外的是复数0对应点O ,看成零向量). (6)复数的模:对于复数z=a+bi (a ,b ∈R ),|z|表示复数z 的模,22||b a z +=

(7)复数与实数不同处:

①任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小. ②实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.

3.复数的代数运算 (1)i

4n

=1,i

41

n +=i ,i

42

n +=-1,i

43

n +=-i ;

(2)i n · i

1

n +· i 2

n +·i

3

n +=-1, i n

+i

1

n ++i

2

n ++i

3

n +=0;

()()()()()()()()()()()()052222221222

212121≠+-+++=-+-+=++=+==?∈+=++-=?±+±=±∈+=+=z i d

c ad

bc d c bd ac di c di c di c bi a di c bi a z z b a z z z R b a bi a z i ad bc bd ac z z i d b c a z z R d c b a di c z bi a z ;

,则

,;特别,若;

,,,,,

(6)复数的乘法满足交换律、分配率与结合律:

)()(;3213211221z z z z z z z z z z ??=???=?

3

121321)(z z z z z z z ?+?=+?

三、典型例题分析

①实数?②虚数?③纯虚数? ④在复平面上对应的点第三象限?

2、已知复数)()65(1

6

722

2R a i a a a a a z ∈--+-+-=,实数a 取什么值时,z 分别为: (1)实数;(2)虚数;(3)纯虚数.

3、实数k 为何值时,复数)32(2)53()1(2

i k i k i z +=+-+=分别是: (1)实数;(2)虚数;(3)纯虚数;(4)零.

练习: 若__________723=∈++∈x R i

i

x R x ,则,

例2 已知0)2(62

2=--+-+i y x y x ,求实数x,y 的值.

例3 已知i ai a 4421+-=+-,求复数a.

例4 .,)3(12y x i y y i x y x 与求)是纯虚数,且满足(是实数,已知--=+-

练习:求适合等式:i y y i x )2()13(-+=+-的x,y 的值,其中R x ∈,y 是纯虚数.

例5 (1)复数2

i i z +=在复平面对应的点在第_______象限。

(2)若12z i =+,23()z ai a =+∈R ,12z z +的和所对应的点在实轴上,则a 为( ) A.3

B.2

C.1

D.1-

(3)复数22(2)(2)z a a a a i =-+--对应的点在虚轴上,则( ) A.2a ≠或1a ≠

B.2a ≠且1a ≠

C.0a =

D.2a =或0a =

(4)设22(253)(22)z t t t t i =+-++-+,t ∈R ,则下列命题中正确的是( ) A.z 的对应点Z 在第一象限 B.z 的对应点Z 在第四象限 C.z 不是纯虚数 D.z 是虚数

练习:当

13

2

<

i

z 213--=

的共轭复数是__________。 (2)复数()a bi a b +∈R ,等于它共轭复数的倒数的充要条件是( ) A.2()1a b +=

B.221a b +=

C.221a b -=

D.2()1a b -=

(3)已知复数i z +=1,求实数b a 、使2)2(2z a z b az +=+

例7 计算(1) ________21211_________1__________

|)4()23(|________5)3()5(等于,则已知z i i z i

i i i i i i ---==+=--+=----

(2)设复数z 满足,求复数z.

(3)设C z z ∈21,,已知2||,1||||2121=+==z z z z ,求||21z z -.

例8 计算:(1)

i i -1;(2)i i 492++;(3)2

)29(1i +;(4)i i 2332-+;(5))2)(43)(21(i i i +-+-; (6))13()26(+--i i ;(7))31()23(i i -++;(8))31()23(i i -?+(9)

)

31()

23(i i -+

例9 (1)i 是虚数单位,复数

_________2131=++-i i

(2)设i 是虚数单位,复数i

ai

-+21为纯虚数,则实数a 为_________.

(3)如果复数)1)(1(2

mi m ++是实数,则实数m=_________. (4)设复数________,),(2,12121=∈∈+=+=x R z z R x i x z i z 则若. (5)计算),)()()()((R b a bi a bi a bi a bi a ∈--+--+其中.

例10 (1)如果复数2()(1)m i mi ++是实数,则实数m =____________. (2)设,x y 为实数,且

511213x y i i i

+=---,则x y += 。 (3)已知复数122,13z i z i =-=-,则复数

2

15

z i z + = 。 (4)已知2z i =-,则32452z z z -++= .

(5)已知1z i a b =+,,为实数.①若2

34z z ω=+-,求ω;②若2211

z az b

i z z ++=--+,求

a ,

b 的值.

例11 计算:(1)4)232

1(i +

;(2)i

i

i i 2332)11(6-++

-+ (3)()

22

15

21232132??

? ??+-++++-i i i

i

(4)=+++++2010432......1i i i i (5)8

5082009)3122(32132)12()22(i i i i i i i -++++-++-++

例12 的平方根。求i 2

321-

+=ω

高考数学新版一轮复习教程学案:第58课复数的概念及其运算

高考数学新版一轮复习教程学案 第58课 复数的概念及其运算 1. 了解数系的扩充过程;理解复数的基本概念、代数表示法以及复数相等的充要条件. 2. 理解复数代数形式的四则运算法则,能进行复数代数形式的四则运算. 1. 阅读:选修 22 第109~117页. 2. 解悟:①数系的扩充;②复数的四则运算与共轭复数;③与加法一样,复数的乘法也是一种规定.课本114页例2还可以让学生先计算后两个复数的积,再与第一个复数相乘,从而验证复数乘法满足结合律;④根据复数相等的充要条件,应用待定系数法求复数,是常用的方法之一. 3. 践习:在教材空白处,完成第118~119页习题第2、3、6、12题. 基础诊断 1. 若复数z =(1+m i )(2-i )(i 是虚数单位)是纯虚数,则实数m 的值为 -2 . 解析:由题意得,z =(1+m i )(2-i )=2+m +(2m -1)i .因为复数z 是纯虚数,所以2+m =0,且2m -1≠0,解得m =-2. 2. 设复数z =m +3i 1+m i (m>0,i 为虚数单位),若z =z ,则m 解析:z =m +3i 1+m i =(m +3i )(1-m i )(1+m i )(1-m i )=4m +(3-m 2)i 1+m 2.因为z =z ,所以3-m 2=0,解得m =±3.因为m>0,所以m = 3. 3. 已知复数z = 11+i ,其中i 是虚数单位,则|z|= 2 . 解析:z =11+i =1-i (1+i )(1-i )=12-1 2i ,所以|z|= ????122+????122 =22 . 4. 设复数z 满足(1+2i )·z =3(i 为虚数单位),则复数z 的实部为 3 5 . 解析:因为(1+2i )·z =3,所以z =3 1+2i =3(1-2i )(1+2i )(1-2i )=3-6i 5,所以复数z 的实 数为3 5 . 范例导航 考向? 复数的基本运算 例1 (1) (-1+i )(2+i ) i 3 ; (2) 1-i (1+i )2+1+i (1-i )2 ; (3) (-1+3i )3;

复数的基本运算C语言

typedefstructfushu//抽象数据类型定义 { floatreal;//数据对象 floatimage; }fushu; fushuComplexNumberInput(floata,floatb)//构造二元组{ fushuc; c.real=a;//实部 c.image=b;//虚部 return(c); } fushuComplexNumberAdd(fushuc1,fushuc2)//求和运算{ fushusum; sum.real=c1.real+c2.real;

sum.image=c1.image+c2.image; return(sum); } fushuComplexNumberSub(fushuc1,fushuc2)//求差运算{ fushusub; sub.real=c1.real-c2.real; sub.image=c1.image-c2.image; return(sub); } fushuComplexNumberMul(fushuc1,fushuc2)//求积运算{ fushuMul; Mul.real=c1.real*c2.real-c1.image*c2.image; Mul.image=c1.real*c2.image+c1.image*c2.real; return(Mul);

} fushuComplexNumberDiv(fushuc1,fushuc2)//求商运算{ fushudiv; floatd1,d2,d3,d4; d1=c1.real*c2.real+c1.image*c2.image; d2=c2.real*c2.real+c2.image*c2.image; d3=c1.image*c2.real-c1.real*c2.image; d4=c2.real*c2.real+c2.image*c2.image; if(d2!=0&&d4!=0) { div.real=d1/d2; div.image=d3/d4; return(div); } else

复数的概念及运算 知识点+例题 全面分类

[例2] 设复数z 满足)1)(23(i i iz -+=-,则.______=z i 51+ [巩固1] 复数 i i a 212+-是纯虚数,则实数a 的值为________.4 [巩固2] 如果 )(112R m mi i ∈+=-,那么._____=m 1 [例3] 已知i z 34+-=,则._______2=-z i 36+ [巩固1] 已知复数i z 211+=,i z 322-=,则21z z +的共轭复数是___________.i +3 [巩固2] 已知i 是虚数单位,R n m ∈,,且ni i m -=+22,则 ni m ni m -+的共轭复数为_________.i [例4] 计算:(1)3)2)(1(i i i ++-(2)22)1(1)1(1i i i i -+++- [巩固] 计算: (1))1()2()23(i i i +---++;(2))2)(1(2013i i i -+?;(3)i i 4321-+

1.复平面:我们把建立了直角坐标系来表示复数的平面叫做复平面.x 轴叫做实轴,y 轴叫做虚轴.实轴上的点都表示实数,除原点外,虚轴上的点都表示纯虚数. 2.复数的模:22b a bi a z +=+= 3.bi a z +=1,di c z +=2,则2221)()(d b c a z z -+-= - 两个复数的差的模就是复平面内与这两个复数对应的两点间的距离. [例1] 已知复数i i z -+= 12,则._____=z 210 [巩固1] 复数)0(21<+= a i ai z ,其中i 为虚数单位, 5=z ,则a 的值为__________.-5 [巩固2] 若2=z ,求i z 43-+取最大值时的. ______=z i 5 856- [例2] 复数)(23)1(2R a i a a i z ∈++--= (1)若z z =,求z ; (2)若在复平面内复数z 对应的点在第一象限,求a 的范围. 知识模块3复数的模 精典例题透析

复数的定义

第十四章 复数 一 、复数的概念 1. 虚数单位:i 规定:(1)21i =-;(2)虚数单位i ,可以与实数进行四则运算,在进行四则运算时,原有的加法,乘法运算律仍然成立。 2. 复数:形如a bi +,,a R b R ∈∈的数叫做复数,a 叫实部,b 叫虚部。 3. 复数集:所有复数构成的集合,复数集{},,C x x a bi a R b R ==+∈∈. 4. 分类:0b =时为实数;0b ≠时为虚数,0,0a b =≠时为纯虚数,且R üC . 5. 两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈ 例1 下面五个命题 ①34i +比24i +大; ②复数32i -的实部为3,虚部为2i -; ③1Z ,2Z 为复数,120Z Z ->,那么12Z Z >;④两个复数互为共轭复数,则其和为实数; ⑤两个复数相等:a bi c di a c +=+?=且(,,,)b d a b c d R =∈. 例2 已知:(1)(1),Z m m i m R =++-∈求Z 为(1)实数;(2)虚数;(3)纯虚数时,求m 的值。 例3 已知2226()x y i y x i +-=+-,求实数,x y 的值。 二 、复数的几何意义:,,,Z a bi a R b R =+∈∈与点(,)a b 一一对应。 1.复平面:x 轴叫实轴;y 轴叫虚轴。x 轴上点为实数,y 轴上除原点外的点为纯虚数。 2.Z a bi =+;连接点(,)a b 与原点,得到向量OZ ,点(,)Z a b ,向量OZ ,Z a bi =+之间一一对应。 3.模:2Z a bi OZ a =+== 注:Z 的几何意义:令(,)Z x yi x y R =+∈,则Z =Z 的点到原点的距离就是Z 的几何意义;12Z Z -的几何意义是复平面内表示复数1Z ,2Z 的两点之间的距离。

最新数系的扩充和复数的概念教案

§3.1.1数系的扩充和复数的概念 教案 李 志 文 【教学目标】 知识与技能:1.了解数系的扩充过程;2.理解复数的基本概念 过程与方法:1.通过回顾数系扩充的历史,让学生体会数系扩充的一般性方法. 2.类比前几次数系的扩充,让学生了解数系扩充后,实数运算律均可应用于 新数系中,在此基础上,理解复数的基本概念. 情感态度与价值观: 1、虚数单位的引入,产生复数集,让学生体会在这个过程中蕴含的创 新精神和实践能力,感受人类理性思维的作用以及数与现实世界的联系; 2、初步学会运用矛盾转化,分与合,实与虚等辩证唯物主义观点看待和 处理问题。 【重点难点】 重点: 理解虚数单位i 的引进的必要性及复数的有关概念. 难点:复数的有关概念及应用. 【学法指导】 1、回顾以前学习数的范围扩充过程,体会数系扩充的必要性及现实意义; 2、思考数系扩充后需考虑的因素,譬如运算法则、运算律、符号表示等问题,为本节学习奠定方法基础. 【知识链接】 前两个学段学习的数系的扩充: 但是,数集扩到实数集R 以后,像x 2=-1这样的方程还是无解的,因为在实数范围内,没有一个实数的平方等于负数.联系从自然数到实数系的扩充过程,你能设想一种方法,使这个方程有解吗? Q N Z R 人们在狩猎、采集果实等劳动中,由于计数的需要,就产生了1,2,3,4等数以及表示“没有”的数0.自然数 的全体构成自然数集N 为了表示各种具有相反意义的量以及满足记数的需要,人们又引进了负整,将数系扩充至整数集Z. 为了解决测量、分配中遇到的将某些量进行等分的问题, 人们引进了分数,将数系扩充至有理数集Q. 用方形的边长去度量它的对角线所得的结果,无法用有 理数表示,为了解决这个矛盾,人们又引进了无理数.有 理数集与无理数集合并在一起,构成实数集R . N x 2=-1,x =?

数系的扩充和复数的概念

《数系的扩充和复数的概念》教学设计 1.了解解方程等实际需要也是数系发展的一个主要原因,数集的扩展过程以及复数的 分类表; 2.理解复数的有关概念以及符号表示; 3.掌握复数的代数表示形式及其有关概念; 4.在问题情境中了解数系得扩充过程,体会实际需求与数学内部的矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系.【教学重点】引进虚数单位i的必要性、对i的规定以及复数的有关概念. 【教学难点】复数概念的理解. 【教学过程】 1.对数集因生产和科学发展的需要而逐步扩充的过程进行概括(教师引导学生进行简 明扼要的概括和总结) 自然数整数有理数无理数实数 2.提出问题 我们知道,对于实系数一元二次方程,没有实数根.我们能否将实数集进行扩充,使 得在新的数集中,该问题能得到圆满解决呢? 3.组织讨论,研究问题 我们说,实系数一元二次方程没有实数根.实际上,就是在实数范围内,没有一个实数的平方会等于负数.解决这一问题,其本质就是解决一个什么问题呢? 组织学生讨论,引导学生研究,最后得出结论:最根本的问题是要解决-1的开平方问 题.即一个什么样的数,它的平方会等于-1. 4.引入新数,并给出它的两条性质 根据前面讨论结果,我们引入一个新数,叫做虚数单位,并规定: (1); (2)实数可以与它进行四则运算,进行四则运算时,原有的加、乘运算律仍然成立.有了前面的讨论,引入新数,可以说是水到渠成的事.这样,就可以解决前面提出的问题(-1可以开平方,而且-1的平方根是). 5.提出复数的概念 根据虚数单位的第(2)条性质,可以与实数b相乘,再与实数a相加.由于满足乘法交换律及加法交换律,从而可以把结果写成这样,数的范围又扩充了,出现了形如的数, 我们把它们叫做复数. 全体复数所形成的集合叫做复数集,一般用字母C表示,显然有: N* N Z Q R C. 【巩固练习】 下列数中,哪些是复数,哪些是实数,哪些是虚数,哪些是纯虚数?并分别指出这些复 数的实部与虚部各是什么? 例1.实数m分别取什么值时,复数z=m+1+(m-1)i是 (1)实数?(2)虚数?(3)纯虚数? 分析:因为m∈R,所以m+1,m-1都是实数,由复数z=a+bi是实、虚数、纯虚数与 零的条件可以确定实数m的值.

(完整版)复数知识点归纳

精心整理 页脚内容 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i 叫做虚数单位,并规定:①i 可与实数进行四则运算;②12-=i ;这样方程12-=x 就有解了,解为i x = 2(1①a z =(2例题:注意:三、共轭复数 bi a +与di c +共轭),,,(,R d c b a d b c a ∈-==? bi a z +=的共轭复数记作bi a z -=_,且22_ b a z z +=? 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x 轴叫做实轴,y 轴叫做虚轴。显然,实轴上的点都表示实数;除了原点外,虚轴上的点都表示纯虚数。

精心整理 页脚内容 2、复数的几何意义 复数bi a z +=与复平面内的点),(b a Z 及平面向量),(b a OZ =→),(R b a ∈是一一对应关系(复数的实质是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数i m m m m z )145()158(22--++-=的点 ①位于第三象限;②位于直线x y =上 (2)复平面内)6,2(=→AB ,已知→→AB CD //,求→ CD 对应的复数 3、复数的模: 向量OZ 的模叫做复数bi a z +=的模,记作z 或bi a +,表示点),(b a 到原点的距离,即=z 22b a bi a +=+,z z = 若bi a z +=1,di c z +=2,则21z z -表示),(b a 到),(d c 的距离,即2221)()(d b c a z z -+-=- 例题:已知i z +=2,求i z +-1的值 五、复数的运算 (1)运算法则:设z 1=a +b i ,z 2=c +d i ,a ,b ,c ,d ∈R ①i d b c a di c bi a z z )()(21+++=+++=± ②i ad bc bd ac di c bi a z z )()()()(21++-=+?+=? ③2221)()()()())(())(d c i a d bc bd ac di c di c di c bi a di c bi a z z +-++=-?+-+=++= (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行.如图给出 的平行四边形OZ 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+,=-. 六、常用结论 (1)i ,12-=i ,i i -=3,14=i 求n i ,只需将n 除以4看余数是几就是i 的几次 例题:=675i (2)i i 2)1(2=+,i i 2)1(2-=- (3)1)2321(3=±-i ,1)2 321(3-=±i 【思考辨析】 判断下面结论是否正确(请在括号中打“√”或“×”) (1)方程x 2+x +1=0没有解.( )

高二数学 3.2.2复数的基本运算

课后练习题 1.复数2+i 1-2i 的共轭复数是( ) A .-35i B.35 i C .-i D .i 解析:选C.2+i 1-2i =(2+i )(1+2i )(1-2i )(1+2i ) =2-2+5i 5 =i , ∴2+i 1-2i 的共轭复数是-i. 2.已知a ∈R ,若(1-a i)(3+2i)为纯虚数,则a 的值为( ) A .-32 B.32 C .-23 D.23 解析:选A.∵(1-a i)(3+2i)=(3+2a )+(2-3a )i 为纯虚数, ∴? ????3+2a =0,2-3a ≠0,解得a =-32. 3.若复数z 满足z =i(2-z )(i 是虚数单位),则z =________. 解析:∵z =i(2-z ), ∴z =2i -i z , ∴(1+i)z =2i , ∴z =2i 1+i =1+i. 答案:1+i 4.若z 1=a +2i ,z 2=3-4i ,且z 1z 2 为纯虚数,则实数a 的值为________. 解析:z 1z 2=a +2i 3-4i =(a +2i )(3+4i )25=3a -8+(4a +6)i 25 =3a -825+4a +625 i. 因为z 1z 2 为纯虚数,所以3a -8=0且4a +6≠0, 所以a =83 . 答案:83 [A 级 基础达标] 1.已知复数z =1-2i ,那么1z =( ) A.55+255i B.55-255 i C.15+25i D.15-25 i 解析:选D.1z =11+2i =1-2i (1+2i )(1-2i )=1-2i 5

=15-25 i. 2.若复数z 满足方程z 2+2=0,则z 3等于( ) A .±2 2 B .-2 2 C .-22i D .±22i 解析:选D.∵z 2+2=0,∴z =±2i , ∴z 3=±22i. 3.复数z =2-i 2+i (i 为虚数单位)在复平面内对应的点所在象限为( ) A .第一象限 B .第二象限 C .第三象限 D .第四象限 解析:选D.z =2-i 2+i =(2-i )(2-i )(2+i )(2-i ) =3-4i 5=35-45 i , 所以z 在第四象限. 4.若复数(1+a i)(2-i)的实部与虚部相等,则实数a =__________. 解析:∵(1+a i)(2-i)=(2+a )+(2a -1)i 的实部与虚部相等,∴2+a =2a -1.∴a =3. 答案:3 5.已知z 1=(1+2i )4(3-i )3,z 2=z 12-i ,则|z 2|=________. 解析:|z 2|=??????(1+2i )4(3-i )3(2-i )=|(1+2i )4||(3-i )3|·|2-i| =(5)4(10)3×5=122=24 . 答案: 24 6.已知复数z =1+i ,求实数a ,b ,使az +2b =(a +2z )2. 解:因为z =1+i , 所以az +2b =(a +2b )+(a -2b )i , (a +2z )2=(a +2)2-4+4(a +2)i =(a 2+4a )+4(a +2)i. 因为a ,b 都是实数, 所以由az +2bz -=(a +2z )2,得? ????a +2b =a 2+4a ,a -2b =4(a +2). 两式相加,整理得a 2+6a +8=0,解得a 1=-2,a 2=-4.对应求得b 1=-1,b 2=2. 所以所求实数为a =-2,b =-1或a =-4,b =2. [B 级 能力提升] 7.已知 =2+i ,则复数z =( ) A .-1+3i B .1-3i C .3+i D .3-i 解析:选B.由题意知 =(2+i)(1+i)=1+3i ,∴z =1-3i. 8.已知z 1=-2-3i ,z 2=3-2i (2+i )2 ,则z 1z 2=( ) A .-4+3i B .3+4i C .3-4i D .4-3i 解析:选D.∵z 1=-2-3i ,z 2=3-2i (2+i )2 , ∴z 1z 2=(-2-3i )(2+i )23-2i =-i (3-2i )(2+i )2 3-2i z z z 2z 2z 1z i +

复数的基本概念与基本运算

复数的基本概念与基本运算 一、《考试说明》中复数的考试内容(1)数的概念的发展,复数的有关概念(实数、虚数、纯虚数、复数相等、共轭复数、模);(2)复数的代数表示与向量表示;(3)复数的加法与减法,复数的乘法与除法,复数的三角形式,复数三角形式的乘法与乘方,复数三角形式的除法与开方;(4)复数集中解实系数方程(包括一元二次方程、二项方程)。二、考试要求(1)使学生了解扩充实数集的必要性,正确理解复数的有关概念.掌握复数的代数、几何、三角表示及其转换;(2)掌握复数的运算法则,能正确地进行复数的运算,并理解复数运算的几何意义;(3)掌握在复数集中解实数系数一元二次方程和二项方程的方法.(4)通过内容的阐述,带综合性的例题和习题的训练,继续提高学生灵活运用数学知识解题的能力.(5)通过数的概念的发展,复数、复平面内的点及位置向量三者之间的联系与转换的复习教学,继续对学生进行辩证观点的教育.三、学习目标(1)联系实数的性质与运算等内容,加强对复数概念的认识;?(2)理顺复数的三种表示形式及相互转换:z = r(cosθ+isinθ) , OZ(Z(a,b)) , z=a+bi (3)正确区分复数的有关概念;(4)掌握复数几何意义,注意复数与三角、解几等内容的综合;复(5)正确掌握复数的运算:复数代数形式的加、减、乘、除;三

角数实数集集形式的乘、除、乘方、开方及几何意义;虚数单位i及1的立方虚根纯虚数集ω的性质;模及共轭复数的性质;(6)掌握化归思想——将复数问题实数化(三角化、几何化);(7)掌握方程思想——利用复数及其相等的有关充要条件,建立相应的方程,转化复数问题。四、本章知识结构与复习要点1.知识体系表解 1 1/16页2.复数的有关概念和性质:(1)i称为虚数单位,规定2i,,1,形如a+bi的数称为复数,其中a,b?R.(2)复数的分类(下面的a,b均为实数) (3)复数的相等设复数,那么的充要zz,zabizabiababR,,,,,,(,,,)121112221122条件是:.abab,,且1122 (4)复数的几何表示复数z=a+bi(a,b?R)可用平面直角坐标系内点Z(a,b)来表示.这时称此平面为复平面,x轴称为实轴,y轴除去原点称为虚轴.这样,全体复数集C与复平面上全体点集是一一对应的. 2 2/16页复数 z=a+bi.在复平面内还可以用以原点O为起点,以点Z(a,b) abR,,,,向量所成的集合也是一一对应的(例外的是复数0对应点O,看成零向量).(7)复数与实数不同处?任意两个实数可以比较大小,而任意两个复数中至少有一个不是实数时就不能比较大小.?实数对于四则运算是通行无阻的,但不是任何实数都可以开偶次方.而复数对四则运算和开方均通行无阻.3.有关计算:?**n4k,rrkNrN,,,nN,ii,i怎样计算?(先求n被4除所得的余数,),,,,1313?,,,,i、,,,,i

1-1复数的基本概念

§1.1 复数的基本概念 授课要点:复数的定义,复数的代数表示,三角式、指数式及它们与复数几何表示(二维向量)之间的关系 1、 复数的定义: 设有一个有序数对(),a b ,遵从如下的运算法则 加法:()()()11221212,,,a b a b a a b b +=++ 乘法:()(),,(,) a b c d ac bd ad bc =-+ 则称这一有序数对(),a b 为复数,记为α,即 α=(),a b 其中a 为α实部,b 为α的虚部,记为 a =Re α, b =Im α 纯实数a =(),0a ,纯虚数记为b =()0,b ,所以有 α=(),0a +()0,b =a(1,0)+b (0,1) 其中(0,1)即为虚数单位,常记为i. 2、 复数的相等与大小 两个复数相等的充要条件是:实部、虚部分别相等. 复数不能比较大小!这一点可用反证法证明: 假设认为i >0,则在不等式两边同乘以一个大于0的数i ,不等式符号应当不变,即 20i > 即 -1>0,这显然是错误的! 3、 几个特殊的复数: (0,0):(0,0)(,)(,)(0,0)(,)(0,0)a b a b a b +=??=? (1,0):(1,0)(,)(,)a b a b = (0,1):(0,1)(0,1)=(-1,0)=-1 (0,1)是-1的平方根,是虚数单位,记为i =(0,1) 4、 共轭复数:(,)a b α=,* (,)a b α=-互为共轭复数 性质:**()αα=(共轭的共轭等于自己)

*2ααα+=为实数(两个互为共轭的复数相加,结果必为实数) *22a b αα?=+,为非负实数(α的模方) 5、 复数的减法、除法 减法:()()()()a ib c id a c i b d +-+=-+- 除法:2222()()()()a ib a ib c id ac bd bc ad i c id c id c id c d c d ++-+-==+++-++ ↑“分母实数化” 6、 复数的几何表示: (1) 任何一个复数都可以和复平面上的一点对应,将这一点和原点连起来(原点为起 点),形成一个二维矢量,这是一个二维自由向量,即将op 平移后,仍代表同一 矢量(如右图所示) (2) 加法的几何表示(平行四边形法则与三角形法则) γαβ=+ (3) 减法的几何表示:

学习知识资料讲解复数(基础学习知识)

高考总复习:复数 【考纲要求】 1.理解复数的基本概念,理解复数相等的充要条件; 2.了解复数的代数表示形式及其几何意义;能将代数形式的复数在复平面上用点或向量表示,并能将复平面上的点或向量所对的复数用代数形式表示。 3.会进行复数代数形式的四则运算,了解两个具体相加、相减的几何意义. 【知识网络】 【考点梳理】 考点一、复数的有关概念 1.虚数单位i : (1)它的平方等于1-,即2 1i =-; (2)i 与-1的关系: i 就是-1的一个平方根,即方程21x =-的一个根,方程21x =-的另一个根是i -; (3)实数可以与它进行四则运算,进行四则运算时,原有加、乘运算律仍然成立; (4)i 的周期性:41n i =,41n i i +=,421n i +=-,43n i i +=-(*n N ∈). 2. 概念

形如a bi +(,a b R ∈)的数叫复数,a 叫复数的实部,b 叫复数的虚部。 说明:这里,a b R ∈容易忽视但却是列方程求复数的重要依据。 3.复数集 全体复数所成的集合叫做复数集,用字母C 表示;复数集与其它数集之间的关系:N Z Q R C 4.复数与实数、虚数、纯虚、0的关系: 对于复数z a bi =+(,a b R ∈), 当且仅当0b =时,复数z a bi a =+=是实数; 当且仅当0b ≠时,复数z a bi =+叫做虚数; 当且仅当0a =且0b ≠时,复数z a bi bi =+=叫做纯虚数; 当且仅当0a b ==时,复数0z a bi =+=就是实数0. 所以复数的分类如下: z a bi =+(,a b R ∈)?(0)(0)00b b a b =?? ≠?=≠?实数;虚数当且时为纯虚数 5.复数相等的充要条件 两个复数相等的定义:如果两个复数的实部和虚部分别相等,那么我们就说这两个复数相等。即: 如果,,,a b c d R ∈,那么a bi c di a c b d +=+?==且. 特别地: 00a bi a b +=?==. 应当理解: (1)一个复数一旦实部、虚部确定,那么这个复数就唯一确定;反之一样. (2)复数相等的充要条件是将复数转化为实数解决问题的基础. 一般地,两个复数只能说相等或不相等,而不能比较大小。如果两个复数都是实数,就可以比较大小;也只有当两个复数全是实数时才能比较大小。 6.共轭复数: 两个复数的实部相等,而且虚部相反,那么这两个复数叫做共轭复数。即: 复数z a bi =+和z a bi a bi =+=-(,a b R ∈)互为共轭复数。 考点二:复数的代数表示法及其四则运算 1.复数的代数形式: 复数通常用字母z 表示,即a bi +(,a b R ∈),把复数表示成a bi +的形式,叫做复数的代数形式。 2.四则运算

复数的基本知识

补充复数的基本知识: 1、虚数单位 由于在实数集R 内负数不能开平方,所以在实数集内方程012=+x 无解。引入虚数,虚数单位符号为j ,并规定 (1) 它的平方等于-1,即12-=j ; (2)j 可以和实数一起进行四则运算,原有的加、减运算规律仍然成立。 性质:j j =1;12-=j ;j j -=3;14=j 一般地,对于任意整数n ,有: 14=j n ;j j n =+14;124-=+j n ;j j n -=+34 2、复数集 定义:形如),(R b a bj a ∈+的数称为复数。 通常用大写拉丁字母Z 表示一个复数,即),(R b a bj a Z ∈+= 其中 a 称为复数Z 的实部,a Z =)Re(; b 称为复数Z 的虚部,b Z =)Im(; 举例:j 32+,j 51-+,j 3的实部、虚部? ??? ???????≠=≠???=+)0a ()0a ()0b ()0b (非纯虚数纯虚数虚数无理数有理数实数复数bj a 3、复数的相等及共轭复数 定义:如果两个复数的实部相等,虚部也相等,则称这两个复数相等,即 d b c,a dj c ==?+=+bj a 定义:如果两个复数的实部相等,虚部互为相反数,则称这两个复数互为

共轭复数。 复数bj a Z +=的共轭复数记作bj a Z -= 例:3j 2j,1++的共轭复数 注:b a bj a bj a 22))((+=-+ 4、复数的几何表示(复平面) 任何一个复数bj a +都可以由一对有序实数)b ,a (唯一确定;反之,任何一对有序实数)b ,a (都能唯一确定一个复数bj a +;因此,复数bj a Z +=与平面直角坐标系中的点)b ,a (Z 是一一对应关系。于是,可以在平面直角坐标系中用横坐标为a ,纵坐标为b 的点)b ,a (Z 表示复数bj a Z +=。 用来表示复数的直角坐标平面称为复平面。 复数bj a Z +=与复平面上的点)b ,a (Z 是一一对应关系。即 复数bj a Z +=?点)b ,a (Z 矢量(或向量):既有大小又有方向。矢量可以用带箭头的有向线段来表示,箭头的方向表示矢量的方向,线段的长度表示矢量的大小。如下图所示:

复数的基本运算C语言

复数的基本运算C语言标准化管理部编码-[99968T-6889628-J68568-1689N]

#i n c l u d e #include typedefstructfushu//抽象数据类型定义 { floatreal;//数据对象 floatimage; }fushu; fushuComplexNumberInput(floata,floatb)//构造二元组 { fushuc; c.real=a;//实部 c.image=b;//虚部 return(c); } fushuComplexNumberAdd(fushuc1,fushuc2)//求和运算 { fushusum; sum.real=c1.real+c2.real; sum.image=c1.image+c2.image; return(sum); } fushuComplexNumberSub(fushuc1,fushuc2)//求差运算 { fushusub; sub.real=c1.real-c2.real; sub.image=c1.image-c2.image; return(sub); } fushuComplexNumberMul(fushuc1,fushuc2)//求积运算 { fushuMul; Mul.real=c1.real*c2.real-c1.image*c2.image; Mul.image=c1.real*c2.image+c1.image*c2.real; return(Mul); } fushuComplexNumberDiv(fushuc1,fushuc2)//求商运算 { fushudiv; floatd1,d2,d3,d4; d1=c1.real*c2.real+c1.image*c2.image; d2=c2.real*c2.real+c2.image*c2.image; d3=c1.image*c2.real-c1.real*c2.image;

复数的概念与运算

复数的概念与运算 【知识点精讲】 1. 虚数单位i :i 2=–1,实数可以与它进行四则运算,原有的加、乘运算律仍成立;i 就是-1的一个平方根,即方程x 2=-1的一个根,方程x 2=-1的另一个根是-i ;I 具有周期性:i 4n+1=i, i 4n+2=-1, i 4n+3=-i, i 4n =1(n ∈N ). 2. 复数的代数形式:z=a+bi (a,b ∈R ), a 叫实部,b 叫虚部.掌握复数(集C )的分类: ()?? ??????+=≠==+=≠====∈+=为非纯虚数的虚数时为纯虚数时为虚数时为实数时其中为实数时复数bi a z a bi z a bi a z b ,z b a a z b R b a bi a z 000000),( NZQRC 3.复数相等:设a,b,c,d ∈R ,则a+bi=c+di ?a=c,b=d ;a+bi=0?a=b=0;利用复数相等的条件转化为实数问题是解决复数问题的常用方法; 4.共轭复数:实部相等,虚部互为相反数的两个复数.如:a+bi 和a –bi (a,b ∈R ); 5.复数的模:2||||||z a bi OZ a =+==,两个复数不能比较大小,但它们的模可以比较大小; 6.复平面、实轴、虚轴:点Z 的横坐标是a ,纵坐标是b ,复数z =a +bi (a 、b ∈R )可用点Z (a ,b )表示,这个建立了直角坐标系来表示复数的平面叫做复平面,也叫高斯平面,x 轴叫做实轴,y 轴叫做虚轴实轴上的点都表示实数 对于虚轴上的点要除原点外,因为原点对应的有序实数对为(0,0), 它所确定的复数是z =0+0i =0表示是实数.故除了原点外,虚轴上的点都表示纯虚数 7.掌握复数的和、差、积、商运算法则:z 1±z 2=(a +bi ) ±(c +di )=(a ±c )+(b ±d )i ;(a +bi )(c +di )=(ac -bd )+(bc +ad )i ;(a +bi )÷(c +di )= 2222d c ad bc d c bd ac +-+++ i (实际上是分子分母同乘以分母的共轭复数,并化简). 复数运算满足加、乘的交换律、结合律、分配律. 【例题选讲】 例1 计算:(1)i i -22;(2)i i 3232-+. 解:(1)i 5 452+- ;(2)i 56251+-. 例2 已知z 是复数,z+2i 、 i z -2均为实数,且复数(z+ai)2在复平面上对应的点在第一象限,求实数a 的取值范围. 优化设计P222典例剖析例1,解答略。

(完整版)复数知识点归纳

精心整理 复数 【知识梳理】 一、复数的基本概念 1、虚数单位的性质 i叫做虚数单位,并规定:①i可与实数进行四则运算;②i2 1 ;这样方程x21就有解了,解 为x i或x i 2、复数的概念 (1)定义:形如a bi (a, b€ R)的数叫做复数,其中i叫做虚数单位,a叫做,b叫做。全体复数所成的集合C叫做复数集。复数通常用字母z表示,即z a bi (a,b€ R) 对于复数的定义要注意以下几点: ①z a bi (a,b€ R)被称为复数的代数形式,其中bi表示b与虚数单位i相乘 ②复数的实部和虚部都是实数,否则不是代数形式 (2)分类: 例题:当实数m为何值时,复数(m 5m 6) (m2 3m)i是实数?虚数?纯虚数? 二、复数相等 也就是说,两个复数相等,充要条件是他们的实部和虚部分别相等 注意:只有两个复数全是实数,才可以比较大小,否则无法比较大小 例题:已知(x y 3) (x 4)i 0求x,y的值 三、共轭复数 a bi 与c di 共轭a c, b d(a,b,c,d R) z a bi的共轭复数记作z a bi,且z z a2b2 四、复数的几何意义 1、复平面的概念 建立直角坐标系来表示复数的平面叫做复平面,x轴叫做实轴,y轴叫做虚轴。显然,实轴上的点

都表示实数;除了原点外,虚轴上的点都表示纯虚数。 页脚内容

2、复数的几何意义 复数z a bi 与复平面内的点Z(a,b)及平面向量OZ (a,b)(a,b R)是一一对应关系(复数的实质 是有序实数对,有序实数对既可以表示一个点,也可以表示一个平面向量) 相等的向量表示同一个复数 例题:(1)当实数m 为何值时,复平面内表示复数z (m 2 8m 15) (m 2 5m 14)i 的点 ①位于第三象限;②位于直线y x 上 (2) 复平面内AB (2,6),已知CD//AB ,求CD 对应的复数 3、复数的模: 向量0Z 的模叫做复数z a bi 的模,记作|Z 或|a bi|,表示点(a,b)到原点的距离,即 z a bi| Va 2 b 2, z 若召 a bi , z 2 c di ,则忆 z 2 |表示(a,b)到(c,d)的距离,即 |z ) z 2 | J(a c)2 ―(b —dp 例题:已知z 2 i ,求|z 1 i|的 值 五、复数的运算 (1)运算法则:设 Z 1 = a + bi ,z 2= c + di , a , b , c ,d € R ① z ,九 a bi c di (a c) ( b d)i ② 召 z 2 (a bi) (c di) (ac bd) (bc ad)i (a bi)(c di) (ac bd) (bc ad)i ---------------------------- = (c di) (c di) c 2 d 2 (2)几何意义:复数加减法可按向量的平行四边形或三角形法则进行 ?如图给出 的平行四边形0Z 1ZZ 2可以直观地反映出复数加减法的几何意义,即=+ ,二一 六、常用结论 (1) i ,i 2 1,i 3 i ,i 4 1 求i n ,只需将n 除以4看余数是几就是i 的几次 例题:严 (2) (1 i)2 2i ,(1 i)2 2i ),1 3、3 4 1 '3 3 . (3) ( i ) 1 ,( i) 1 2 2 2 2 【思考辨析】 判断下面结论是否正确(请在括号中打“V”或“X” ) (1) 方程X 2 + x + 1 = 0没有解.( ) ③互 (a bi) Z 2 (c di)

复数的概念、几何意义及运算

高考数学一轮复习专题训练(40) 复数的概念、几何意义及运算 班级________姓名____________学号______成绩______日期____月____日 一、填空题 1. 复数z= 1 1-i 的虚部是________. 2. 设z=(2-i)2(i为虚数单位),则复数z的模为________. 3. 若复数a+i 1+i 为纯虚数,则实数a的值是________. 4. 若复数z=2-i 3-4i ,则z的共轭复数为z=________. 5. 在复平面内,复数1-i 2+i +i2 019对应的点位于第 ________象限. 6. 若复数z= 1 a-2 +(a2-4)i(a∈R)是实数,则a= ________.

7. 已知i是虚数单位,则满足z-i=|3+4i|的复数z在复平面上对应点在第________象限. 8. 满足条件|z-i|=|z+3|的复数z在复平面上对应点的轨迹是________. 9. 已知i是虚数单位,a、b∈R,则“a=b=1”是“(a +b i)2=2i”的________条件.(填“充分不必要”“必要不充分”“充要”或“既不充分又不必要”) 10. 若复数(m2-3m-4)+(m2-5m+6)i表示的点在虚轴上,则实数m的值为________. 11. 设a∈R,若复数a+i 1+i (i为虚数单位)的实部和虚部相 等,则a=________. 12. 已知方程x2+(4+i)x+4+a i=0(a∈R)有实根b,且z=a+b i,则复数z=________. 13. 若复数(x-2)+y i(x,y∈R)的模为3,则y x的最大值

1.1 数系的扩充和复数的概念

第三章数系的扩充与复数的引入 本章概览 教材分析 复数在数学、力学、电学等其他学科中都有广泛的应用,复数与向量、平面解析几何、三角函数等都有密切的联系,也是进一步学习数学的基础. 本章内容分为两节:3.1数系的扩充和复数的概念,3.2复数代数形式的四则运算. 教材通过问题情境:“方程x2+1=0在实数集中无解,如何设想一种方法使该方程有解?”引出扩充数系的必要性,从而引入虚数、复数的概念.复数实际上是一对有序数对,即a+bi (a,b),类比实数可以用数轴上的点表示,复数就可以在直角坐标系中用点或向量表示,从而有了复数的几何意义,使数和形得到了有机的结合. 复数代数形式的四则运算可以类比代数式运算中的“合并同类项”“分母有理化”等,利用i2=-1,将复数代数形式的四则运算归结为实数的四则运算,体现了化虚为实的化归思想. 复数的加法、减法运算还可以通过向量的加法、减法的平行四边形或三角形法则来进行,这不仅又一次看到了向量这一工具的功能,也把复数及其加、减运算与向量及其加、减运算完美地统一起来. 教材每节设置了“思考”“探究”,让学生通过类比思想,并借助于具体实例对数系进行了扩充,研究了复数代数形式的几何意义和复数加、减法的运算及几何意义,体现了《课标》以学生为主体的教学理念,有利于培养学生的思想素质和激发学习数学的兴趣和欲望.本章的重点是复数的概念及复数代数形式的四则运算,本章的难点是复数的引入和复数加、减法的几何意义. 课标要求 (1)在问题情境中了解数系的扩充过程,体会实际需求与数学内部矛盾(数的运算规则、方程求根)在数系扩充过程中的作用,感受人类理性思维的作用以及数与现实世界的联系. (2)理解复数的基本概念以及复数相等的充要条件. (3)了解复数的代数表示法及其几何意义. (4)能进行复数代数形式的四则运算,了解复数代数形式的加、减运算的几何意义. 教学建议 (1)数的概念的发展与数系的扩充是数学发展的一条重要线索.数系扩充的过程体现了数学的发现和创造过程,也体现了数学发生、发展的客观需求.建议教学时详细介绍从自然数系逐步扩充到实数系的过程,使数系的扩充与复数的引入更为自然,让学生充分领略数系扩充过程中所蕴涵的数学思想和科学发展思想. (2)在讲解复数的相关概念时,在“复数相等”环节,可以类比“相反数”的概念. (3)学习复数代数形式时的加、减、乘等运算时,可设置研究问题:用第二章“类比推理”思想,将多项式的运算法则与之进行类比. (4)删减的内容不必再补.对于弱化的部分,建议也只是在其出现的地方作适当延伸,不必重点讲解. 课时分配 本章教学时间大约需5课时,具体分配如下(仅供参考)