奥氏体不锈钢的特性

奥氏体不锈钢的特性
奥氏体不锈钢的特性

奥氏体不锈钢的特性

一般来说,304 不锈钢与316 不锈钢在抗化学腐蚀性能方面差别不大,不过在某些特定介质下有所区别。

最初开发出的不锈钢为304,在特定情况下,这种材料对点腐蚀(Pitting Corrosion)比较敏感。额外增加2-3%的钼可以减少这种敏感性,这样就诞生了316。此外,这些额外的钼还可以降低某些热有机酸的腐蚀。

316 不锈钢几乎成为食品饮料行业标准材料。由于世界范围内钼元素的短缺及316 不锈钢中镍含量更多,316 不锈钢的价格比304 不锈钢更贵。

点腐蚀是一种主要由不锈钢表面沉积腐蚀引起的现象,这是因为缺氧而不能形成氧化铬保护层。

尤其在小型阀门中,阀板上出现沉积的可能性很小,因此点腐蚀也很少发生。

在各种类型的水介质(蒸馏水、饮用水、河水、锅炉水、海水等)中,304 不锈钢与316不锈钢的抗腐蚀性能几乎一样,除非介质中氯离子的含量非常高,此时316 不锈钢就更合适。

在大多数情况下,304 不锈钢与316 不锈钢的抗腐蚀性能没有多大区别,但有些情况下也可能差别很大,需具体情况具体分析。一般来说阀门用户应该心中有数,因为他们会根据介质的情况选择容器和管道的材质,我们不建议向用户推荐材料。

奥氏体不锈钢的特性

低碳类型不锈钢

奥氏体不锈钢的抗腐蚀性能来自金属表面形成的氧化铬保护层。如果材料加热到450℃到900℃高温,材料的结构就会发生变化,沿晶体边缘会形成碳化铬。这样在晶体边沿就无法形成氧化铬保护层,从而导致抗腐蚀性能降低。这种腐蚀称为“晶间腐蚀”。

由此开发出了304L 不锈钢和316L 不锈钢来对抗这种腐蚀。304L 不

~1~

不锈钢的品质特性及其要求

不锈钢的品质特性及其要求 1不锈钢的品质特性: 2不锈钢的品质特性及其要求 各产品由于用途的不同,其加工工艺和原料的品质要求也不同 (1)材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比(BLANKING SIZE/制品直径)一般都比较高,它们的加工比分别达3.0、1.96、2.13、1.98。SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本; ②一般材:主要用于除了DDQ用途外的材料,这种材料的特点是延伸率相对较低(≧45%),而硬度相对较高(≦180),内部晶粒度等级在8.0~9.0

间,与DDQ用材比较,它的深冲性能相对稍差,它主要用于不需伸拉就能得到的制品,象一类餐具的勺、匙、叉、电器用具、钢管用途等。但它与DDQ材相比有一个优点,就是BQ性相对较好,这主要是由于它的硬度稍高的缘故。 (2)表面品质: 不锈钢薄板是一种价格非常高的材料,客户对它的表面质量要求也非常高。但不锈薄板在生产过程中不可避免会出现各种缺陷,如划伤、麻点、折痕、污染等,从而其表面质量,象划伤、折痕等这些缺陷不管是高级材还是低级都不允许出现,而麻点这种缺陷在勺、匙、叉、制作时也是决不允许的,因为抛光时很难抛掉它。我们根据表面各种缺陷出现的程度和频率,来确定其表质量等级,从而来确定产品等级。(见表:) (3)厚度公差: 一般来说不锈钢制品的不同,其要求原料厚度公差也各不相同,象二类餐具和保温杯等,厚度公差一般要求较高,为-3~5%,而一类餐具厚度公差一般要求

不锈钢种类的比较

316l不锈钢拉丝板,不锈钢拉丝板,不锈钢板拉丝机,不锈钢拉丝板价格,拉丝不锈钢板厚度,201拉丝不锈钢板,不锈钢拉丝板多少钱,不锈钢拉丝板报价表,拉丝不锈钢铝塑板,彩色不锈钢拉丝板 广东宝粤金属公司销售日本新日铁、韩国浦项、台湾新荣、上海宝钢、山西太钢、 广州联众、等不锈钢材料,产品符合GB、ASTM、JIS等规范。 不锈钢作用 自本世纪初发明不锈钢以来,不锈钢就把现代材料的形象和建筑应用中的卓越声誉集 于一身,使其竞争对手羡慕不已。不锈钢不会产生腐蚀、点蚀、锈蚀或磨损。不锈钢 还是建筑用金属材料中强度最高的材料之一。由于不锈钢具有良好的耐腐蚀性,所以 它能使结构部件永久地保持工程设计的完整性。含铬不锈钢还集机械强度和高延伸性 于一身,易于部件的加工制造,可满足建筑师和结构设计人员的需要。 不锈钢牌号分组 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。 抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之后,第二个得到最广泛应用的钢种,主要用于食品工业和外科手 术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗 氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。400 系列—铁素体和马氏体不锈钢 型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号 416—添加了硫改善了材料的加工性能。 型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和 抗腐蚀性要差。 型号 440—高强度刃具钢,含碳稍高,经过适当的热处理后可以获得较高屈服强度, 硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。

双相不锈钢的优点和缺点

双相不锈钢的分析 班级学号姓名 摘要双相不锈钢是在18-8奥氏体不锈钢的基础上,提高C r含量或者加入其他铁素体元素形成的,使钢具有奥氏体加铁素体双向组织,又节约了Ni合金。由于双向不锈钢两相组织的特点,通过正确控制化学成分和热处理工艺,使双相不锈钢兼有铁素体不锈钢和奥氏体不锈钢的优点。文章主要介绍双相不锈钢的性能、双相不锈钢的类型以及双相不锈铜的应用领域。 关键词双相不锈钢;性能;加工;热处理工艺;铁素体不锈钢;奥氏体不锈钢 双相不锈钢的基本优点如下: (1)含铬量为18%—22%的双相不锈钢在低应力下有良好的耐中性氯化物应力腐蚀性能。一般应用在70Y以上中性氯化物溶液中的18—8型奥氏体不锈钢容易发生应力腐蚀破裂,在微量氯化物及硫化氢的工业介质中用这类不锈钢制造的热交换器、蒸发器等设备都存在着产生应力腐蚀破裂的倾向,而双相不锈钢却有良好的抵抗能力。 (2)含钥双相不锈钢有良好的耐孔蚀性能。在具有相同的孔蚀当量值(PR5=cr%*3.3%Moll6%N)时,双相不锈钢与奥氏体不锈钢的临界孔蚀电位相近。含18%cr的双相不 锈钢耐孔蚀性能与AIsl316L相当。含25%Cr的尤其是含氮的高铬双相不锈钢的耐孔蚀和缝隙腐蚀性能超过了AISI 316L。 (3)有良好的耐腐蚀疲劳和磨损腐蚀性能,在某些腐蚀介质条件下被用于泵、阀等设 备中。 (4)综合力学性能好,有较高的强度和疲劳强度,屈服强度是18—8型奥氏体不锈钢的2倍。双相不锈钢由于具有奥氏体+铁素体双相组织,且两个相组织的含量基本相当,故兼有奥氏体不锈钢和铁素体不锈钢的特点。屈服强度可达400Mpa ~ 550MPa,是普通奥氏体不锈钢的2倍。与铁素体不锈钢相比,双相不锈钢的韧性高,脆性转变温度低,耐晶间腐蚀性能和焊接性能均显着提高;同时又保留了铁素体不锈钢的一些特点,如475℃脆性、热导率高、线膨胀系数小,具有超塑性及磁性等。与奥氏体不锈钢相比,双相不锈钢的强度高,特别是屈服强度显着提高,且耐孔蚀性、耐应力腐蚀、耐腐蚀疲劳等性能也有明显的改善。 (5)可焊性良好,热裂倾向小。一般焊前不需预热,焊后不需热处理,可与18—8型奥氏体不锈钢或碳钢等异种钢焊接。 (6)台低铬(18%cr)的双相不锈钢热加工温度范围比18—8型奥氏体不锈钢宽,抗力小,可不经过锻造,直接轧制开坯生产钢板”肯高铬(25%c)的钢则比奥氏休不锈钢热加r 困难。 (7)与奥氏体不锈钢相比,导热系数大,线膨胀系数小板,也适用丁制造热交换器的管芯。与奥氏体不锈钢相比,双相不锈钢(DSS)的强度和耐局部腐蚀性能结合良好, DSS的金相组织通常为50%的铁素体和50%的奥氏体,但二者的比例也可以在35%/65%到55%/45%之间变化。由于其高强度及长期使用中的高可靠性,目前国外开始考虑把它作为“基体材料”,以代替碳钢应用到大型储罐及设备制造方面。在炼油行业中经常使用的DSS有22%cr和25%Cr两个级别,后者与前者相比包含更多的钼和氮,具有更高的耐蚀性能双相不锈钥处存在如下缺点: (1)与奥氏休不锈钢比较,耐热性较低,一般控制在300Y以下的工作环境中使用。 (2)冷加r比18—8型奥氏体不锈钢的加丁硬化效应大,在管、板承受变形初期,需施

奥氏体不锈钢的晶间腐蚀及热处理

奥氏体不锈钢的晶间腐蚀及热处理 1. 奥氏体不锈钢晶间腐蚀原因及防止措施 奥氏体不锈钢在450~850℃保温或缓慢冷却时,会出现晶问腐蚀。合碳量越高,晶间蚀倾向性越大。此外,在焊接件的热影响区也会出现晶间腐蚀。这是由于在晶界上析出富Cr 的Cr23C6。使其周围基体产生贫铬区,从而形成腐蚀原电池而造成的。这种晶间腐蚀现象在铁素体不锈钢中也是存在的。 工程上常采用以下几种方法防止晶间腐蚀: (1)降低钢中的碳量,使钢中合碳量低于平衡状态下在奥氏体内的饱和溶解度,即从根本上解决了铬的碳化物(Cr23C6)在晶界上析出的问题。通常钢中含碳量降至0.03%以下即可满足抗晶间腐蚀性能的要求。 (2)加入Ti、Nb等能形成稳定碳化物(TiC或NbC)的元素,避免在晶界上析出Cr23C6,即可防上奥氏体不锈钢的晶间腐蚀。 (3)通过调整钢中奥氏体形成元素与铁素体形成元素的比例,使其具有奥氏体+铁素体双相组织,其中铁素体占5%一12%。这种双相组织不易产生晶间腐蚀。 (4)采用适当热处理工艺,可以防止晶间腐蚀,获得最佳的耐蚀性。 2.奥氏体不锈钢的应力腐蚀 应力(主要是拉应力)与腐蚀的综合作用所引起的开裂称为应力腐蚀开裂,简称SCC(Stress Crack Corrosion)。奥氏体不锈钢容易在含氯离子的腐蚀介质中产生应力腐蚀。当含Ni量达到8%一10%时,奥氏体不锈钢应力腐蚀倾向性最大,继续增加含Ni量至45%~50%应力腐蚀倾向逐渐减小,直至消失。防止奥氏体不锈钢应力腐蚀的最主要途径是加入Si 2%~4%并从冶炼上将N含量控制在0.04%以下。此外还应尽量减少P、Sb、Bi、As等杂质的含量。另外可选用A-F双用钢,它在Cl-和OH-介质中对应力腐蚀不敏感。当初始的微细裂纹遇到铁素体相后不再继续扩展,体素体含量应在6%左右。 3.奥氏作不锈钢的形变强化 单相的奥氏体不锈钢具有良好的冷变形性能,可以冷拔成很细的钢丝,冷轧成很薄的钢带或钢管。经过大量变形后,钢的强度大力提高,尤其是在零下温区轧制时效果更为显著。抗拉强度可达2 000 MPa以上。这是因为除了冷作硬化效果外,还叠加了形变诱发M转变。 奥氏作不锈钢经形变强化后可用来制造不锈弹簧、钟表发条、航空结构中的钢丝绳等。形变后若需焊接,则只能采用点焊工艺、形变使应力腐蚀倾向性增加。并因部分γ->M转变而产生铁磁性,在使用时(如仪表零件中)应予以考虑。再结晶温度随形变量而改变,当形变量为60%时,其再结晶温度降为650℃冷变形奥氏体不锈钢再结晶退火温度为850~1050℃,850℃则需保温3h,1050℃时透烧即可,然后水冷。 4.奥氏作不锈钢的热处理 奥氏体不锈钢常用的热处理工艺有:固溶处理、稳定化处理和去应力处理等。 (1)固溶处理。 将钢加热到1050~1150℃后水淬,主要目的是使碳化物溶于奥氏体中,并将此状态保留到室温,这样钢的耐蚀性会有很大改善。如上所述,为了防止晶问腐蚀,通常采用固溶化处理,使Cr23C6溶于奥氏体中,然后快速冷却。对于薄壁件可采用空冷,一般情况采用水冷。 (2)稳定化处理。 一般是在固溶处理后进行,常用于含Ti、Nb的18-8钢,固处理后,将钢加热到850~880℃保温后空冷,此时Cr的碳化物完全溶解,然而钛的碳化物不完全溶解,且在冷却过程中充分析出,使碳不可能再形成格的碳化物,因而有效地消除了晶间腐蚀。 (3)去应力处理。

双相不锈钢奥氏体铁素体不锈钢之比较

双相不锈钢奥氏体铁素体不锈钢之比较 所谓双相不锈钢是在其固淬组织中铁素体相与奥氏体相各占一半,一般最少相的含量也许要达到30%。 由于两相组织的特点,通过正确控制化学成分和热处理工艺,使DSS兼有铁素体不锈钢和奥氏体不锈钢的优点。 与奥氏体不锈钢相比,双相不锈钢的优势如下: (1)屈服强度比普通奥氏体不锈钢高一倍多,且具有成型需要的足够的塑韧性。采用双相不锈钢制造储罐或压力容器的壁厚要比常用的奥氏体减少30-50%,有利于降低成本。 (2)具有优异的耐应力腐蚀破裂的能力,即使是含合金量最低的双相不锈钢也有比奥氏体不锈钢更高的耐应力腐蚀破裂的能力,尤其在含氯离子的环境中。应力腐蚀是普通奥氏体不锈钢难以解决的突出问题。 (3)在许多介质中应用最普遍的2205双相不锈钢的耐腐蚀性优于普通的316L奥氏体不锈钢,而超级双相不锈钢具有极高的耐腐蚀性,再一些介质中,如醋酸,甲酸等甚至可以取代高合金奥氏体不锈钢,乃至耐蚀合金。

(4)具有良好的耐局部腐蚀性能,与合金含量相当的奥氏体不锈钢相比,它的耐磨损腐蚀和疲劳腐蚀性能都优于奥氏体不锈钢。 (5)比奥氏体不锈钢的线膨胀系数低,和碳钢接近,适合与碳钢连接,具有重要的工程意义,如生产复合板或衬里等。 (6)不论在动载或静载条件下,比奥氏体不锈钢具有更高的能量吸收能力,这对结构件应付突发事故如冲撞,爆炸等,双相不锈钢优势明显,有实际应用价值。 与奥氏体不锈钢相比,双相不锈钢的弱势如下: (1)应用的普遍性与多面性不如奥氏体不锈钢,例如其使用温度必须控制在250摄氏度以下。 (2)其塑韧性较奥氏体不锈钢低,冷,热加工工艺和成型性能不如奥氏体不锈钢。 (3)存在中温脆性区,需要严格控制热处理和焊接的工艺制度,以避免有害相的出现,损害性能。 与铁素体不锈钢相比,双相不锈钢的优势如下:

不锈钢力学性能

不锈钢的物理性能不锈钢和碳钢的物理性能数据对比,碳钢的密度略高于铁素体和马氏体型不锈钢,而略低于奥氏体型不锈钢;电阻率按碳钢、铁素体型、马氏体型和奥氏体型不锈钢排序递增;线膨胀系数大小的排序也类似,奥氏体型不锈钢最高而碳钢最小;碳钢、铁素体型和马氏体型不锈钢有磁性,奥氏体型不锈钢无磁性,但其冷加工硬化生成成氏体相变时将会产生磁性,可用热处理方法来消除这种马氏体组织而恢复其无磁性。奥氏体型不锈钢与碳钢相比,具有下列特点:1)高的电阴率,约为碳钢的5倍。2)大的线膨胀系数,比碳钢大40%,并随着温度的升高,线膨胀系数的数值也相应地提高。3)低的热导率,约为碳钢的1/3。不锈钢的力学性不论不锈钢板还是耐热钢板,奥氏体型的钢板的综合性能最好,既有足够的强度,又有极好的塑性同时硬度也不高,这也是它们被广泛采用的原因之一。奥氏体型不锈钢同绝大多数的其它金属材料相似,其抗拉强度、屈服强度和硬度,随着温度的降低而提高;塑性则随着温度降低而减小。其抗拉强度在温度15~80°C范围内增长是较为均匀的。更重要的是:随着温度的降低,其冲击韧度减少缓慢,并不存在脆性转变温度。所以不锈钢在低温时能保持足够的塑性和韧性。不锈钢的耐热性能耐热性能是指高温下,既有抗氧化或耐气体介质腐蚀的性能即热稳定性,同时在高温时双有足够的强度即热强性。不锈钢国际标准标准标准标准名GB 中华人民共和国国家标准(国家技术监督局)KS 韩国工业标准协会规格Korean Standard AISI 美国钢铁协会规格America Iron and Steel Institute SAE 美国汽车技术者协会规格Society of Automative Engineers ASTM 美国材料试验协会规格American Society for Testing and Material AWS 美国焊接协会规格American Welding Society ASME 美国机械技术者协会规格American Society of Mechanical Engineers BS 英国标准规格British Standard DIN 德国标准规格Deutsch Industria Normen CAS 加拿大标准规格Canadian Standard Associatoin API 美国石油协会规格American Petroleum Association KR 韩国船舶协会规格Korean Resister of Shipping NK 日本省事协会规格Hihon Kanji Koki LR 英国船舶协会规格Llouds Register of Shipping AB 美国舰艇协会规格American Bureau of Shipping JIS 日本工业标准协会规格Japanese Standard 316和316L不锈钢316和317不锈钢(317不锈钢的性能见后)是含钼不锈钢种。317不锈钢中的钼含量略高明于316不锈钢.由于钢中钼,该钢种总的性能优于310和304不锈钢,高温条件下,当硫酸的浓度低于15%和高于85%时,316不锈钢具有广泛的用途。316不锈钢还具有良好的而氯化物侵蚀的性能,所以通常用于海洋环境。316L不锈钢的最大碳含量0.03,可用于焊接后不能进行退火和需要最大耐腐蚀性的用途中。耐腐蚀性:耐腐蚀性能优于304不锈钢,在浆和造纸的生产过程中具有良好的耐腐蚀的性能。而且316不锈钢还耐海洋和侵蚀性工业大气的侵蚀。耐热性:在1600度以下的间断使用和在1700度以下的连续使用中,316不锈钢具有好的耐氧化性能:在800-1575度的范围内,最好不要连续作用316不锈钢,但在该温度范围以外连续使用316不锈钢时,该不锈钢具有良好的耐热性。316L不锈钢的耐碳化物析出的性能比316不锈钢更好,可用上述温度范围。热处理:在1850-2050度的温度范围内进行退火,然后迅速退火,然后迅速冷却。316不锈钢不能过热处理进行硬化。焊接:316不锈钢具有良好的焊接性能。可采用所有标准的焊接方法进行焊接。焊接时可根据用途,分别采用316Cb、316L或309Cb不锈钢填料棒或焊条进行焊接。为获得最佳的耐腐蚀性能,316不锈钢钢的焊接断面需要进行焊后退火处理。如果使用316L不锈钢,不需要进行焊后退火处理。典型用途:纸浆和造纸用设备热交换器、染色设备、胶片冲洗设备、管道、沿海区域建筑物外部用材料。不锈钢加工及施工Drawing深加工:易产生磨擦热量所以使用耐压、耐热性高不锈钢种同时成型加工结束后应除掉表面附着的油。焊接:焊接之前应彻底除掉有害于焊接的锈、油、水份、油漆等,选定适合钢种的焊条。点焊时间距比碳钢点焊间距短,除掉焊渣时应使用不锈钢刷。焊完以后,为了防止局部腐蚀或强度下降,应对表面进行研磨处理或清洗。切断以及冲压:由于不锈钢比一般材料强度高,所以冲压以及剪切时需要更高的压力,而刀与刀间隙准确时才能不发生切变不良和加工硬化,最好采用等离子或激光切断,当不得不采用气割或电弧切断时,对热影响区进行研磨以及必要进行热处理。折弯加工:簿板可以折弯到180,但为了减少弯面的裂纹同半径大小最好2倍板厚的,厚板沿压延方向时给2倍板厚半径,与压延垂直方

不锈钢定义及分类资料

一、不锈钢的定义 在空气中或化学腐蚀介质中能够抵抗腐蚀的一种高合 金钢,不锈钢是具有美观的表面和耐腐蚀性能好,不必经过镀色等表面处理,而发挥不锈钢所固有的表面性能,使用于多方面的钢铁的一种,通常称为不锈钢。代表性能的有13铬钢,18-铬镍钢等高合金钢。 从金相学角度分析,因为不锈钢含有铬而使表面形成很薄的铬膜,这个膜隔离开与钢内侵入的氧气起耐腐蚀的作用。 为了保持不锈钢所固有的耐腐蚀性,钢必须含有12%以上的铬。 二、不锈钢的种类 不锈钢可以按用途、化学成分及金相组织来大体分类。以奥氏体系类的钢由18%铬-8%镍为基本组成,各元素的加入量变化的不同,而开发各种用途的钢种。 1.以化学成分分类: ①. CR系列:铁素体系列、马氏体系列 ②. CR-NI系列:奥氏体系列,异常系列,析出硬化系列。

2.以金相组织的分类: ①.奥氏体不锈钢 ②.铁素体不锈钢 ③.马氏体不锈钢 ④.双相不锈钢 ⑤.沉淀硬化不锈钢 3.不锈钢的表面类别 现在不锈钢的发展,已使不锈钢的耐蚀性、外观、加工性、强度等特性远远超过其它材料,而且,不锈钢的许多表面处理法,可以取得丰富多彩的颜色及形状,这为不锈钢的发展作出很大的贡献。 不锈钢制造过程中的表面处理法以及机械研磨表面处理法

4.不锈钢的缺陷类别 分类个 数 典型缺陷 共同缺 陷 原料缺 陷28 金属球痕,大理石纹,纵向发裂 划伤,异 物压入,

冷轧缺 陷30 辊印,辊表面粗糙,辊振动痕,鱼 尾纹,微细皱纹,浪型缺陷,垫纸 压入 污染,折 痕,卷取 不良 退火酸 洗32 过酸洗,退火酸洗,欠酸洗,欠退 火,点蚀,锈,刷辊痕,橡胶残留, 白斑,酸洗液残留,炉内停止 精整缺 陷 30 脱脂不良,研磨不匀,条纹,毛边 5.钢的分类方法 5-1 按化学成分分类: ◆碳素钢 ◆合金钢:低合金钢:合金元素≤5% 高合金钢:合金元素≥10% 中合金钢:合金元素 5%—10% 注:不锈钢为高合金钢。 5-2 按质量分类: ①普通钢 ②优质钢 ③高级优质(A)

双相不锈钢性能特点-力学性能特点

与不锈钢中其他四类相比,由于双相不锈钢具有α+γ双相组织结构,因此,其性能特点兼有奥氏体不锈钢和铁素体不锈钢的特性,是一类高强度与高耐蚀性最佳匹配的不锈钢。 与铁素体不锈钢相比,α+γ双相不锈钢的脆性转变温度低,室温韧性高,耐晶间腐蚀和焊接性能显著改善,同时仍保留铁素体不锈钢的一些特点,如457℃脆性,中温脆性和高温脆性及热导率高、线胀系数小何具有超塑性等。 与奥氏体不锈钢相比,双相不锈钢的强度,特别是屈服强度显著提高,耐晶间腐蚀、应力腐蚀、疲劳腐蚀及磨蚀等性能明显改善,但有磁性。 上述双相不锈钢的特性,随两相比例的不同而有所改变。例如,当铁素体相的比例较大时,则更易显示铁素体不锈钢的性能特点;反之,则更易显示奥氏体不锈钢的性能特点。

1.力学性能 高强度,存在脆性转变温度和三个脆性区。 由于双相不锈钢具有微细的显微组织以及钼、氮等的强化作用,双相不锈钢的强度远远高于铁素体不锈钢和奥氏体不锈钢,一些试验结果见表1和图2。 表1.铁素体(430)、奥氏体(304)和双相不锈钢代表性牌号室温力学性能的对比 图2.分别为超级铁素体不锈钢、超级双相不锈钢、超级奥氏体不锈钢的力学性能对比 但是,双相不锈钢中含高铬、钼的大量铁素体相的存在,使得铁素体不锈钢中所具有的脆性 转变温度和457℃脆性、中温脆性以及高温脆性三个脆性区的特征,在双相不锈钢中先也显 现了出来(图3~5)。但是由于双相不锈钢的晶粒细化且又存在大量奥氏体,所以双相不锈 钢的脆性转变温度明显低于普通铁素体不锈钢,一般均在-40℃或-50℃以下,而且室温冲击 韧性也足够高(表1),因此不影响双相不锈钢的工程应用。至于457℃脆性和中温脆性只 要不高于260℃,长期使用就不会有任何危险。

不锈钢的性能与特性.

不锈钢的性能与特性 一、不锈钢的组织性能 目前已知的化学元素有100多种,在工业中常用的钢铁材料中可以遇到的化学元素约二十多种。对于人们在与腐蚀现象作长期斗争的实践而形成的不锈钢这一特殊钢系列来说,最常用的元素有十几种,除了组成钢的基本元素铁以外,对不锈钢的性能与组织影响最大的元素是:碳、铬、镍、锰、硅、钼、钛、铌、钛、锰、氮、铜、钴等。这些元素中除碳、硅、氮以外,都是化学元素周期表中位于过渡族的元素。 实际上工业上应用的不锈钢都是同时存在几种以至十几种元素的,当几种元素共存于不锈钢这一个统一体中时,它们的影响要比单独存在时复杂得多,因为在这种情况下不仅要考虑各元素自身的作用,而且要注意它们互相之间的影响,因此不锈钢的组织决定于各种元素影响的总和。 合金元素的作用—— 不锈钢含有基本金属(Base)铁和主要元素Cr、Ni,通过添加Cr、Ni以外的元素制造具有各种特性的不锈钢。 二、不锈钢的特性 1.一般特性

◆表面美观以及使用可能性多样化 ◆耐腐蚀性能好,比普通钢长久耐用 ◆耐腐蚀性好 ◆强度高,因而薄板使用的可能性大 ◆耐高温氧化及强度高,因此能够抗火灾 ◆常温加工,即容易塑性加工 ◆因为不必表面处理,所以简便、维护简单 ◆清洁,光洁度高 ◆焊接性能好 2、品质特性 2-1不锈钢的品质特性

2-2不锈钢的品质特性要求 ※各产品由于用途的不同,其加工工艺和原料的品质要求也不同。 2-3 品质要求特性微细项目 (1) 材质: ①DDQ(deep drawing quality)材:是指用于深拉(冲)用途的材料,也就是大家所说的的软料,这种材料的主要特点是延伸率较高(≧53%),硬度较低(≦170%),内部晶粒等级在7.0~8.0之间,深冲性能极佳。目前许多生产保温瓶、锅类的企业,其产品的加工比一般都比较高,SUS304 DDQ用材主要就是用于这些要求较高加工比的产品,当然加工比超过2.0的产品一般都需经过几道次的拉伸才能完成。如果原料延伸方面达不到的话,在加工深拉制品时产品极易产生裂纹、拉穿的现象,影响成品合格率,当然也就加大了厂家的成本;

不锈钢的热处理

不锈钢的热处理 304是奥氏体型不锈钢,想通过热处理来改变切削加工性能是不现实的。其他钢种可以通过退火或正火来改变组织,从而改变切削加工性能,是因为其他钢在加热和冷却过程中发生组织转变,因为组织决定了性能,因此改变了切削加工性能,而奥氏体不锈钢,室温是奥氏体,加热到高温也是奥氏体,不发生组织转变,所以热处理不能够改变其切削加工性能的,奥氏体不锈钢的热处理通常只有固溶处理、再结晶退火和去应力退火之类的,固溶处理是改变耐蚀性的,再结晶退火是消除加工硬化恢复塑性的,去应力退火是消除加工过程中产生的应力的,所以,期望通过热处理改变奥氏体不锈钢的切削加工性是不现实的。每种材料有各自的特点,热处理工艺也不一定通用,玉米面包饺子肯定不行,虽然也是面粉。奥氏体不锈钢的切削加工,只能够通过改变刀具、切削加工工艺参数来解决。 铸钢件铸造成型后,通常都是要进行热处理的。因为热处理前铸件晶粒较粗大、组织方向性明显、力学性能较低,根据铸件的不同要求制定热处理工艺。 普通要求铸钢件,采用退火处理,软化易于加工;要求强度的要正火处理,要求硬度的要淬火处理;固溶处理,提高耐腐蚀性能。 铸造不锈钢一般为奥氏体.在加热时无相变,因此不能通过热处理强化。只能以提高钢的耐腐蚀性能进行热处理: 固溶处理:其目的是使碳化物充分溶解并在常温下保留在奥氏体中,从而在常温下获单相奥氏体组织,使钢具有最高的耐腐蚀性能。 固溶处理的加热温度一般均较高,在1050-1100℃之间,并按含碳量的高低作适当调整。由于18-8不锈钢导热性很差,不仅要通过预热后再进行淬火加热,而且在固溶处理(淬火加热)时的保温时间要长。固溶处理时,要特别注意防止增碳。因为增碳将会增加18-8钢的晶间腐蚀倾向。冷却介质,一般采用清水。固溶处理后的组织一般是单相奥氏体,但对含有钛、铌、钼的不锈钢,尤其当是铸件时,还含有少量的铁素体。固溶处理后的硬度一般在135HBS左右 回火又称配火。金属热处理工艺的一种。将经过淬火的工件重新加热到低于下临界温度的适当温度,保温一段时间后在空气或水、油等介质中冷却的金属热处理。或将淬火后的合金工件加热到适当温度,保温若干时间,然后缓慢或快速冷却。一般用以减低或消除淬火钢件中的内应力,或降低其硬度和强度,以提高其延性或韧性。根据不同的要求可采用低温回火、中温回火或高温回火。通常随着回火温度的升高,硬度和强度降低,延性或韧性逐渐增高。钢铁工件在淬火后具有以下特点:①得到了马氏体、贝氏体、残余奥氏体等不平衡(即不稳定)组织。②存在较大内应力。③力学性能不能满足要求。因此,钢铁工件淬火后一般都要经过回火。 回火的作用在于:①提高组织稳定性,使工件在使用过程中不再发生组织转变,从而使工件几何尺寸和性能保持稳定。②消除内应力,以便改善工件的使用性能并稳定工件几何尺寸。③调整钢铁的力学性能以满足使用要求。 调质即淬火和高温回火的综合热处理工艺。不锈钢做不了调质热处理,因为达不到硬度。 高碳铬不锈钢中的铬含量很高,导热性差,锻后应及时退火,以免发生裂纹。 比如95cr18钢球化退火工艺

不锈钢简介

不锈钢简介 一、不锈钢的特性: 1、不锈钢定义:不锈钢通常指具有抵抗空气、水、酸、碱盐或其它介质腐蚀能力的钢根据合金成份的不同,分别侧重不锈性和耐酸性,有些钢虽然具有不锈性,但不一定耐酸,耐酸钢通常具有不锈性。所有的不锈钢没有一种能够应付所有的腐蚀环境,都可以不生锈。“不锈钢”是一种错误的名称,因为没有一种能够应付所有腐蚀环境,都可以不生锈的,不锈钢的真正含义只是“难生锈”而已。 2、不锈钢的分类: (1)按组织结构:马氏体不锈钢,铁表体不锈钢,奥氏体不锈钢,双相不锈钢; (2)按钢中主要化学成份:铬不锈钢镍不锈钢,铬镍钼不锈钢,超低碳不锈钢。(用于生产紧固件主要使用300系奥氏体不锈钢,此类不锈钢的主要化学成份是18%铬加8%镍,即一般所称的18-8不锈钢,属铬镍不锈钢系列) (3)奥氏体不锈钢的特性:正常状态下无磁性,冷作加工后略有磁性;在各种温度,均可保持其奥斯田组织,不发生相变,所以不能用热处理使其硬化;但施予冷作加工,可使其硬化,并增加强度。主要有以下几种钢种:302HQ(0Cr18Ni9Cu3)、SUS304(0Cr18Ni9)、304M、304J3(302HC)、316(0Cr17Ni12Mo2)、316L(0Cr17Ni14Mo2)。 302HQ:低碳,低氮,低硫,极低之加工硬化率,极佳之冷间加工性,适用于形状复杂,成型难度高之用途。 304:加工硬化率适中,适于一般的冷加工及伸抽,冷加工性能较好。 304M:中等的加工硬化率,适于一般的冷间加工及伸抽。 304HC:添加铜取代镍,降低钢材之加工硬化率,且可维持较低之导磁性。 SUS316:加钼,更佳的耐蚀性及耐孔蚀性。 SUS316L:低碳,较316更佳的耐蚀性及更佳的冷加工性。 二、奥氏体钢螺栓、螺钉和螺柱机械性能

不锈钢的常见种类、型号及性能

不锈钢的常见种类、型号及性能 200 系列—铬-镍-锰奥氏体不锈钢 300 系列—铬-镍奥氏体不锈钢 型号 301—延展性好,用于成型产品。也可通过机械加工使其迅速硬化。焊接性好。抗磨性和疲劳强度优于304不锈钢。 型号 302—耐腐蚀性同304,由于含碳相对要高因而强度更好。 型号 303—通过添加少量的硫、磷使其较304更易切削加工。 型号 304—通用型号;即18/8不锈钢。GB牌号为0Cr18Ni9。 型号 309—较之304有更好的耐温性。 型号 316—继304之後,第二个得到最广泛应用的钢种,主要用于食品工业和外科手术器材,添加钼元素使其获得一种抗腐蚀的特殊结构。由于较之304其具有更好的抗氯化物腐蚀能力因而也作“船用钢”来使用。SS316则通常用于核燃料回收装置。18/10级不锈钢通常也符合这个应用级别。 型号 321—除了因为添加了钛元素降低了材料焊缝锈蚀的风险之外其他性能类似304。 400 系列—铁素体和马氏体不锈钢 型号 408—耐热性好,弱抗腐蚀性,11%的Cr,8%的Ni。 型号 409—最廉价的型号(英美),通常用作汽车排气管,属铁素体不锈钢(铬钢)。 型号 410—马氏体(高强度铬钢),耐磨性好,抗腐蚀性较差。 型号 416—添加了硫改善了材料的加工性能。 型号 420—“刃具级”马氏体钢,类似布氏高铬钢这种最早的不锈钢。也用于外科手术刀具,可以做的非常光亮。 型号 430—铁素体不锈钢,装饰用,例如用于汽车饰品。良好的成型性,但耐温性和抗腐蚀性要差。 型号 440—高强度刃具钢,含碳稍高,经过适当的热处理後可以获得较高屈服强度,硬度可以达到58HRC,属于最硬的不锈钢之列。最常见的应用例子就是“剃须刀片”。常用型号有三种:440A、440B、440C,另外还有440F(易加工型)。 500 系列—耐热铬合金钢。 600 系列—马氏体沉淀硬化不锈钢。 型号 630—最常用的沉淀硬化不锈钢型号,通常也叫17-4;17%Cr,4%Ni。 不锈钢的分类、主要成分及机械工艺性能比较 不锈钢按主要化学组成可分为铬不锈钢、铬镍不锈钢、铬锰氮不锈钢、铬镍钼不锈钢以及超低碳不锈钢、高钼不锈钢、高纯不锈钢等;按钢的性能特点和用途分类,如耐硝酸(硝酸级)不锈钢、耐硫酸不锈钢、耐点蚀不锈钢、耐应力不锈钢、高强度不锈钢等。 按钢的功能特点分类,如低温不锈钢、无磁不锈钢、易切削不锈钢,超塑性不锈钢等。通常以金相组织进行分类。按金相组织分类为:铁素体(F)型不锈钢、马氏体(M)型不锈钢、奥氏体(A)型不锈钢、奥氏体-铁素体(A-F)型双相不锈钢、奥氏体-马氏体(A-M)型双相不锈钢和沉淀硬化(PH)型不锈钢。 以下是具体的不锈钢的分类、主要成分及机械工艺性能比较: 分类大概成分(%) 淬火性耐蚀性加工性可焊接性磁性 C Cr Ni 铁素体系 0.35以下 16-27 - 无佳尚佳尚可有

双相不锈钢基本特性

第一类属低合金型,代表牌号UNS S32304(23Cr-4Ni-0.1N),钢中不含钼,PREN值为24-25,在耐应力腐蚀面可代替AISI304或316使用。 第二类属中合金型,代表牌号是UNS S31803(22Cr-5Ni-3Mo-0.15N),PREN值为32-33,其耐蚀性能介于AISI 316L和6%Mo+N奥氏体不锈钢之间。 第三类属高合金型,一般含25%Cr,还含有钼和氮,有的还含有铜和钨,标准牌号UNSS32550(25Cr-6Ni-3Mo-2Cu-0.2N),PREN值为38-39,这类钢的耐蚀性能高于22%Cr的双相不锈钢。 第四类属超级双相不锈钢型,含高钼和氮,标准牌号UNS S32750(25Cr-7Ni-3.7Mo-0.3N),有的也含钨和铜,PREN值大于40,可适用于苛刻的介质条件,具有良好的耐蚀与力学综合性能,可与超级奥氏体不锈钢相媲美。国外主要双相不锈钢牌号的近似对照见表2。 表1 双相不锈钢(DSS)代表牌号的主要化学成分和蚀抗力当量值 Representative Duplex Stainless Steel Types,Main Chemical Analysis and Pitting Resistance Equivalent Number - . -考试文档-

- . -考试文档-

- . -考试文档-

表2 各国主要双相不锈钢牌号的近似对照 Comparison of Main Duplex Stainless Steels Of Different Countries - . -考试文档-

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450C?850 C (此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400C?850C的温度范围内(敏化温度区域)时,会有高铭碳化物 (Cr23C6)析出,当铭含量降至耐腐蚀性界限之下,此时存在晶界贫铭,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。 不同的不锈钢固溶化的温度烧有不同,304,316等奥氏体不锈钢一般是1050 C,奥氏体-铁素体双相不锈钢要高一点,可到1150 C . 固溶热处理:将奥氏体不锈钢加热到1100 C左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铭形成高铭碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的淬火'与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100 C。 我是搞火电的,回答可能不太全面,谁知道的可以继续补充

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875C以上温度时,能形成稳定的碳化物。这是因为Ti (或Nb)能优先与碳结合,形成TiC (或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti (或Nb)保护Cr的目的。含Ti (或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti , 1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铭形成高铭碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875 C以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机 械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳 定化处理

不锈钢热处理知识

敏化处理:18-8钢系列的奥氏体不锈钢在450℃~850℃(此区间常称为敏化温度)短时间加热,使其具有晶间腐蚀倾向。这是因为碳在奥氏体不锈钢中的溶解度与温度有很大影响。奥氏体不锈钢在经400℃~850℃的温度范围内(敏化温度区域)时,会有高铬碳化物(Cr23C6)析出,当铬含量降至耐腐蚀性界限之下,此时存在晶界贫铬,会产生晶间腐蚀,严重时材料能变成粉末。该方法一般只在不锈钢晶间腐蚀试验时采用。 (2)固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。 不同的不锈钢固溶化的温度烧有不同, 304,316等奥氏体不锈钢一般是1050℃,奥氏体-铁素体双相不锈钢要高一点,可到1150℃. 固溶热处理:将奥氏体不锈钢加热到1100℃左右,使碳化物相全部或基本溶解,碳固溶于奥氏体中,然后快速冷却至室温,使碳达到过饱和状态(碳已经稳定了,没有能力和机会与铬形成高铬碳化物)。这种热处理方法为固溶热处理。 固溶热处理中的快速冷却似乎象普通钢的淬火,但此时的‘淬火’与普通钢的淬火是不同的,前者是软化处理,后者是淬硬(形成马氏体)。后者为获得不同的硬度所采取的加热温度也不一样,但没到1100℃。我是搞火电的,回答可能不太全面,谁知道的可以继续补充。

在电厂中,奥氏体不锈钢管进行冷弯加工,容易产生形变诱发马氏体相变(很拗口,其实就是产生了马氏体),容易引起耐蚀性的下降。ASME标准规定,当加工量超过一定量时就必须进行固溶处理 (3)稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物。这是因为Ti(或Nb)能优先与碳结合,形成TiC(或NbC),从而大大降低了奥氏体中固溶碳的浓度(含量),起到了牺牲Ti(或Nb)保护Cr的目的。含Ti(或Nb)的奥氏体不锈钢(如:1Cr18Ni9Ti,1Cr18Ni9Nb)经稳定化处理后比进行固溶热处理更具有良好的综合机械性能。 稳定化处理:为避免碳与铬形成高铬碳化物,在奥氏体钢中加入稳定化元素(如Ti和Nb),在加热到875℃以上温度时,能形成稳定的碳化物(由于Ti和Nb能优先与碳结合,形成TiC或NbC),大大降低了奥氏体中固溶碳的浓度(含量),从而起到了牺Ti和Nb保Cr 的目的。 经稳定化处理比进行固溶热处理的奥氏体不锈钢,具有更好的综合机械性能。 (4)所以,有晶间腐蚀倾向的奥氏体不锈钢应进行固溶热处理或稳定化处理

各种不锈钢材质参数

不锈钢材质参数

不锈钢材质参数 No. 中国 GB 中国台湾 CNS 日本 JIS 印度 IS 美国 加拿大 CSA 墨西 哥 DG N 澳大利亚 AS AST M 1 UNS 奥氏体不锈钢 1 1Cr17 Mn6n Ni5N 201 SUS201 STS201 10Cr17M 201 S20100 201 - 201-2 2 1Cr18 Mn 8Ni5N 202 SUS202 STS202 202 S20200 202 - - 3 1Cr17Ni7 301 SUS301 STS301 10Cr17Ni7 301 S30100 301 - 301 4 1Cr18Ni9 302 SUS302 STS302 - 302 S30200 302 302 302 5 Y1Cr18Ni9 303 SUS303 STS303 - 303 S30300 303 302 303 6 Y1Cr18Ni9Se 303Se SUS303Se STS303Se - 303Se S30323 303Se 303Se !- 7 0Cr19Ni19 0Cr18Ni19 304 SUS304 SS304 07Cr18Ni9 304 304H S30400 304 304 304 中国与其他国家钢号近似对照常用材料的化学成分和力学性能常用双相不锈钢理化性能指标中国与亚洲、北美诸国(地区)及澳大利亚的不锈钢钢号近似对照

8 00Cr19Ni10 00Cr18Ni19 304L SUS304L STS304L 02Cr18 nIl1 304L S30403 304L 304L 9 0Cr19Ni19N 304N1 SUS304N1 STS304N1 - 304N S30454 - - - 10 0Cr19Ni10NbN 304N2 SUS304N2 STS304N2 -”XM2S30452 - - - 11 00Cr18Ni10N 304LN SUS304LN STS304LN - 304L S30453 - - - 1Cr18Ni12 12 1Cr18Ni12Ti 305 SUS305 STS305 - 305 S30500 305 305 - 13 0Cr23Ni13 309S SUS309S STS309S - 309S S30908 309S 309S - 14 0Cr25Ni20 1Cr18Ni12Ti 310S SUS310S STS310S - 310S S31008 310S 310S 310S 15 0Cr17Ni12Mo2 316 SUS316 STS316 04Cr17Ni12Mo2 316 S31600 316 316 316 16 0Cr18Ni12Mo2Ti - 04Cr17Ni12MoTi-2316T S31615 - - 316Ti 17 00Cr17Ni14Mo2 316L STS316L STS316L ~02Cr17Ni12Mo2 3161 S31651 - - - 18 00Cr17Ni12Mo2N 316N SUS316N STS316N - 316N S31651 - - - 19 00Cr17Ni13Mo2N 316LN SUS316LN STS316LN - 316L S31653 - - - 20 0Cr18Ni12Mo2Cu2 316J1 SUSJ1 STS316J1 - - - - - - 21 00Cr18Ni14Mo2Cu2 316J1L SUS316J1L ST316J1L - - - - - 22 0Cr19Ni13Mo3 317 SUS317 STS317 - 317 S31700 317 317 317

不锈钢的焊后热处理规定

不锈钢的焊后热处理规定 (2012-07-19 15:59:15) 不锈钢的焊后热处理,我国没有明确规范,而美国ASME及USA标准,英国BS 标 准,联邦德国.AD、DIN及VdTuV规范等某些发达国家的标准都有相应的规定。 综合上述标准规定,对高强度Cr不锈钢,为了去氢需要预热,其温度范围为150一4 00℃。马氏体不锈钢焊后热处理温度范围为730—800℃。铁奈体不锈钢焊后热处理温度范围为730一800℃,随即快速冷却以防脆化,4)奥氏体不锈钢没有一个标准规 定必须焊后热处理,仅建议当板材很厚肘,可选择900~1100℃温度范围进行热处理,随即进行水冷或空冷(根据板厚),5)奥氏体一铁素体双相钢和镲基合金没有任何规定和建议。 不锈钢的焊后热处理可分别采用以下三种温度范围的热处理。 1.低温焊后热处理(≤500℃) Cr-Ni奥氏体不锈钢,在200 ~400℃热处理可减少峰值应力(约减少40%),但总应 力降低很少。奥氏体不锈钢偶尔也采用400一500℃热处理。低温处理不适于高强度Cr不锈钢。 2.中温焊后热处理(550一820℃) 中温热处理的目的主要是消除应力。这种热处理可用于复合钢,对基层及不锈钢复层都可消除应力。 对铁素体和马氏体不锈钢,一般都在600 ~730℃范围内进行焊后热处理,以改善缺口韧性。 奥氏体一铁索体双相钢不宜采用中温处理,因为会引起ɑ相和碳化物析出。奥氏体不锈钢用于复合钢中时,可在540~700℃处理以消除应力。奥氏体不锈钢一般不宜在550—800℃热处理,因为这个温度范围会促进晶阅腐蚀的产生(C<0.03%的超低碳不锈钢除外). 3.高温焊后热处理( >900℃)

相关文档
最新文档