共模电感经典教学

共模_差模详解

EMC(electromagnetic compatibility)作为产品的一个特性,译为电磁兼容性;如果作为一门学科,则译为电磁兼容。它包括两个概念:EMI和EMS。EMI (electromagnetic interference) 电磁干扰,指自身干扰其它电器产品的电磁干扰量。EMS (electromagnetic susceptibility) 电磁敏感性,也有称为电磁抗扰度,是指能忍受其它电器产品的电磁干扰的程度。因此,电磁兼容性EMC一方面要滤除从电源线上引入的外部电磁干扰(辐射+传导),另一方面还能避免本身设备向外部发出噪声干扰,以免影响同一电磁环境下其他电子设备的正常工作。EMC滤波器主要是用来滤除传导干扰,抑制和衰减外界所产生的噪声信号干扰和影响受到保护的设备,同时抑制和衰减设备对外界产生干扰。而辐射干扰主要通过屏蔽的手段加以滤除。 从滤波器的功能来看,它的作用是允许某一部分频率的信号顺利的通过,而另外一部分无用频率的信号则受到较大的抑制,它实质上是一个选频电路。而我们常见的低通滤波器功能是允许信号中的低频或直流分量通过,抑制高频分量或干扰噪声。 电源噪声干扰在日常生活中很常见。比如你正在使用电脑的时候,当手机信号出现时,电脑音响会有杂音。比如电话或手机通话时有嗞嗞的杂声。又比如使用电吹风烫头发时,电视机不但会产生噪音,而且屏幕会出现很大的雪花般的条纹。这都是一些常见的噪声信号干扰,但实际上有些干扰日常看不到,一但受到影响就有可能措手不及,甚至找不到根源。这些噪声信号如果出现在自动化仪器,医疗仪器有可能带来极大的损失甚至生命安全。比如,会造成自动化仪器误动作,造成医疗仪器失控等等。 我们常说的噪声干扰,是指对有用信号以外的一切电子信号的一个总称,也可以理解为电磁干扰。最初,人们把造成收音机之音响设备所发出噪声的那些电子信号,称为噪声。但是,一些非有用电子信号对电子电路造成的后果并非都和声音有关,因此,后来人们逐步扩大了噪声概念。如:某一频率的无线电波信号,对需要接收这种信号的接收机来讲,它是正常的有用信号,而对于另一频率的接收机它就是一种无用信号,即是噪声。 噪声按传播路径来分可分为传导噪声干扰和空间噪声干扰。其传导干扰主要通过导体传播,通过导电介质把一个电网络上的信号耦合(干扰)到另一个电网络,其频谱主要为30MHz以下。而空间噪声干扰源通过空间把其信号耦合(干扰)到另一个电网络,其频率范围比传导噪声频率宽很多,30Hz-30GHz。传导噪声干扰可以通过设计滤波电路或追加滤波器的方法来进行抑制和衰减,而空间辐射干扰主要通过主要应用密封屏蔽技术,在结构上实行电磁封闭。目前为减少重量大都采用铝合金外壳,但铝合金导磁性能差,因而外壳需要镀一层镍或喷涂导电漆,内壁贴覆高导磁率的屏蔽材料。 上面我们提到传导噪声干扰,又分为差模干扰与共模干扰两种。差模干扰是两条电源线之间(简称线对线)的噪声,主要通过选择合适的电容(X电容),差模线圈来进行抑制和衰减。共模干扰则是两条电源线对大地(简称线对地)的噪声,主要通过选择合适的电容(Y电容),和共模线圈来进行抑制和衰减。我们常见的低通滤波器一般同时具有抑制共模和差模干扰的功能。 第 1 页

第3章电容元件与电感元件

第3章 电容元件与电感元件 前两章我们讨论了电阻电路的分析方法,实际中,组成电路的元件不仅有 电阻元件,还有电感和电容元件。后两种元件与电阻元件的性质有所不同,属 于动态元件。他们的伏安关系都涉及到电流、电压的微分和积分。 本章介绍电容元件和电感元件的基本概念和电压、电流的约束关系,电容 元件的联接和两种元件的场能。为线性元件的动态分析奠定基础。 第一节 电容元件 一、电容元件的基本概念 电容元件是电路中的一个基本元件。将两块金属板中间用绝缘介质隔开, 就形成了电容器。最简单的电容器是平行板电容器。电容器有很多种类,按绝 缘介质分,有有机薄膜电容器、瓷介质电容器、电解电容器等。按其形状分, 有平行板电容器、圆柱形电容器、片式电容器等。电路中,除了专门制造的电 容器以外,还存在着许多自然形成的电容器。如两根输电线之间,线圈各匝之 间,晶体管各极之间都形成电容器。一般情况下他们的作用可忽略不计,但在 高压远距离输电和高频电子线路中,他们的影响是不能忽略的。 实际电容器中介质是不可能完全绝缘的,总会有电流通过介质,这一现象 叫做漏电。因此,电容器还有漏电阻,忽略漏电现象的 电容器,叫理想电容元件。图3-1是电容元件的图形符 号。 在外电源的作用下,电容器两极板上可带等量异种 电荷,当外电源撤去后,极板上的电荷可长期储存。因 而电容器是一种储存电场能量的器件。它的基本性能是储存电荷而产生电场。 实验证明:电容器充电后每个极板上所带的电荷量q 与极板间的电压u C 成正比 C u q C = (3-1) 式中比例常数C 反映了电容元件容纳电荷的本领,叫做电容器的电容量, 简称电容。国际单位制中,它的单位是法拉,简称法(F)。实际中也常用微法(μF) 和皮法(pF)。 1μF =610-F 1pF =1210- F 如果电容元件的电容量为常量,不随所带电荷量的变化而变化,这样的电容元 件称线性电容元件。本书所讨论的如不特别说明都为线性电容元件。习惯上我 们把电容元件也称为电容,因此,电容既是一种元件,也是一个量值。 在电容器的铭牌上,除标明它的电容量外,还需标明它的额定工作电压。 因为每个电容器允许承受的电压是有限度的,电压过高,介质就会被击穿。这 个电压叫击穿电压。使电容器长期工作而不被击穿的电压叫电容器的额定工作 电压。

共模电感的测量与诊断

共模电感的测量与诊断 作者: 照明工程师社区来源:照明工程师社区时间:2003-06-25 关键词: 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”,这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出: 式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n为共模线圈的匝数。 由于可以通过控制B总,使之小于B饱和,从而防止芯体发生磁饱和现象,有以下法则: 式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。 共模扼流圈的差模电感可以按如下方法测得:将其一引腿两端短接,然后测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。 共模扼流圈综述 滤波器设计时,假定共模与差模这两部分是彼此独立的。然而,这两部分并非真正独立,因为共模扼流圈可以提供相当大的差模电感。这部分差模电感可由分立的差模电感来模拟。 为了利用差模电感,在滤波器的设计过程中,共模与差模不应同时进行,而应该按照一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection Network),可以将差模成分消除,因此就可以直接测量共模噪声了。如果设计的共模滤波器要同时使差模噪声不超过允许范围,那么就应测量共模与差模的混合噪声。因为已知共模成分在噪声容限以下,因此超标的仅是差模成分,可用共模滤波器的差模漏感来衰减。对于低功率电源系统,共模扼流圈的差模电感足以解决差模辐射问题,因为差模辐射的源阻抗较小,因此只有极少量的电感是有效的。 尽管少量的差模电感非常有用,但太大的差模电感可以使扼流圈发生磁饱和。可根据公式(2)作简单计算来避免磁饱和现象的发生。 用LISN原理测量共模扼流圈饱和特性的方法 测量共模线圈磁芯(整体或部分)的饱和特性通常是很困难的。通过简单的试验可以看出共模滤波器的衰减在多大程度上受由60Hz编置电流引起的电感减小量的影响。进行此项测试需要一台示波器和一个差模抑制网络(DMRN)。首先,用示波器来监测线电压。按如下方法从示波器的A通道输入信号,将示波器的时

第三章第二节电阻、电感和电容元件

1、用万用表欧姆挡检测电容好坏时,如表针始终处在“0 Ω”处,则表示______。 A .电容是好的 B .电容已被击穿 C .电容内部引线已断 D .电容漏电 2、如图,瓦特计的读数为2 kW ,u =230 V ,f =50 Hz ,现将一纯电容C =96 μF 并接到电路中,则瓦特计的读数为______。 A .2 kW B .3.59 kW C .0.41 kW D .2.56 kW 3、在纯电感正弦交流电路中,若电压u 和电流i 参考方向一致,按照电工电量符号的一般规定,下列正确表达了欧姆定律的是______。 A .L X U P 2 = B .L X U I . .=

C .L X u I = D .L IX U = 4、在纯电感正弦交流电路中,若电压u 和电流i 参考方向一致,按照电工电量符号的一般规定,下列正确表达了欧姆定律的是______。 A .L X U j I . .-= B .P =IU C .L X I U .= D .L X u I = 5、对于纯电感正弦交流电路,电压u 与电流i 的参考方向一致,按照电量符号一般的规定,下列各式中不正确的是______。 A .i u X L = B .L jX U I ..= C .t i L u d d = D .L U j I ω. .=-= 6、如图所示电路中的电流i =______,功率P =______。 A .2 A /20 W

B .2 A /50 W C .2 A /0 W D .2 A /25 W 7、两只云母电容器,其耐压值为450 V ,电容量为0.1 μF ,串联后总电容量和耐压值分别为______。 A .0.05 μF / 450 V B .0.2 μF / 450 V C .0.05 μF / 900 V D .0.2 μF / 900 V 8、设:S 为平板电容器的面积,d 为其极板距离,ε为介质的介电常数,ρ为极板材料的电阻率,则电容C 为______。 A .d S C ρ = B .d S C ε= C .S d =ρ D .S d C ε=

EMI对策元件之差模_共模电感器

EMI对策元件之差模/共模电感器 电感器变压器典型应用电路——开关电源电路 EMI 滤波典型电路 差模噪声、共模噪声及差模电感器、共模电感器 输入导线之间的 EMI 电压称之为差模噪声。导线对接地端的噪声称之为共模噪声,差别见下图(以开关电源的差模干扰和共模干扰为例)。 差模噪声与共模噪声的区别 共模电感器设计 开关电源产生的共模噪声频率范围从 10kHz ~ 50MHz 甚至更高,为了对这些噪声有效的衰减,那么在这个频率范围内,共模电感器就必须提供足够高的阻抗。因此高磁导率的锰锌铁氧体和非晶材料是非常适合的。共模电感器的阻抗 Zs 由

串联感抗 Xs 和串联电阻 Rs 两部分组成, Zs 、 Xs 、 Rs 三者随频率变化的典型趋势见下图。 Zs 、 Xs 、 Rs 与频率的关系曲线 从图中我们可以看出在 750kHz 以下, Xs 在 Zs 中占主要部分, 750kHz 以上 Rs 在 Zs 中占主要部分。 对于抑制共模噪声的电感器,需要在一个磁芯上绕制两组电流方向相反的导线,并使用高磁导率的磁芯,如磁导率为5k 、 7k 、 10k 、 12k 材料和非晶磁芯等。 共模电感器命名方法 外形结构:

图 1 图 2 德恩典型产品参数表

差模电感器设计 对于抑制差模噪声的电感器,要求磁芯材料在偏磁场下仍然能够保持磁导率指标。下图中,标出了流经电感器的电流 I ,电压 V 和磁芯中的磁场强度曲线,并且画出了差模滤波器和共模滤波器在开关电源中的应用线路图。在输入端,可以是交流输入(如市电),也可以是电池供电(如 48V ,用于电信设备中)。当电池供电时,磁化电流是恒定的直流电。对于高功率因数的交流电系统,磁化电流接近正弦波波形。而低功率因数的交流电系统,其磁化电流则由一系列的交变脉冲叠加组成。 适合制作差模电感器(扼流圈)的磁心材料是具有高 Bs 值的金属磁粉心磁环和开路铁氧体磁芯,但是考虑现在的 EMI 和 EMC 的要求,使用铁镍钼、铁镍 50 、铁硅铝三种闭和磁路的金属磁粉心磁环是最合适的,因为这三种磁心材料在偏磁场下具有极好的电感量保持能力。 三种金属磁粉心材料进行比较:高磁通铁镍 50 磁粉心的性能最好,因为它在高饱和磁通密度下具有保持电感量的能力,同时它还提供在高频下所需要的阻尼衰减功能,但是由于该材料本身所具有的磁滞伸缩产生的音频噪声,致使高磁通铁镍 50 磁粉心在 50Hz 或者 60Hz 下,会产生音频噪声(嗡嗡声)。当然直流磁化电流不会产生音频噪声,所以它最适合用制作电池供电(工作电流为直流)的电源系统中的输入滤波电感器。铁镍钼、铁硅铝磁粉心都具有特别低的磁滞伸缩系数,它们都不会产生音频噪声。铁镍钼磁粉心在直流偏磁场下的磁导率变化量最小,这是它的一个优点。铁硅铝磁粉心的单位体积成本最低,因此最适合制作民用差模电感器,铁镍 50 和铁镍钼磁粉心的价格远远高于铁硅铝磁粉心更适合军用和一些对体积和性能要求高的场合。

共模电感认识

共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 共模电感在制作时应满足以下要求: 1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路。 2)当线圈流过瞬时大电流时,磁芯不要出现饱和。 3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿。 4)线圈应尽可能绕制单层,这样做可减小线圈的寄生电容,增强线圈对瞬时过电压的而授能力。 通常情况下,同时注意选择所需滤波的频段,共模阻抗越大越好,因此我们在选择共模电感时需要看器件资料,主要根据阻抗频率曲线选择。另外选择时注意考虑差模阻抗对信号的影响,主要关注差模阻抗,特别注意高速端口。 一、初识共模电感 由于EMC所面临解决问题大多是共模干扰,因此共模电感也是我们常用的有力元件之一!这里就给大家简单介绍一下共模电感的原理以及使用情况。 共模电感是一个以铁氧体为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,形成一个四端器件,要对于共模信号呈现出大电感具有抑制作用,而对于差模信号呈现出很小的漏电感几乎不起作用。原理是流过共模电流时磁环中的磁通相互叠加,从而具有相当大的电感量,对共模电流起到抑制作用,而当两线圈流过差模电流时,磁环中的磁通相互抵消,几乎没有电感量,所以差模电流可以无衰减地通过。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。

共模电感小知识

一、初识共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 图1 各种CMC 小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其它的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各组件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路,如图1-1所示。

图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也能看到一种贴片式的共模电感(图3),其结构和功能与直立式共模电感几乎是一样的。 图4 贴片CMC 二、从工作原理看共模电感 为什么共模电感能防EMI?要弄清楚这点,我们需要从共模电感的结构开始分析。 图5 共模电感滤波电路 图4是包含共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 事实上,将这个滤波电路一端接干扰源,另一端接被干扰设备,则La和C1,Lb和C2就构成两组低通滤波器,可以使线路上的共模EMI信号被控制在很低的电平上。该电路既可以抑制外部的EMI信号传入,又可以衰减线路自身工作时产生的EMI信号,能有效地降低EMI干扰强度。 小知识:漏感和差模电感

共模滤波电感原理分析

共模滤波电感器不是电感量越大越好.主要看你要滤除的共模干扰的频率范围,先说一下共模电感器滤波原理:共模电感器对共模干扰信号的衰减或者说滤除有两个原理,一是靠感抗的阻挡作用,但是到高频电感量没有了靠的是磁心的损耗吸收作用;他们的综合效果是滤波的真实效果.当然在低频段靠的是电感量产生的感抗.同样的电感器磁心材料绕制成的电感器,随着电感量的增加,Z阻抗与频率曲线变化的趋势是随着你绕制的电感器的电感量的增加,Z 阻抗峰值电时的频率就会下降,也就是说电感量越高所能滤除的共模干扰的频率越低,换句话说对低频共模干扰的滤除效果越好,对高频共模信号的滤除效果越差甚至不起作用. 这就是为什么有的滤波器使用两级滤波共模电感器的原因一级是用低磁导率(磁导率7K以下铁氧体材料甚至可以使用1000的NiZn材料) 材料作成共模滤波电感器,滤出几十MHz 或更高频段的共模干扰信号,另一级采用高导磁材料(如磁导率10000h00的铁氧体材料或着非晶体材料)来滤除1MHz以下或者几百kHz的共模干扰信号. 因此首先要确认你要滤除共模干扰的频率范围然后再选择合适的滤波电感器材料. 共 模电感的测量与诊断 电源滤波器的设计通常可从共模和差模两方面来考虑。共模滤波器 最重要的部分就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个 显著优点在于它的电感值极高,而且体积又小,设计共模扼流圈时要考 虑的一个重要问题是它的漏感,也就是差模电感。通常,计算漏感的办 法是假定它为共模电感的1%,实际上漏感为共模电感的 0.5% ~ 4%之 间。在设计最优性能的扼流圈时,这个误差的影响可能是不容忽视的。 漏感的重要性 漏感是如何形成的呢?紧密绕制,且绕满一周的环形线圈,即 使没有磁芯,其所有磁通都集中在线圈“芯”内。但是,如果环形线圈 没有绕满一周,或者绕制不紧密,那么磁通就会从芯中泄漏出来。这种 效应与线匝间的相对距离和螺旋管芯体的磁导率成正比。共模扼流圈有 两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方 向相反,从而使磁场为0。如果为了安全起见,芯体上的线圈不是双线 绕制,这样两个绕组之间就有相当大的间隙,自然就引起磁通“泄漏”, 这即是说,磁场在所关心的各个点上并非真正为0。共模扼流圈的漏感 是差模电感。事实上,与差模有关的磁通必须在某点上离开芯体,换句 话说,磁通在芯体外部形成闭合回路,而不仅仅只局限在环形芯体内。 如果芯体具有差模电感,那么,差模电流就会使芯体内的磁通 发生偏离零点,如果偏离太大,芯体便会发生磁饱和现象,使共模电感 基本与无磁芯的电感一样。结果,共模辐射的强度就如同电路中没有扼 流圈一样。差模电流在共模环形线圈中引起的磁通偏离可由下式得出:

共模电感浅谈

共模电感浅谈 存储与多媒体产品线彭浩版本历史

目录 1.共模电感简介 (3) 2.共模电感用于EMI滤波器 (4) 2.1噪声测量方法 (4) 2.2滤波器电路结构分析 (4) 2.3滤波器元器件参数计算 (6) 2.4共模电感的差模电感 (7) 3.共模电感的寄生参数 (9) 3.1寄生电容C1、C2 (9) 3.2电感L LK、L C (11) 3.3等效电阻R C、R W (11) 4.磁芯材料与共模电感磁芯选型 (12) 4.1铁氧体磁芯 (12) 4.2磁粉芯与高磁通磁粉芯 (12) 4.3共模电感磁芯选型 (13) 5.共模电感的设计流程 (14) 6.共模电感安规管控 (15)

1. 共模电感简介 共模电感,也叫扼流圈,常用在开关电源中过滤共模的电磁干扰信号。共模电感是一个以铁氧体等为磁芯的共模干扰抑制器件,它由两个尺寸相同,匝数相同的线圈对称地绕制在同一个铁氧体环形磁芯上,线圈的绕制方向相反,形成一个四端器件。当两线圈中流过差模电流时,产生两个相互抵消的磁场H1、H2,此时工作电流主要受线圈欧姆电阻以及可以忽略不计的工作频率下小漏感的阻尼,所以差模信号可以无衰减地通过,如图1-1所示;而当流过共模电流时,磁环中的磁通相互叠加,从而具有相当大的电感量,线圈即呈现出高阻抗,产生很强的阻尼效果,达到对共模电流的抑制作用。因此共模电感在平衡线路中能有效地抑制共模干扰信号,而对线路正常传输的差模信号无影响。 图1-1 差模信号通过共模线圈

2. 共模电感用于EMI 滤波器 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当大的间隙,这样就会产生磁通泄漏,并形成差模电感,因而共模电感对差模噪声也有抑制作用。实际应用中,共模电感常和X 电容、Y 电容组成EMI 滤波器,滤除差模噪声和共模噪声。 2.1 噪声测量方法 图2-1所示为典型的噪声测量结构图,噪声的测量主要通过LISN 来实现。L ISN 是指线路阻抗稳定网络,是传导型噪声测量的重要工具。 图2-1 噪声测量结构图 其内部结构如图2-1中虚线框内所示,高频时,电感相当于断路,电容短路,低频时相反。 LISN 的作用为隔离待测试的设备和输入电源,滤除由输入电源线引入的噪声及干扰,并且在50Ω电阻上提取噪声的相应信号值送到接收机进行分析。 共模负载阻抗为25Ω,差模负载阻抗为100Ω,测量到的噪声电压如式(2-1)(2-2)所示: dm cm L I I V ?+?=5025(2-1) dm cm N I I V ?-?=5025(2-2) V L 扫描和V N 扫描分别都要求满足限值要求。 2.2 滤波器电路结构分析 由X 电容、共模电感和Y 电容组成的滤波器如图2-2所示:

(整理)抑制共模电感

共模电感 求助编辑 共模电感 共模电感(Common mode Choke),也叫共模扼流圈,常用于电脑的开关电源中过滤共模的电磁干扰信号。在板卡设计中,共模电感也是起EMI滤波的作用,用于抑制高速信号线产生的电磁波向外辐射发射。 目录

小知识:EMI(Electro Magnetic Interference,电磁干扰) 计算机内部的主板上混合了各种高频电路、数字电路和模拟电路,它们工作时会产生大量高频电磁波互相干扰,这就是EMI。EMI还会通过主板布线或外接线缆向外发射,造成电磁辐射污染,不但影响其他的电子设备正常工作,还对人体有害。 PC板卡上的芯片在工作过程中既是一个电磁干扰对象,也是一个电磁干扰源。总的来说,我们可以把这些电磁干扰分成两类:串模干扰(差模干扰)与共模干扰(接地干扰)。以主板上的两条PCB走线(连接主板各元件的导线)为例,所谓串模干扰,指的是两条走线之间的干扰;而共模干扰则是两条走线和PCB地线之间的电位差引起的干扰。串模干扰电流作用于两条信号线间,其传导方向与波形和信号电流一致;共模干扰电流作用在信号线路和地线之间,干扰电流在两条信号线上各流过二分之一且同向,并以地线为公共回路。 共模电感 如果板卡产生的共模电流不经过衰减过滤(尤其是像USB和IEEE 1394接口这种高速接口走线上的共模电流),那么共模干扰电流就很容易通过接口数据线产生电磁辐射——在线缆中因共模电流而产生的共模辐射。美国FCC、国际无线电干扰特别委员会的CISPR22以及我国的GB9254等标准规范等都对信息技术设备通信端口的共模传导干扰和辐射发射有相关的限制要求。为了消除信号线上输入的干扰信号及感应的各种干扰,我们必须合理安排滤波电路来过滤共模和串模的干扰,共模电感就是滤波电路中的一个组成部分。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又要抑制本身不向外发出电磁干扰,避免影响同一电磁环境下其他电子设备的正常工作。 图2是我们常见的共模电感的内部电路示意图,在实际电路设计中,还可以采用多级共模电路来更好地滤除电磁干扰。此外,在主板上我们也

第三章 电 容 和 电 感

第三章电容和电感 3.1 电场和电场强度 设计课时 2课时 教学目的:授课形式1.理解电场及电场的性质。 2.掌握电场强度、及电场的表示 3.理解匀强电场的性质 讲授 教学重点:授课对象1.电场及电场的性质 2.电场强度、及电场的表示 教学难点: 电场强度、及电场的表示 教学内容参考教法 复习:[1]复习自然界两种电荷及相互作用 [2]结合初中所学磁极间相互作用及磁场 引入电荷间的作用通过电场:电场和电场强度 一、电场: [1]小结:两种电荷:正、负两种。同种排斥,异种吸引。 引导:电荷间力的作用不需接触,如何作用?类比磁场,地球引力场:说明电荷周围存在着电场,电荷间作用是通过电场实现的。 [2]电场:电场是客观存在的一种物质,看不见,摸不着。 电场的特性:对放入其中的电荷具有电场力作用; 电荷在电场力作用下移动,电场力做功,即电场具有能量 二、电场强度: 衡量电场的强弱,利用放入电场中电荷所受电场力大小来反映。 1、点电荷电场中的受力:检验电荷:为研究电场的作用,引入一个电荷量和体积都很小的点电荷。将检验电荷+q放于点电荷电场,结论: [1]+q在电场中不同位置所受电场力大小及方向不同。 [2]电场中同一点,不同电荷量的检验电荷所受电场力不同,但与电荷量比值为一常数;不同点,一般不同。 结论:F/q是一个只与电场本身性质有关,而与检验电荷无关的量,该比值可用于表示电场的强弱。 2、电场强度:放入电场中某一点的点电荷所受电场力与它的电荷量的比值,叫这一点的电场强度,简介场强。 意义:场强在数值上等于单位电荷所受电场力大小。 公式:提问 强调磁场方向

单位:电场力:N;电量:C;电场强度:N/C 电场强度为矢量:场强的方向规定电场中某点的场强方向与正电荷在该点的受力方向相同。 负电荷受力方向与场强方向相反 三、电场线 由磁场中的磁感线描述磁场引入电场线 定义:在电场中画一些假想的曲线,使曲线上每一点的切线方向都与该点的场强方向相一致。画图3-2说明电场线的方向。 说明:[1]电场线实际不存在,为研究方便引入的。 [2]电场线始于正电荷,终止于负电荷。 [3]电场疏密程度反映场强大小,越密场强越大,越疏场强越小。 常见电场的电场线:投影Page 61 图3-3介绍 四、匀强电场:电场中各点场强大小及方向都相同。 两彼此靠近、带等量异种电荷的平行板之间中央部分可近似为匀强电场。匀强电场的电场线:强调特征平行、均匀等间距及含义。右图示。 五:电场力: 电量为q的带电体在电场E的电场中所受电场力F:F = Eq 例:电场中某点场强E = 6×105N/C,则放于该点点电荷q =5×10-10C检验电荷所受电场力大小? 解:F = E q = 6×105N/C×5×10-10C = 3×10-4N 总结: 通过本节学习要能理解电荷间的作用是通过电场作用,掌握电场的性质和特征,电场强度及电场线的描述方法,并理解匀强电场的特点。类比磁场方向说明类比磁感线 作 业 学生练习讨论:Page 62 No1-5 课 后 反 思

第三章 电容与电感

第三章电容和电感 第一节电容 【教学目标】 1.了解实际电容元件,会识别电容器。 2.了解电容的概念、参数及标注,能判断电容器的好坏,了解其应用。 【教学重点】 1.会识别电容器。 2.参数识别。 3.判断电容器的好坏。 【教学难点】 判断电容器的好坏。 【一、复习】 初中物理课上学过的有关电容器的基本知识。 【二、引入新课】 通过实例(例如:照相机的闪光灯)分析,引入电容这个器件的基本知识。 【三、讲授新课】 3.1.1 电容器 1.任何两个彼此绝缘而又相互靠近的导体,都可以看成一个电容器,这两个导体称为电容器的两个极。 2.平行板电容器:两块靠近而且平行放置的金属板组成的电容器称为平行板电容器。 3.在电容器两个极施加电压U时,在介质中建立起电场,能量被存储在介质中,如图3.1所示。 图3.1 平行板电容器 4.充电和放电 (1)充电:把电容器的两个极板分别与电源的两个极相连,两个极板就会带上等量异种电荷,这一过程称为充电,如图3.2(a)所示。 (2)放电:用导线将电容器的两板接通,两板上的正、负电荷中和,电容器不再带电,这一过程称为放电,如图3.2(b)所示。

图3.2 电容器的充电和放电 3.1.2 电容 1.电容量:电容器所带电量Q 与它的两极板间的电压U 之比,称为电容器的电容量,简称电容,用C 表示。 U Q C (3.1) 2.电容的单位:国际单位是法[拉](用F 表示),其他较小的单位是mF (毫法)、μF (微法)、nF (纳法)和pF (皮法) 3.1.3 平行板电容器 平行板电容器的电容量C : 上式中,A 为极板的相对面积;d 为极板的距离;ε为介电常数。 3.1.4 电容的类型和额定值 1.电容的分类 ? 按结构分:固定电容、可变电容、微调电容,固定电容符号、外形及实物图如图3.3所示。 可变电容、微调电容符号、外形及实物图如图3.4所示。

共模扼流圈介绍

共模扼流圈分析 若按上图所示连接,I1、I2朝向均由左向右,共模电压为V cm,输入阻抗为Z,电感相等为L,互感为M。则I1、I2和V out分别为: 得到: 若L等于M则上式化简为下式 我们使用的共模扼流圈B82789C0513N002(51uH)(epcos)的参数是:

51uH、0.5欧、250mA 在50HZ下 也就是说在低频的共模电压下I2将会很大,超出额定电流? 要使低频共模电压下I2减小,就要提高r2,但r2提高后V1也随之提高,对低频的共模输入的抑制就变得很差了。 共模扼流圈图 共模扼流圈介绍: 共模电感(Common mode Choke),也叫共模扼流圈,是在一个闭合磁环上对称绕制方向相反、匝数相同的线圈。理想的共模扼流圈对L(或N)与E 之间的共模干扰具有抑制作用,而对L 与N 之间存在的差模干扰无电感抑制作用。但实际线圈绕制的不完全对称会导致差模漏电感的产生。信号电流或电源电流在两个绕组中流过时方向相反,产生的磁通量相互抵消,扼流圈呈现低阻抗。共模噪声电流(包括地环路引起的骚扰电流,也处称作纵向电流)流经两个绕组时方向相同,产生的磁通量同向相加,扼流圈呈现高阻抗,从而起到抑制共模噪声的作用。 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 共模电感实质上是一个双向滤波器:一方面要滤除信号线上共模电磁干扰,另一方面又

共模电感与差模电感的区别

共模电感与差模电感的区别 电源滤波器的设计通常可从共模和差模两方面来思索。共模滤波器最紧要的局部就是共模扼流圈,与差模扼流圈相比,共模扼流圈的一个明显长处在于它的电感值极高,并且体积又小,设计共模扼流圈时要思索的一个紧要Issue(问题)是它的漏感,也就是差模电感。通常,计算漏感的方法是假定它为共模电感的1%,实践上漏感为共模电感的0.5% ~4%之间。在设计最优功能的扼流圈时,这个误差的影响能够是不容无视的。漏感的紧要性 漏感是如何构成的呢?严密绕制,且绕满一周的环形线圈,即便没有磁芯,其全部磁通都集中在线圈“芯”内。但是,假如环形线圈没有绕满一周,或许绕制不严密,那么磁通就会从芯中走漏出来。这种效应与线匝间的绝对间隔和螺旋管芯体的磁导率成反比。共模扼流圈有两个绕组,这两个绕组被设计成使它们所流过的电流沿线圈芯传导时方向相反,从而使磁场为0。假如为了平安起见,芯体上的线圈不是双线绕制,这样两个绕组之间就有十分大的间隙,自然就引发磁通“走漏”,这即是说,磁场在所关怀的各个点上并非真正为0。共模扼流圈的漏感是差模电感。现实上,与差模有关的磁通必需在某点上分开芯体,换句话说,磁通在芯体内部构成闭合回路,而不只仅只局限在环形芯体内。

假如芯体具有差模电感,那么,差模电流就会使芯体内的磁通出现偏离零点,假如偏离太大,芯体便会出现磁饱和景象,使共模电感根本与无磁芯的电感一样。后果,共模辐射的强度就好像电路中没有扼流圈一样。差模电流在共模环形线圈中引发的磁通偏离可由下式得出:式中,是芯体中的磁通变化量,Ldm是测得的差模电感,是差模峰值电流,n 为共模线圈的匝数。 由于能够经过控制B总,使之小于B饱和,从而避免芯体出现磁饱和景象,有以下规律:式中,是差模峰值电流,Bmax是磁通量的最大偏离,n是线圈的匝数,A是环形线圈的横截面积。Ldm是线圈的差模电感。 共模扼流圈的差模电感能够按如下办法测得:将其一引腿两端短接,接着测量另外两腿间的电感,其示值即为共模扼流圈的差模电感。共模扼流圈综述 滤波器设计时,假定共模与差模这两局部是彼此独立的。但是,这两局部并非真正独立,由于共模扼流圈能够提供十分大的差模电感。这局部差模电感可由分立的差模电感来模仿。 为了应用差模电感,在滤波器的设计进程中,共模与差模不应一同实行,而应该依据一定的顺序来做。首先,应该测量共模噪声并将其滤除掉。采用差模抑制网络(Differential Mode Rejection NETWORK),能够将差模成分消弭,因而就

第3章 第3节 交变电路中的电容和电感

1.电阻、电容、电感对直流和交流的影响 (1)电阻器:对直流和交流的影响是相同的。 (2)电容器:不让直流通过却让交流通过,但对交流有一定的阻碍作用。 (3)电感器:既让直流通过也让交流通过,但对交流有一定的阻碍作用。 电容器能让交变电流通过,是自由电荷通过了电容器吗? 解析:不是。电容器让交变电流通过是电容器交替进行充电和放电的结果,而不是自由电荷通过了电容器。 2.容抗、感抗及其应用 两种作用 比较内容 容抗感抗概念电容器对交流的阻碍作用电感器对交流的阻碍作用 影响因素电容器的电容量和交变电 流的频率 电感器的自感系数和交变 电流的频率 应用隔直流,通交流阻交流,通直流阻低频,通高频阻高频,通低频 (2)电容器、电感器的分类 按对交变电流的作用电容分为隔直电容器、高频旁路电容器;扼

流圈分为低频扼流圈、高频扼流圈。 1.电感对恒定电流和交变电流均有阻碍作用(×) 2.电容器的电容越大,交变电流的频率越高,容抗就越大(×) 3.电阻对直流电和交变电流的阻碍作用相同(√) 解析:1.电感对恒定电流没有阻碍作用,对交变电流有阻碍作用,1错误。 2.电容器的电容越大,交变电流的频率越高,容抗就越小,2错误。 3.根据电阻对电流阻碍作用特点可知,3正确。 1.交变电流“通过”电容器的本质 把交流电源接到电容器两个极板上后,当电源电压升高时,电源给电容器充电,电荷向电容器极板上聚集,在电路中,形成充电电流;当电源电压降低时,电容器放电,原来聚集在极板上的电荷又放出,在电路中形成放电电流。电容器交替进行充电和放电,电路中就有了电流,好像是交流电“通过”了电容器,但实际上自由电荷并没有通过电容器两极板间的绝缘介质。 2.容抗 电容器对交流的阻碍作用。容抗用“X C”表示,X C=1 2πfC。其中f 是交流电频率,C是电容器的电容。 3.容抗与电容的关系 电容器的电容量越大,交变电流的频率越高,则容抗就越小;反之,电容量越小,交变电流频率越低,容抗就越大。 4.电容器对交变电流阻碍作用的实质 当交变电流“通过”电容器时,给电容器充电或放电,使电容器两极板间形成和原电压相反的电压,阻碍电流变化。 [典例1]如图所示,白炽灯和电容器串联后接在交变电源的两端,当交流电源的频率增加时() A.电容器的电容增加

2019第3章第3节交流电路中的电容和电感语文

第3节交流电路中的电容和电感 1.实验电路 如图3-3-1所示,将双刀双掷开关S分别接到电压相等的直流电源和交流电源上,观察灯泡的亮暗(三只灯泡相同). 图3-3-1 2.实验现象 3.实验表明 (1)电阻器对直流和交流的影响是相同的; (2)电容器不能让直流通过却能让交流通过,但对交流有一定的阻碍作用; (3)电感器既能让直流通过也能让交流通过,但对交流有一定的阻碍作用. [再判断] 1.电阻器对直流和交流的阻碍作用是不同的.(×) 2.电感器对恒定电流不起阻碍作用.(√)

3.电容器对交流电流不起阻碍作用.(×) [后思考] 直流电路和交流电路中影响电压和电流关系的因素一样吗? 【提示】不完全一样.直流电路中影响电压和电流关系的是电阻,而交流电路中影响电压和电流关系的不仅有电阻,还有线圈的感抗与电容器的容抗,它们对交变电流表现出不同的行为,存在着不同的作用,有着本质的区别.[合作探讨] 我们日常生活中使用的220 V交流的电容设备,如洗衣机等. 探讨1:这些电容设备的金属外壳是否需要接地? 【提示】需要接地. 探讨2:为什么要接地?若不接地,有时触摸外壳会有什么感觉? 【提示】与电源相连的机芯与金属外壳可以看做电容器的两个极板,交变电流能够通过这个“电容器”.外壳上带有电荷,用手摸外壳,将电荷通过人体导入地下,人会感到“麻手”,虽然这点“漏电”不会造成人身危害,但为了在机芯与外壳间真的漏电时确保安全,电气设备外壳都应该接地. [核心点击] 1.电容对交变电流的阻碍作用 图3-3-2 (1)实验演示及现象 如图3-3-2所示,将白炽灯泡和电容器串联在电路中.接通直流电源时,灯泡不亮;接通有效值与直流电源相同的交流电源时,灯泡亮. (2)实验结论 交变电流能够“通过”电容器. (3)实验现象的本质 ①直流不能“通过”电容器,是因为电容器两极板之间的绝缘介质阻隔了自由电荷的通过. ②当把电容器接在交流电源两端,在交变电压的作用下当电源电压升高时,

共模电感

共模电感 工作原理 共模电感的滤波电路,La和Lb就是共模电感线圈。这两个线圈绕在同一铁芯上,匝数和相位都相同(绕制反向)。这样,当电路中的正常电流流经共模电感时,电流在同相位绕制的电感线圈中产生反向的磁场而相互抵消,此时正常信号电流主要受线圈电阻的影响(和少量因漏感造成的阻尼);当有共模电流流经线圈时,由于共模电流的同向性,会在线圈内产生同向的磁场而增大线圈的感抗,使线圈表现为高阻抗,产生较强的阻尼效果,以此衰减共模电流,达到滤波的目的。 漏感差模 对理想的电感模型而言,当线圈绕完后,所有磁通都集中在线圈的中心内。但通常情况下环形线圈不会绕满一周,或绕制不紧密,这样会引起磁通的泄漏。共模电感有两个绕组,其间有相当共模电感大的间隙,这样就会产生磁通泄漏,并形成差模电感。因此,共模电感一般也具有一定的差模干扰衰减能力。 在滤波器的设计中,我们也可以利用漏感。如在普通的滤波器中,仅安装一个共模电感,利用共模电感的漏感产生适量的差模电感,起到对差模电流的抑制作用。有时,还要人为增加共模扼流圈的漏电感,提高差模电感量,以达到更好的滤波效果。 漏感综述 共模扼流圈能发挥一定的作用是由于μcm比μdm大好几个数量级的缘故,因为共模电流通常很小,可以通过使L/D保持在较低值来获得更小的μdm。 为了得到共模电感,同时又要使差模电感最小,最好是采用横截面积较大的磁芯绕制成多匝线圈。采用较大的螺旋管磁芯,也并非一定要这样的磁芯,可在共模扼流圈内并入有效的差模电感。因为差模磁通是远离磁芯(环形结构)的,因此可能会产生极强的辐射。尤其是滤波器安装在PCB板上的情况下,这种辐射可以耦合到电源线,使传导发射增强。当磁性材料被带到场内时(例如,环形磁芯放置在铁壳里),差模磁导率就可能会显著地增加,从而由于差模电流而导致磁芯的饱和。 共模电感在制作时应满足以下要求 (1)绕制在线圈磁芯上的导线要相互绝缘,以保证在瞬时过电压作用下线圈的匝间不发生击穿短路; (2)当线圈流过瞬时大电流时,磁芯不要出现饱和; (3)线圈中的磁芯应与线圈绝缘,以防止在瞬时过电压作用下两者之间发生击穿;

相关文档
最新文档