哈工大计算化学总结(内含2011年题)

哈工大计算化学总结(内含2011年题)
哈工大计算化学总结(内含2011年题)

绪论

1. 计算化学的定义

计算化学是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质

狭义:量子化学

广义:计算化学是一门涉及多种学科的边缘学科

2.计算化学的类型

以计算机体系为主的计算化学

以计算数学为主要体系的计算化学和化工

以化学应用为主的计算化学

以介绍应用程序为主的计算化学

以介绍在化学分析仪器中使用电子计算机为主的计算化学

3.计算化学的地位

促进化学界的研究方法和工业界的生产方式不断革新。

是绿色化学和绿色化工的基础,是联系化学化工为国民经济可持续性发展服务的桥梁。 中科院院士徐光宪先生在其报告中称“理论化学和计算化学的基础及应用研究”是21世纪化学的11个突破口之一。

4.量子化学发展简史

20年代末,Heitler-London使用量子力学处理H原子,H2分子,标志量子化学计算的开始

量子化学,两个流派:价键理论(VB)、分子轨道理论(MO)

价键理论和分子轨道理论的根本区别在于,价键理论是电子两两配对形成定域的化学键,这里所说的定域,通俗讲就是电子被束缚在某个固定的位置振动,而不会在分子内部的任何地方运动。而分子轨道理论的本质是假设分子轨道是由原子轨道线性组合而成,允许电子离域在整个分子中运动,而不是在特定的键上。简单说,价键理论中的电子是固定在某个区域内运动,分子轨道理论中的电子是在分子内部的所有区域内运动。

Gaussian的核心思想:50年代的时候,使用类氢离子波函数为基函数,后来使用Slater函数(STO)为基函数,后来又采用Gauss函数拟合STO。

80年代,是量子化学计算飞速发展的时期。赝势是针对重原子体系而提出的。

90年代,以密度泛函理论为基础的DFT方法迅速发展起来。最大的特点:轨道波函数为基->密度函数为基。由此引申出的方法有广义梯度近似(GGA)、密度泛函与分子轨道的杂化方法(B3LYP)。我国的XIAMEN99采用的VB方法。

有三种方法:VB价键方法,MO分子轨道方法,DFT密度泛函方法。

从静到动;各种方法的相互渗透。从小分子到大体系

5.计算化学的研究内容:

狭义: 量子结构计算——量子化学和结构化学范畴;

物理化学参数的计算——统计热力学范畴

化学过程模拟和化工过程计算等

广义: 化学数据挖掘(Data mining);

化学结构与化学反应的计算机处理技术;

计算机辅助分子设计;

计算机辅助合成路线设计;

计算机辅助化学过程综合与开发;

化学中的人工智能方法等。

6.计算化学的课程目标:

介绍当前计算化学领域常用的基本方法;

学会使用各种计算化学软件包, 特别是Gaussian03, materials studio,ADF等。

掌握计算化学领域的基础理论和计算方法, 并且使用它们分析和解释一定的化学问题。

7.计算机在化学中的应用

化学数据的挖掘(data mining);化学结构和化学反应的计算机处理技术

计算机辅助合成路线设计;计算机辅助过程综合与开发;计算机辅助分子设计和模拟

8.计算化学获诺奖

到了60年代中期,物理学家Kohn的介入使问题的解决崭露新的生机。他认为,计算时没有必要考虑每个单电子的运动过程,而只需了解空间某一位置的平均电子数即可,这种简化方法即所谓的分布密度理论。这一理论成为后来大多数数学计算的先决条件。几乎同时,数学家Pople提出,将理论方法应用到化学中,必须首先明确在给定体系中方法的精度和准确度,更重要的是所建立的方法必须容易掌握。60年代计算机的大力发展给波普的工作创造了不可缺少的条件,在理论和计算工具充分具备的条件下,Pople设计了计算程序GAUSSIAN,从70年代到80年代,Pople不断地改进计算方法,同时建立了“模型化学”理论。90年代初期,Pople引入Kohn的分布密度理论,使得复杂分子的分析成为可能。

第一章

1.计算化学的宗旨

首先选用物理模型,不得已才选数学模型。

在运用第一原理的时候,选用适当的模型才能执行计算。必须强调:物理模型比数学模型重要得多,只有在暂时无法构筑物理模型的场合才不得已采用数学模型。

物理学是严密科学(exact science),化学也正步入严密科学。“严”字指机理正确,“密”字指数值准确。

2.能量优化的方法

单纯形法、最速下降法、共轭梯度法、Newton-Raphson

3、寻找过渡态的方法

极大-极小逼近法、线性内坐标途径法(LICP)

4、理论概述

1)分子力学(Molecular mechanicsm)、

把分子用硬球和弹簧的方式来表示

相对于初步搭建的分子模型, 可以更好地得到其稳定结构

可以计算变形的相对能量

计算成本低

需要很多经验参数, 这些经验参数需要仔细测试和校准

只能得到稳定几何结构

无法得到电子相互作用的信息

无法得到分子性质和反应性能的信息

不能研究包含成键和断键的反应

分子动力学:

分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系综中抽取样本,从而计算体系的构型积分,并以构型积

分的结果为基础进一步计算体系的热力学量和其他宏观性质。

2)半经验方法(Semiempirical)、

对价电子进行近似的描写;通过解简化的Schr?dinger 方程而得到其中的很多积分用含参数的经验式子来近似;

可以半定量地描写电子分布, 分子结构, 性质和相对能量;比从头算电子结构方法计算快, 但是没有它准确

3)完全从头算(ab initio calculation)、

使用完全的Schr?dinger 方程, 得到更精确的电子分布;可以系统地进行改进, 直至达到化学精度;化学精度: 键长 0.02A, 键角 2o, 键能 2kcal/mol不需要参数, 也不用实验来校准;可以描写结构, 性质, 能量和反应性能;计算成本高

4)密度泛函(Density functional)

使用完全的Schr?dinger 方程, 原理上可以得到准确的电子分布

可以很容易达到很高的精度, 但是无法系统地改进到化学精度;需要一些猜测泛函和参数, 体系的适用性必须用实验来校准;

可以描写结构, 性质, 能量和反应性能;计算成本中等

分子力学(Molecular mechanicsm) 大体系, 结构

半经验方法(Semiempirical) 中等体系, 粗略性质

完全从头算(ab initio calculation) 小体系, 准确性质

密度泛函(Density functional) 中等体系, 准确性质

此表很重要!必记!

5.分子模型的适用范围

可以把分子结构, 性质和反应性能模型化

可以进行简单的定性解释, 也可以得到精确的定量的结果

可以瞬间计算完成, 也可能花费超级计算机几个月的时间

必须平衡计算成本和模型方法的精确度

6. 简单搭建的分子模型

从一些标准的结构或部分来搭建;键长和配位都是固定的

从一些分子的结构来可以得到很好的定性模型;便于使用而且很容易实现

可以对分子的三维结构给出直观的认识;对于分子性质, 能量或反应性能却一无所知

第二章

1.化学中的常用软件

Gaussian 03 :分子力学, 半经验、从头算、密度泛函的分子轨道计算

分子结构绘图软件:描绘化合物的结构式、化学反应方程式、化工流程图、简单的实验装置图等化学常用的平面图形的绘制

ChemDraw ISIS Draw, ChemSketch、Chem3D

科学计算和数据处理软件:Origin8.5、

核磁数据处理软件:NUTS:处理一维及二维核磁数据,其功能包括付立叶变换、相位校正、差谱、模拟谱、匀场练习等几乎所有核磁仪器操作软件的功能

核磁图谱:ChemNMR 可以用来估算大多数有机物的1H、13C化学位移及用线图表示的相应图谱

计算机辅助教学:CHAOS:有机合成路线设计

Chemlab——化学反应模拟软件

虚拟化学实验,交互式地仿真演示化学实验,FOR WIN9X。能够仿真大多数化学实验。CHEMLAB包含的东西非常多,滴定、反应动力学,周期表...

分子绘图及分子模拟计算软件Chemoffice

量化计算:Gaussian:支持常用半经验方法、从头计算法及密度泛函理论,其用户界面不够友好。可以在Chem3D加入CS Gaussian Client插件后简化用户的操作。

2.软件的背景及其主要功能

3.计算化学软件分类

Gaussian 98/03: 由Pople等人编写,经过几十年的发展和完善,

该软件已成为国际上公认的、计算结果具有较高

可靠性的量子化学软件,它包含从头算、半经验

以及分子力学等多种方法,可适用于不同尺度的

有限体系,除了部分稀土和放射性元素外,它可

处理周期表中其它元素形成的各种化合物;

Crystal 98/03:该软件由意大利都灵大学理论化学研究所开发,

采用基于原子轨道线性组合的从头算方法来研究

固体及表面的电子结构;

V ASP: 该软件由奥地利维也纳大学开发,采用基于平面波

基组的密度泛函理论来研究固体及表面的构型以及

动力学过程;

CASTEP:MS软件模块之一,与V ASP程序类似;

Dmol: MS软件模块之一,主要用于有限尺度体系电子结

构研究;

Material Studio ( MS ,https://www.360docs.net/doc/dc15215094.html,/)是一个计算机材料模拟和建模的平台,它包括两个密度泛函计算模块,CASTEP和DMo13。前者采用数值局域原子基而后者使用平面波基组。由于使用数值局域基组和对Hartree势的多级展开方法,DMol3可以以比较高的效率提供比较可靠的计算结果。DMol3以前的版本主要是用来模拟分子体系,而当前的版本加入了周期性边界条件的处理,也可用来计算固体。CASTEP的平面波质势方法是一种经典的算法,有很高的精度。

化学及材料科学的研究者们能更方便的建立三维分子模型,深入的分析有机、无机晶体、无定形材料以及聚合物。

模拟的内容囊括了催化剂、聚合物、固体化学、结晶学、晶粉衍射以及材料特性等材料科学研究领域的主要课题。

第三章分子力学

1.计算化学中模拟计算的整个过程主要包括的步骤及各步骤的主要内容及注意事项

计算模型和方法的选取是保证计算结果可靠性的关键,理想的情况是:1.所选取的计算模型与实际情形一致;2.采用高级别的计算方法。但是,由于受到计算软硬件的限制,在多数情况下,很难同时做到上述两点要求,实际操作中,当计算模型较大时,只能选择精确度较低的计算方法,只有对较小的模型才能选取高级的计算方法。

因此,当确定了一种计算模型和方法后,最好对其进行验证,以保证计算结果的可靠性。假设当前的研究对象是化合物A,可通过下列途径进行验证:

1). 与A化合物现有实验结果之间的比较;

2). 若无实验方面的报道,可对与A类似的化合物B进行研究,此时以B的实验结果作为参照;

3). 当上述方法行不通时,可以采用较大模型和较为高级的计算方法得到的计算结果作为参照,该方法主要用于系列化合物的研究:如对A1, A2, A3,先用大模型和基组对A1进行研究,然后以该结果为参照,确定计算量适中的模型和方法并应用于A1,A2,A3。

2. 描述分子构型的方法:

a.直角坐标系方法:(适用于全自由度构型优化情况)

说明:1)元素符号大小写均可,也可直接采用原子序数;

2)有时为了便于区别,可在元素符号后加一整数,如:

O -0.464 0.177 0.0

H1 -0.464 1.137 0.0

H2 0.441 -0.143 0.0

3)x,y,z数值必须以小数格式输入:

O -0.464 0.177 0 ( )

O -0.464 0.177 0.( )

4)g03的数据输入均为自由格式,即除了用空格来分数据外,也可用逗号或混合使用;

b.内坐标(z-matrix)方法:(适用于构型的局部优化)

内坐标与直角坐标之间的区别在于,它侧重于从原子之间的

键连角度来描述原子间的相对位置,具体参数包括:

1).键长:( 需用两个原子描述) 2)键角:(需用三个原子描述)

3)二面角:(需用四个原子描述)

内坐标的输入格式为:原子1,原子2,键长,原子3,键角,原子4,二面角

c.直角坐标和内坐标混合输入方法:

对于该方法,只需在采用直角坐标方法输入的原子的元素符号后加一个整数0即可

d.分子构型的输入准确性是保证计算结果可靠性的前提,对

于复杂体系,在计算前均需对所输构型进行检查,具体包

括:

构型的可视化处理,即采用一些分子构型软件(例如Gaussview和Chem3D)观察所给构型是否合理;在g03运行到L2模块,会给出所输入分子所属点群,此时,可检查点群是否合理。

3.分子力学的定义

分子力学,又叫力场方法(force field method),目前广泛地用于计算分子的构象和能量。分子力学从本质上说上是能量最小值方法,即在原子间相互作用势的作用下, 通过改变粒子分布的几何位型, 以能量最小为判据, 从而获得体系的最佳结构。

4. 分子力场

分子力场根据量子力学的波恩-奥本海默近似,一个分子的能量可以近似看作构成分子的各个原子的空间坐标的函数,简单地讲就是分子的能量随分子构型的变化而变化,而描述这种分子能量和分子结构之间关系的就是分子力场函数。

分子力场函数为来自实验结果的经验公式,可以讲对分子能量的模拟比较粗糙,但是相比于精确的量子力学从头计算方法,分子力场方法的计算量要小数十倍,而且在适当的范围内,分子力场方法的计算精度与量子化学计算相差无几,因此对大分子复杂体系而言,分子力场方法是一套行之有效的方法。以分子力场为基础的分子力学计算方法在分子动力学、蒙特卡罗方法、分子对接等分子模拟方法中有着广泛的应用。

5 . 力场的构成

键伸缩能:构成分子的各个化学键在键轴方向上的伸缩运动所引起的能量变化

键角弯曲能:键角变化引起的分子能量变化

二面角扭曲能:单键旋转引起分子骨架扭曲所产生的能量变化

非键相互作用:包括范德华力、静电相互作用等与能量有关的非键相互作用

交叉能量项:上述作用之间耦合引起的能量变化

构成一套力场函数体系需要有一套联系分子能量和构型的函数,还需要给出各种不同原子在不同成键状况下的物理参数,比如正常的键长、键角、二面角等,这些力场参数多来自实验或者量子化学计算

6.常用力场的函数和分类

不同的分子力场会选取不同的函数形式来描述上述能量与体系构型之间的关系。

传统力场

AMBER力场:由Kollman课题组开发的力场,是目前使用比较广泛的一种力场,适合处理生物大分子。

CHARMM力场:由Karplus课题组开发,对小分子体系到溶剂化的大分子体系都有很好的拟合。

CVFF力场:CVFF力场是一个可以用于无机体系计算的力场

MMX力场:MMX力场包括MM2和MM3,是目前应用最为广泛的一种力场,主要针对有机小分子

第二代力场

CFF力场CFF力场是一个力场家族,包括了CFF91、PCFF、CFF95等很多力场,可以进行从有机小分子、生物大分子到分子筛等诸多体系的计算

COMPASS力场由MSI公司开发的力场,擅长进行高分子体系的计算

MMF94力场Hagler开发的力场,是目前最准确的力场之一

通用力场

通用力场也叫基于规则的力场,它所应用的力场参数是基于原子性质计算所得,用户可以通过自主设定一系列分子作为训练集来生成合用的力场参数

ESFF力场MSI公司开发的力场,可以进行有机、无机分子的计算

UFF力场可以计算周期表上所有元素的参数

Dreiding力场适用于有机小分子、大分子、主族元素的计算

7.分子力学的基本思想

在分子内部,化学键都有“自然”的键长值和键角值。分子要调整它的几何形状(构象),以使其键长值和键角值尽可能接近自然值,同时也使非键作用(van der Waals力)处于最小的状态,给出原子核位置的最佳排布。在某些有张力的分子体系中,分子的张力可以计算出来。

8.分子力学如何演示分子的空间能?

分子力学从位能函数来表示当键长、键角、二面角等结构参数以及非键作用等偏离“理想”值时分子能量(称为空间能,space energy)的变化。采用优化的方法,寻找分子空间能处于极小值状态时分子的构型。

对于某个分子来说,空间能是分子构象的函数。

分子的空间能Es可表示为:

Es=Ec+Eb+Et+Enb+…

其中Ec是键的伸缩能,Eb是键角弯曲能,Et是键的二面角扭转能,Enb是非键作用能,它包括van der Waals作用能,偶极(电荷)作用能、氢键作用能等等。

9.力场的参数化

1)定义:分子力学力场的性能即它的计算结果的准确性和可靠性主要取决于势能函数和结构参数。这些有关力常数,结构参数的“本征值”的置定过程称为力场的参数化。

2)如何获得?参数化的过程要在大量的热力学、光谱学实验数据的基础上进行,有时也需要由量子化学计算的结果提供数据。

10.力场所存在的问题及力场的发展趋势

1)两个相互作用原子间的诱导偶极的作用会受到其它原子的影响;

2)非键作用势中假定原子为球形,实际上非键作用受原子形状影响,还需考虑孤对电子;3)谐振势函数不能精确拟合实验数据

4)对于静电作用的处理过于简化。

力场的发展趋势:考虑原子极化率、取用高次项、发展含金属的力场

11.采用分子力学方法进行分子结构优化的过程?

首先,给出所计算分子的试探结构。不一定是分子的稳定构象,而且往往不是稳定构象。

然后,将总空间能Es对所有描述分子构象的变量即分子各原子的三维坐标在一定的范围内求极小值。由于数学上只能保证求得局部极小值,即实现局部优化,而不一定能求得全局最小值。所以得到的是在这一构象附近的一相对稳定的构象。

分子力学常用的优化方法有使用一阶导数的最速下降法和使用二阶导数的Newton-Raphson法。以下为详细过程:

除了初始坐标外,还要提供分子中所有原子的联接关系,以便自动搜索任何两个原子之间的作用,按不同的联接关系以不同的能量函数形式计算对总能量的贡献。计算中所用的能量参数大部分已在程序中准备好,有时,要对某些参数进行修改或增补。

分子总能量是原子三维坐标的函数,在计算完初始构象的分子能量后,要进行能量极小化的迭代,直到达到收敛标准为止。最终给出分子体系优化的原子坐标,总空间能及各能量项的贡献。

12.分子力学的特点

1)概念清楚,便于理解及应用

概念简明易于接受。分子力学中的总“能量”被分解成键的伸缩、键角弯曲、键的扭曲和非键作用等,比起量子化学计算中的Fock矩阵等概念来要直观易懂。

2)计算速度快

量子化学从头算的计算量随原子轨道数目的增加,按4次方的速度上升,而分子力学的计算量仅与原子数目的平方成正比。

计算时间- MM正比于原子数m的平方m2

QM正比于轨道数n的n4或n3

3)与量子化学计算相辅相成

分子力学宜用于对大分子进行构象分析、研究与空间效应密切相关的有机反应机理、反应活性、有机物的稳定性及生物活性分子的构象与活性的关系;

对于化合物的电子结构、光谱性质、反应能力等涉及电子运动的研究,则应使用量子化学计算的方法。

13.分子力学与量子化学计算比较

分子力学是经典模型,以原子为“粒子”,按经典力学运动,而量子化学则主要处理对象为电子,其运动服从量子力学规律;

量子化学中,电子或原子核间的相互作用服从库仑定律,而分子力学中每对原子之间有一特定的作用势函数,原子不同或者原子虽然相同但所处环境不同,则势函数不同,即使对同一对原子,也无法给出准确的普适势函数。

第四章分子动力学(MD)

1.分子动力学

分子动力学是一套分子模拟方法,该方法主要是依靠牛顿力学来模拟分子体系的运动,以在由分子体系的不同状态构成的系综中抽取样本,从而计算体系的构型积分,并以构型积分的结果为基础进一步计算体系的热力学量和其他宏观性质。

MD方法用来模拟分子体系与时间有关的性质,基于Newton运动定律,可通过对Newton 方程积分来抽样检测由原子坐标和速度所严格定义的相空间,可以基于当前分子的位置和速度计算出其未来的位置和速度。与单点能和构型优化不同,分子动力学模拟计算要考虑热运动,分子可包含足够的热能来穿越势垒。根据各个粒子运动的统计分析,可推知体系的各种性质。如可能的构象、热力学性质、分子的动态性质、溶液中的行为,各种平衡态性质等。

2.系综(常用系综)

系综(ensemble)代表一大群相类似的体系的集合

统计物理的一个基本假设(各态历经假设)是:对于一个处于平衡的体系,物理量的时间平均,等于对对应系综里所有体系进行平均的结果。体系的平衡态的物理性质可以对不同的微观状态求和来得到。概念由吉布斯提出

常用系综:

微正则系综(microcanonical ensemble):

系综里的每个体系具有相同的能量(通常每个体系的粒子数和体积也是相同的)。

正则系综(canonical ensemble) :

系综里的每个体系都可以和其他体系交换能量(每个体系的粒子数和体积仍然是固定且相同的),但是系综里所有体系的能量总和是固定的。系综内各体系有相同的温度。

巨正则系综(grand canonical ensemble) :

正则系综的推广,每个体系都可以和其他体系交换能量和粒子,但系综内各体系的能量总和以及粒子数总和都是固定的。(系综内各体系的体积相同。)系综内各个体系有相同的温度和化学势。

等温等压系综(isothermal-isobaric ensemble):

正则系综的推广,体系间可交换能量和体积,但能量总和以及体积总和都是固定的。(系综内各体系有相同的粒子数。)正如它的名字,系综内各个体系有相同的温度和压强。

3.MD(分子动力学模拟)的基本原理

用牛顿经典力学计算许多分子在相空间中的轨迹

求解系统中的分子或原子间作用势能和系统外加约束共同作用的分子或原子的牛顿方程。

模拟系统随时间推进的微观过程。通过统计方法得到系统的平衡参数或输运性质计算程序较为复杂,占用较多内存。

4. MD的主要步骤

选取要研究的系统及其边界,选取系统内粒子间的作用势能模型

设定系统中粒子的初始位置和初始动量

建立模拟算法,计算粒子间作用力及各粒子的速度和位置

当体系达到平衡后,依据相关的统计公式,获得各宏观参数和输运性质

5.分子力学与MD的模型、算法、应用(看看PPT的总结)

积分算法优劣的判据(important!):

分子动力学中一个好的积分算法的判据主要包括:

①计算速度快;

②需要较小的计算机内存;

③允许使用较长的时间步长;

④表现出较好的能量守恒。

MM、MD方法的应用:

领域:高分子、生命科学、药物设计、催化、半导体其它功能材料、结构材料等

分子力学是用计算机在原子水平上模拟给定分子模型的结构与性质,进而得到分子的各种物理性质与化学性质,如结构参数、振动频率、构象能量、相互作用能量、偶极矩、密度、摩尔体积、汽化焓等

分子动力学方法能实时将分子的动态行为显示到计算机屏幕上, 便于直观了解体系在一定条件下的演变过程MD含温度与时间, 因此还可得到如材料的玻璃化转变温度、热容、晶体结晶过程、输送过程、膨胀过程、动态弛豫(relax)以及体系在外场作用下的变化过程等

分子动力学的适用范围:

分子动力学方法只考虑多体系统中原子核的运动,而电子的运动不予考虑,量子效应忽略。经典近似在很宽的材料体系都较精确;但对于涉及电荷重新分布的化学反应、键的形成与断裂、解离、极化以及金属离子的化学键都不适用,此时需要使用量子力学方法。经典分子动力学方法(MD)也不适用于低温,因为量子物理给出的离散能级之间的能隙比体系的热能大,体系被限制在一个或几个低能态中。当温度升高或与运动相关的频率降低(有较长的时间标度)时,离散的能级描述变得不重要,在这样的条件下,更高的能级可以用热激发描述。

6.几种常见的针对软材料模拟分子动力学软件

NAMD:主要针对与生物和化学软材料体系

优点:程序设计水平高,计算效率高,号称可以有效并行到上千个处理器

兼容多种输入和输出文件格式,有很好的分析辅助软件VMD

不需安装免费

缺点:万一需要自己安装的话比较麻烦

AMBER:主要针对生物体系,也适当兼容一般化学分子

优点:有很好的内置势能模型

自定义新模型和新分子很方便

有很完善的维护网站

缺点:计算效率不高(收敛到16个处理器),运算速度慢

CHARMM:主要针对生物体系,也包含部分化学体系

优点:势能模型更新很快

自定义新模型比较方便

维护服务很好

缺点:运算速度慢,计算效率低

第五章量子化学计算方法

1.量子化学计算

量子化学计算的基础就是解电子运动的Schr?dinger方程,通过对原子和分子的核外电子运动的了解,进一步了解分子的结构、电荷分布,原子间结合能,结构与性质的关系,一直到反应途径(核运动规律)的研究。

建立在三个近似基础上: 1、非相对论近似;2、Born-Oppenhermer近似;3、单电子近似(轨道近似)。最后得到单电子运动方程

2.量子化学计算方法简介

1)从头计算

对于分子体系不同,不能象原子体系那样用类氢轨道(或Slater轨道)直接代入H-F方程求解,而分子轨道要用原子轨道(或某些基组)展开,这就形成了Hartree-Fock-Roothaan 方程。

建立在仅仅包含三个近似(非相对论近似,B-O近似,轨道近似)的Hartree-Fock-Roothaan 方程基础上的严格的量子化学计算,称为从头计算法.

由于处理的体系不同则采用的方程也略有不同,一般都是采用单Slater行列式。

对分子体系进行从头计算时,分子轨道要用一套基函数(基组)展开,这里就存在基函数的选择问题,常用有二种基组。

STO和GTO

从头计算的应用

由于从头计算的精度高,误差分析容易,自六十年代以来,它的应用范围不断扩大,从小分子到大分子,从静态性质到动态性质,从分子内到分子间相互作用,它广泛应用于研究分子的电子结构的各方面性质,平衡几何构型,电荷密度分布,键级分析、偶极矩、内旋转和翻转势垒、力常数、位能面、电离势及各种能谱等等。

1)集居数分析2)平衡几何构型3)某些反应能量的计算4)位能面

从头计算的误差相对论误差轨道近似误差

2)半经验近似算法

为什么要产生该方法?

由于从头计算对较大的分子体系计算时,随着体系增大,则基组增大,而要增加的积分数目是与N4(N是电子数)成正比(或基组数),所以要化大量时间去计算这种多中心积分,而难于在计算机实施(即化大量机时和大量外存硬盘),因此希望能用一种近似方法来实施这种自洽场分子轨道法对大分子电子结构的计算,

Pople认为这种近似方法,至少要有精密的定性背景,主要有*:

(1)、方法必须足够简单,以便应用于较大分子,而无需作过多计算。

(2)、即使引进必须的近似,这些近似不应超越限度,以抵消或改变决定结构的原始物理作用力。

(3)、近似方法应使种种结果仍然能细致地得到解释,并进行定性讨论。

(4)、近似方法不许暗中加入从习惯的定性讨论中导出的预见(如引入一对电子成键等价键的概念)。

(5)、近似方法应是足够普通地考虑所有化学上有效的电子,一般而且必须考虑全部价电子。

半经验算法的相关应用:

它具有和从头算几乎相似的应用范围,特别是较大的分子体系,其功能:如总能量,轨道能,电荷分布,平衡几何构型,激发能,电离势等。

最后是上机实验

如何进行气体小分子的扩散系数的计算计算过程及和步骤的目的

1计算化学概述

1计算化学概述 计算化学在最近十年中可以说是发展最快的化学研究领域之一。究竟什么是计算化学呢?由于其目前在各种化学研究中广泛的应用, 我们并不容易给它一个很明确的定义。简单的来说, 计算化学是根据基本的物理化学理论通常指量子化学、统计热力学及经典力学及大量的数值运算方式研究分子、团簇的性质及化学反应的一门科学。最常见到的例子是以量子化学理论和计算、分子反应动力学理论和计算、分子力学及分子动力学理论和计算等等来解释实验中各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。对于未知或不易观测的化学系统, 计算化学还常扮演着预测的角色, 提供进一步研究的方向。除此之外, 计算化学也常被用来验证、测试、修正、或发展较高层次的化学理论。同时准确或有效率计算方法的开发创新也是计算化学领域中非常重要的一部分。简言之, 计算化学是一门应用计算机技术, 通过理论计算研究化学反应的机制和速率, 总结和预见化学物质结构和性能关系的规律的学科。如果说物理化学是化学和物理学相互交叉融合的产物, 那么计算化学则是化学、计算机科学、物理学、生命科学、材料科学以及药学等多学科交叉融合的产物, 而化学则是其中的核心学科。近二十年来, 计算机技术的飞速发展和理论方法的进步使理论与计算化学逐渐成为一门新兴的学科。今天、理论化学计算和实验研究的紧密结合大大改变了化学作为纯实验科学的传统印象, 有力地推动了化学各个分支学科的发展。而且, 理论与计算化学的发展也对相关的学科如纳米科学和分子生物学的发展起到了巨大的推动作用。 2计算化学的产生、发展、现状和未来 2.1计算化学的产生 计算化学是随着量子化学理论的产生而发展起来的, 有着悠久历史的一门新兴学科。自上个世纪年代量子力学理论建立以来, 许多科学家曾尝试以各种数值计算方法来深人了解原子与分子之各种化学性质。然而在数值计算机广泛使用之前, 此类的计算由于其复杂性而只能应用在简单的系统与高度简化的理论模型之中, 所以, 即使是在此后的数十年里, 计算化学仍是一门需具有高度量子力学与数值分析素养的人从事的研究, 而且由于其庞大的计算量, 绝大部分的

精题分解化学实验及计算典型例题

[精题分解]化学实验及计算 典型例题 (一)化学实验 [例1] 在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物,该氧化物又可以经过此反应的逆反应,生成颗粒很细的铁粉,这种铁粉具有很高的反应活性,在空气中受撞击或受热时会燃烧,所以俗称“引火铁”,请分别用下图中示意的两套仪器装置,制取上速铁的氧化物和“引火铁”,实验中必须使用普通铁粉、6molL-1盐酸,其它试剂自选(装置中必要的铁架台、铁夹、铁圈、石棉网、加热设备等在图中均已略去)。 填写下列空白: (1)实验进行时试管A 中应加入的试剂是 烧瓶B 的作用是 ; 烧瓶C 的作用是 在试管D 中收集得到的是 (2)实验时,U 型管G 中应加入的试剂是 分液漏斗H 中应加入 (3)两套装置中,在实验时需要加热的仪器是(填该仪器对应字母) (4)烧瓶I 中发生的反应有时要加入少量硫酸铜溶液,其目的是 (5)试管E 中发生反应的化学方程式是 (6)为了安全,在E 管中的反应发生前,在F 出口处必须 ;E 管中反应开始后,在F 出口处应 [解析] 这是一这典型的功能性信息给予实验题,①题给新信息是制取‘引火铁”的反应原理需同学们推理写出②“引火铁”的特性③两套未曾见过的新装置。解答中首先阅读题干“在一定条件下用普通铁粉和水蒸气反应,可以得到铁的氧化物。”联想学过的反应: ()2 432443H O Fe O H Fe ++高温气 (普通铁粉) 由此反应推知制取“引火铁”的新反应为

()气高温O H Fe H O Fe 2243434++(引火铁) 即题中涉及铁的氧化物是Fe3O4(不是Fe2O3,也不是FeO ),一定条件是指高温。 然后.仔细观察两套实验装置,可发现左边装置有用排水法收集反应生成气体(D 试管)一定是H2,由此确认左边装置为制取铁的氧化物,而右边装置用于制取“引火铁”,这是本题解题的突破口,然后综合运用有关实验的知识和技能,结合对装置图的观察加工,即可解题如下: (1)A 中应加入普通铁粉,B 是作为水蒸气发生器,因反应产生的H 2可能不连续,C 瓶为防止水槽中的水倒吸而作缓冲瓶(较难),D 中收集到的是H 2。 (2)右边的装置气流是从右到左,烧瓶I 和分液漏斗H 的组合一定是H 2发生装置,所用试剂自然是普通铁粉和6mol 、L -1 盐酸,所以制得的H 2中含有HCl 气体和H 2O (气),在制取“引火铁”之前必须净化、干燥,由此U 形管G 中应加入固体碱性干燥剂NaOH 或碱石灰。 (3)根据题给两个反应的条件都是“高温”和要制取水蒸气的要求,可知实验时需要加热的仪器为A 、 B 、E 。 .(4)联想到课本习题(《化学选修第三册》P62第4题),在Zn 和稀H 2SO 4反应制取H 2时加入少量CuSO 4溶液能使制取H 2的反应加快,可知,在I 中加入少量CuSO4溶液,其目的是加快H 2的生成速度,原因是形成了无数微小的Fe-Cu 原电池,加快了反应(析氢腐蚀)的进行。 (5) 试管E 中的反应自然是制取“引火铁”的反应。其关键在于反应物是Fe 3O 4而不是铁的其它氧化物。 (6)结合初中H 2还原CuO 的实验可知,H 2在加热或点燃前一定要先验纯,所不同的是,本实验还要尽可能避免空气进入试管E ,使制取的高活性的“引火铁”受热燃烧、所以要加带导管F 的橡皮塞。此外E 管反应后,为了防止F 出口处的水蒸气凝结,堵塞出气口或回流到试管E 将其炸裂,因此E 管反应后,F 出口处应点燃H 2。 [答案] (1)普通铁粉;作为水蒸气发生器;防止水倒吸;氢气。 (2)固体NaOH (或碱石灰、CaO 等碱性固体干燥剂;6mol ·L -1HCl ) (3)A 、B 、E (4)加快氢气产生的速度 (5)O H Fe H O Fe 2243434++高温 (6)检验氢气的纯度;点燃氢气 [评述] 本题以化学实报实销验为依托全面考查了观察、实验、思维、自学等诸多能力。其特点是:①题给新信息尽管很隐蔽,但仍源于课本;所给装置是由常用仪器装置重新组合而成的新颖、非常规装置。②设计仪器装置、选用药品时都打破常规,体现创新精神。如用烧瓶C 作安全瓶;制取“引火铁”的装置

计算化学学习指南

计算化学学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

计算化学学习指南

《计算化学》课程学习指南 计算化学学习基本要求: 在学习了化学系列基础课程之后,通过本课程的学习,掌握化学中常用的数值计算方法,并能利用计算方法来解决化学中和部分工程实践中的实际问题,学习中坚持理论与实践相结合,才能更深刻的理解与运用理论,并在解决实际问题中,掌握理论和方法,培养学习能力、实践能力和创新能力。 计算化学学习的难点: 学生学习计算化学时由于受原有化学、数学、计算机基础的制约,感到课程涉及知识面广,入门较慢。尤其是对各种化学、化工知识的综合应用及编程需要有一个熟悉的过程。坚持一定会有收获! 计算化学的研究方法: 传统意义上的计算化学要完成的任务一般包括以下几个方面: 1.量子结构计算,分子从头计算(Schrodinger方程的精确解)、半经验计算(Schrodinger方程的估计解)和分子力学计算(根据分子参数计算),属于量子化学和结构化学范畴; 2.物理化学参数的计算,包括反应焓、偶极矩、振动频率、反应自由能、反应速率等的理论计算,一般属于统计热力学范畴; 3.化学过程模拟和化工过程计算等。 但是随着科学的发展,要界定计算化学的范围是很困难的,因为它是化学学科现代化过程中新的生长点,它与迅速崛起的高科技关系密切,深受当今计算机及其网络技术飞速发展的影响,正处在迅速发展和不断演变之中,研究的侧重点也因研究者及其所处的学术环境、原有基础和人员的知识背景而异。在今后的一段时期内,计算机辅助结构解析、分子设计和合成路线设计将是计算化学的主题。尽管实际上计算化学覆盖的面还要广得多,比较公认的研究领域至少有:1.化学数据挖掘(Data mining);

2.化学结构与化学反应的计算机处理技术; 3.计算机辅助分子设计; 4.计算机辅助合成路线设计; 5.计算机辅助化学过程综合与开发; 6.化学中的人工智能方法等。 无论计算化学涉及的内容多么广泛,其核心依然是数值计算问题。 本课程主要学习利用计算机解化学中的数值计算问题,一般包括以下几个步骤: 1.对所要解决的问题进行分析,将化学问题转变为数学模型,选择所需的计算方法; 问题分析是完成计算任务的基础,包括对问题所含物理化学意义的清楚认识。在进行数值计算时要量纲明确,保证计算步骤分解准确。采用的数学理论正确、计算方法合理有效。 2.写出解决问题的程序框图 根据分析结果给出程序框图是编写程序的基础和关键。写出清晰、流畅、准确的程序框图是任何计算机语言编写程序的必要步骤。程序框图的绘制要根据计算机运算的特点和编写代码程序的需要。 3.代码程序的编写 选择一种合适的计算机语言,运用该种语言将上述程序框图写成计算机程序(高级程序)。由于一种计算机语言往往有不同版本,适合于不同的编译平台,彩的程序代码要符合该编译平台的规范。 4.程序的调试和编译 一个计算机程序编写完成后,一般需要通过编译、调试和修改步骤,构成计算机可以识别的代码集,并找出问题,加以完善。编译和高度的方法依据不同的程序编译平台会略有不同。 5.试算分析,输出结果 调试得到执行程序后,用已知的算例去试算检查,分析结果正确无误码,才能用于未知的算例。

现代分子理论与计算化学导论作业

《现代分子理论与计算化学导论》 ——课程大作业班级:xxxxxxx 姓名:小签牛学号:xxxxxxxxxx 题目:在T*=1.5条件下,分别用分子模拟方法和微扰理论方法计算ρ*=0.02和0.85的体系的压力,并比较两种方法计算 的结果。 Ⅰ.当T*=1.5、ρ*=0.02时的情况 ①由Monte Carlo模拟获得体系的内能、径向分布函数和压力,流 体参数及模拟条件见contrifile文件; 此时的contrifile文件为: ---------------ENTER THE FOLLOWING IN LENNARD-JONES UNITS-------------------- 0.02 # Enter The Density 1.5 # Enter The Temperature 8.0 # Enter The Potential Cutoff Distance 108 # Enter The Intial Molecular Number ---------------ENTER THE SIMULATION STEP CONTROLLING PARAMETES--------------- 200000 # Enter Number Of Cycles 400 # Enter Number Of Steps Between Output Lines 400 # Enter Number Of Steps Between Data Saves 400 # Enter Interval For Update Of Max. Displ. .False. # Whether Read config. From Old Simulation Run config.dat # Enter The Configuration File Name ---------------ENTER THE RADIAL DISTRIBUTION FUNCTION PARAMETES-------------- .True. # Whether Calculate The Radial Distribution Function 0.01 # Enter The Radial Distribution Distance 100000 # Enter Number Of Cycles Of Start Calculating The Radial Distribution gr0.02.dat # Enter The Radial Distribution File Name (运行程序见附件1) 所得“result.dat”文件中的结果为: A VERAGES = -0.149649

= 0.028542

哈工大物理化学本科期末自测题

相平衡自测题 1 在含有C(s)、H2O(g)、CO(g)、CO2(g)、H2(g)五个物种的平衡体系中,其独立组分数C为( ) (a) 3 (b) 2 (c) 1 (d) 4 2二元合金处于低共熔温度时的物系的自由度f为( ) (a) 0 (b) 1 (c) 2 (d) 3 3 298K时蔗糖水溶液与纯水达渗透平衡时,整个体系的组分数、相数、自由度数为( ) (a)C=2 Ф=2 f*=1 (b) C=2 Ф=2 f*=2 (c) C=2 Ф=1 f*=2 (d)C=2 Ф=1 f*=3 3FeCl3和H2O能形成FeCl3?6H2O、2FeCl3?7H2O、 2FeCl3?5H2O、FeCl3?2H2O四种水合物, 该体系的独立组分数C和在恒压下最多可能的平衡共存相数Ф分别为( ) (a)K=3,Ф=4 (b)K=2,Ф=4 (c)K=2,Ф=3 (d)K=3,Ф=5 5 对于恒沸混合物,下列说法错误的是( ) (a)不具有确定的组成 (b)平衡时气相和液相的组成相同 (c)其沸点随外压的改变而改变 (d)与化合物一样具有确定组成 6 单组分体系的固液平衡线的斜率dp/dT的值( ) (a) 大于零 (b) 等于零 (c) 小于零 (d) 不确定 7 A、B两液体混合物在T-x图上出现最高点,则该混合物对拉乌尔定律产生( ) (a)正偏差 (b) 负偏差 (c) 没偏差 (d)无规则 8 下列过程中适用于克-克方程的是( ) (a) I2 (s)=I2 (g) (b) C(石墨)=C(金刚石) (c) Hg2Cl2(s)=2HgCl(g) (d) N2 (g,T1,p1)=N2 (g,T2,p2) 9 某一固体在25℃和101325Pa压力下升华,则意味着( )

量子化学计算实验详解

量子化学计算方法及应用 吴景恒 实验目的: (1)掌握Gaussian03W的基本操作 (2)掌握 Gaussian03W进行小分子计算的方法,比较不同方法与基组对计算结果的影响,并比较同分异构体的稳定性(3)通过运用量子力学方法计算分子的总电子密度,自旋密度,分子轨道及静电势 实验注意: (1)穿实验服;实验记录用黑色,蓝色或蓝黑色钢笔或签字笔记录;实验数据记录不需要画表格 (2)实验前请先仔细阅读前面的软件使用介绍,然后逐步按照实验步骤所写内容进行操作 (3)截图方法:调整视角至分子大小适中,按下键盘上的PrintScreen按键截图,从“Windows开始菜单”打开“画图”工具,按Ctrl+v或“编辑-粘贴”,去掉四周多余部分只留下分子图形,保存图片 (4)所有保存的文件全部存在E盘或D盘根目录用自己学号命名的文件夹下,不要带中文命名,实验完毕全部删除,不得在计算用机上使用自己携带的U盘或其他便携存储设备! (5)HyperChem里面截图时候可以用工具栏以下几个工具调整视图: Rotate out-of-plane:平面外旋转工具,转换视角用 Mgnify/Shrink:放大镜工具,转换视角用 Gaussian03W使用介绍:(注意,下面只是界面示意图,实验時切勿按下图设置) 输入文件:Gaussian输入文件,以GJF为文件后缀名 联系命令行:设定中间信息文件(以CHK为后缀名)存放的位置、计算所需的内存、CPU数量等 作业行:指定计算的方法,基组,工作类型,如:#P HF/6-31G(d) Scf=tight Opt Pop=full #作业行开始标记 P 计算结果显示方式为详细, 选择还有T(简单)和 N(常规,默认) HF/6-31G(d) 方法/基组 Opt对分子做几何优化 Pop=full进行轨道布居分析,详尽输出轨道信息和能量 电荷 多重态:分子总电荷及自旋多重态(2S+1, S=n/2, n为成单电子数) 分子结构的表示 1、直角坐标:元素符号X坐标Y坐标Z坐标(如上图所示) 2、Z矩阵(参考后附内容):元素符号(原子一)原子二键长原子三键角原子四二面角

化学计算方法与技巧

化学计算与技巧专题 考点1 守恒法 守恒法就是化学变化过程中存在的某些守恒关系,如: 1.化学反应前后质量守恒、元素守恒、得失电子守恒、能量守恒、电荷守恒。 2.化合物中元素正负化合价总数绝对值相等(化合价守恒)、电解质溶液中阳离子所带正电荷总数与阴离子所带负电荷总数守恒。 方法点击 化学计算中,“守恒”无处不在,运用守恒法可以提高解题的速率,又可以提高解题的准确性,所以只要看到化学计算,就想到守恒。例: 1.质量守恒法 例:0.1 mol 某烃与1 mol 过量氧气混合,充分燃烧后通过足量的Na 2O 2固体,固体增重15 g ,从Na 2O 2中逸出的全部气体在标准状况下为16.8 L 。求烃的化学式。 解析:设烃的化学式为C x H y ,摩尔质量为a g·mol -1,因为最后逸出的气体不仅包括反应剩余的O 2,也包括烃燃烧产物CO 2和水蒸气与Na 2O 2反应放出的O 2。 烃的质量+m(O 2)=Na 2O 2的增重+m(逸出气体) 0.1 mol×a g·mol -1+32 g·mol -1×1 mol=15 g+32 g·mol -1×16.8 L/22.4 L·mol -1 解得a=70,烃的式量为70, 1270=5余10,烃的化学式为C 5H 10。 2.原子(或离子)守恒 例:用含1.0 mol NaOH 的溶液吸收0.8 mol CO 2,所得溶液中的-23CO 和-3HCO 的物质的量之比为( ) A.1∶3 B.2∶1 C.2∶3 D.3∶2 解析:设生成Na 2CO 3、NaHCO 3物质的量为x 、y ,由反应前后C 原子和Na +守恒可知,可得方程组: [???=+=+mol y x mol y x 8.028.0 解得???==mol y mol x 6.02.0 即所得溶液中-23CO 和-3HCO 的物质的量之比为1∶3。 3.电子守恒 例:在一定条件下,PbO 2与Cr 3+反应,产物为-272O Cr 和Pb 2+,则与1.0 mol Cr 3+反应所需的PbO 2物质的 量为____________。 解析:考查氧化还原反应。解题的关键是抓住电子守恒进行计算:1.0 mol×(6-3)=x×(4-2),得x=1.5 mol 。 4.电荷守恒 例如:在硫酸铝和硫酸钾、明矾的混合物中,若c(-24SO )=0.2 mol·L -1,当加入等体积的0.2 mol· L -1 KOH 溶液时,生成的沉淀又恰好溶解为止,则原溶液中K +的物质的量浓度(mol·L -1)是( ) A.0.2 B.0.25 C.0.3 D.0.45 解析:方法1:原混合液中含有的阳离子是K +、Al 3+,阴离子是-24SO ,加入KOH 溶液后发生的反应是Al 3++4OH -====-2AlO +2H 2O ,所以原溶液中c(Al 3+)=c(K +)= 41×0.2 mol·L -1=0.05 mol·L -1 方法2:根据电荷守恒有:3c(Al 3+)+c(K +)=2c(-24SO ) 推出:c(K +)=2c(-24SO )-3c(Al 3+)=0.25 mol·L -1 考点2 差量法 差量法是根据化学反应前后物质的某些物理量发生的变化,这个差量可以是质量、气体物质的体积、压强、物质的量、反应过程中热量的变化等。该差量的大小与参与反应的物质的量成正比。差量法就是借

哈尔滨工业大学2017年硕士学位研究生入学考试物理化学试题

哈尔滨工业大学 2017年硕士学位研究生入学考试试题 (物理化学) ■需使用计算器 □不使用计算器 一、选择题(每小题 2 分,共 60 分) 1、从热力学基本关系式得知(?A /?V )T 等于( ) (A )(?H /?S )p (B )(?G /?T )p (C )(?H /?T )S (D )(?U /?V )S 2、某化学反应在恒压、绝热和只作体积功的条件下进行,体系的温度由T 1升高到T 2, 则此过程的焓变ΔH ( ) (A) 小于零 (B) 等于零 (C) 大于零 (D) 不能确定 3、等温等压下进行的化学反应,其方向由Δr H m 和Δr S m 共同决定,自发进行的反应满足下列关系中的是 ( ) A 、T H S m r m r ?= ? B 、T H S m r m r ?>? C 、T H S m r m r ?< ? D 、T H S m r m r ?≤? 4、已知某可逆反应的 (?Δr H m /?T )p = 0,则当反应温度降低时其熵变Δr S m ( ) (A) 减小 (B) 增大 (C) 不变 (D) 难以判断 5、在一简单的(单组分,单相,各向同性)封闭体系中,恒压只做膨胀功的条件下,吉布斯自由能值随温度升高如何变化? ( ) (A) (?G /?T )p > 0 (B) (?G /?T )p < 0 (C) (?G /?T )p = 0 (D) 视具体体系而定 6、关于亨利定律,下面的表述中不正确的是 ( ) (A)若溶液中溶剂在某浓度区间遵从拉乌尔定律,则在该浓度区间组分B 必遵从亨利定律 (B)温度越高、压力越低,亨利定律越正确 (C)因为亨利定律是稀溶液定律,所以任何溶质在稀溶液范围内都遵守亨利定律 (D)温度一定时,在一定体积的溶液中溶解的气体体积与该气体的分压力无关

化学实验数据分析计算题(二)

实验数据分析计算题(二) 例1. 为测定某NaCl 、Na 2CO 3固体混合物的组成,小明同学取16g 该混合物放入烧杯中,分五次加入稀盐酸(每次加入稀盐酸的质量为25g ),待反应完全后,得到下面的质量关系。 加入稀盐酸的次数 第一次 第二次 第三次 第四次 第五次 烧杯及反应后混合 物的总质量/g 122.2 146.1 170.0 193.9 218.9 请分析以上数据后计算: (1)原固体混合物中32CO Na 的质量。 (2)当加入稀盐酸至固体混合物恰好完全反应时,所得溶液的溶质质量分数。(计算结果精确到0.1) 例2.某化学兴趣小组同学为测定某石灰石样品中碳酸钙的质量分数,取用2.0g 石灰石样品,把25.0g 稀盐酸分五次加入样品中(样品中杂质既不与盐酸反应也不溶于水),每次充分反应后都经过过滤、干燥、称量,的实验数据如下: (1)石灰石样品中碳酸钙的质量分数为 ____; (2)计算最后反应生成溶液中氯化钙的质量分数(计算过程和结果均保留一位小数)。 (3) 计算稀盐酸的质量分数。 实验次数 1 2 3 4 5 稀盐酸的累计加入量/g 5.0 10.0 15.0 20.0 25.0 剩余固体的质量/g 1.5 1.0 0.5 0.3 0.3

例3: 混合物全部溶于水,将得到的溶液等分为4分,然后分别加入一定量未知质量分数的氯化钡溶液,实验数据见下表: 第一份第二份第三份第四份 加入氯化钡溶液质量/g 15 20 25 30 反应得到沉淀的质量/g 1.40 1.86 2.33 2.33 若有关的化学反应为:Na2SO4 + BaCl2 === BaSO4↓+ 2NaCl。请计算:(计算结果精确到0.01) (1)未知氯化钡溶液的溶质质量分数; (2)原混合物中硫酸钠的质量分数 例4(2010江西南昌)24.(6分) 今年全国人大和政协会议使用了一种含碳酸钙的“石头纸”:为测定其中碳酸钙的含量,课外活动小组的同学称取50g碎纸样品。分别在5只烧杯中进行了实验,实验数据见下表(假设纸张其他成分既不溶于水,也不与水反应): 烧杯①烧杯②烧杯③烧杯④烧杯⑤ 加入样品的质量/g1010101010 加入稀盐酸质量/g1020304050 充分反应后生成气 0.881.76X3.523.52体的质量/g (1)表中X的值为; (2)求样品中碳酸钙的质量分数; (3)烧杯④中物质充分反应后所得溶液的质量。

计算化学论文综述上交版

2012年秋季学期《计算化学》综述 分子模拟在化学领域的应用进展 班号:10907401 学号:1090740112 姓名:贺绍飞 2012年哈尔滨工业大学

分子模拟在化学领域的应用进展 摘要:分子模拟作为一种全新的研究手段已经在化学、化工、材料、生物等领域受到了广泛的关注。本文首先对分子模拟进行了简单的介绍,然后举例详细阐述了分子模拟在石油化工领域、超临界流体领域、分子筛吸附、高分子领域以及气体膜分离领域的应用发展,最后展望了分子模拟技术的发展方向。 关键词:分子模拟、问题及发展趋势、应用发展 1.引言 分子模拟技术是随着计算机在科研中的应用而发展起来的一门新的科学,是计算机科学和基础科学相结合的产物。 20世纪80年代以来,随着计算机性能的提高以及各种计算化学方法的改进,分子模拟技术日渐成熟,并逐步发展成为人们进行科学研究的一项新的有效的工具,在化学、制药、材料等相关的工业上发挥着越来越重要的作用。 分子模拟之所以受到这样的重视,与它自身的特点和相关学科的发展是密不可分的。以前,采取的都是实验室人工合成一种新型化合物,但是有一些化合物的合成繁琐而复杂,例如具有多种旋光性的药物,每一种新的药物合成都是一个工作量巨大的实验过程,以往只能采用实验手段研究时,新药的实验过程经常持续数十年,其间经历了许多失败的实验,耗费大量的人力物力。但是,在采用分子模拟的方法后,可以通过计算机模拟的手段对实验进行大量的预先筛选,大大加快了这一研究的进程。又如在对超临界流体的研究中,分子模拟和传统的实验相比有着巨大的经济优势。 2.分子模拟简介 2.1 分子模拟的定义 分子模拟是一个广泛的概念,其包括基于量子力学的模拟和基于统计力学的模拟。前者为计算量子化学(computational quantum chemistry,简称CQC),后者主要分为两个方法,分别是分子动力学模拟(molecular dynamics,MD)和蒙特卡洛模拟(Monte Carlo,MC)[1]。三者中以计算量子化学的结果最为可靠,但是其计算量也是最大的,通常处理的体系也是比较小的.MC和MD都是基于位能函数的模拟,不同之处在于MD模拟过程与时间相关,除了和MC一样可以处理平衡性质以外,在处理传递性质等与时间相关的问题时有天然的优势,当然MD 和MC相比程序的复杂程度要高,计算的难度要大一些。 2.2 分子模拟的方法[2-7] 分子模拟的方法主要有四种:分子力学方法,分子动力学方法、蒙特卡洛方法、量子力学方法。 2.2.1 分子力学方法 分子力学法又称Force Field方法,是在分子水平上解决问题的非量子力学技术。其原理是,分子内部应力在一定程度上反映被计算分子结构的相对位能大小。分子力学法是依据经典力学的计算方法,即依据Born-Oppenheimer原理,计算中将电子的运动忽略,而将系统的能量视为原子核种类和位置的函数,这些势能函数被称为力场。分子的力场含有许多参数,这些参数可由量子力学计算或实验方法得到。该法可用来确定分子结构的相对稳定性,广泛地用于计算各类化合物的分子构象、热力学参数和谱学参数。 2.2.2 分子动力学方法 分子动力学模拟是一种用来计算一个经典多体系的平衡和传递性质的方法。

《计算化学》教学大纲

《计算化学》教学大纲 一、课程基本信息 二、课程教育目标 本课程的教育目标在于在计算化学多学科交叉(化学、数学、计算机科学)内容的优化与整合上,突出课程内容的基础性与前沿性;充分利用现代信息技术,用现代化教学理念指导教学全过程,使学生全面

掌握应用计算机解决化学、化工相关问题的基本思路、基本原理、基本方法和基本技能,培养学生学习能力、实践能力与创新能力。 通过本课程的学习,使学生达到: ——掌握如下计算方法及其在化学中的应用: ?Newton-Raphson迭代法、二分法求解一元N次(N>2)方程; ?消去法、Gauss-Seidel迭代法解线性方程组; ?线性回归分析方法; ?Lagrange插值法和差商; ?Simpson法求数值积分; ?Euler法解常微分方程。 ——理解如下计算方法及其在化学中的应用: ?非线性回归分析,多项式回归分析; ?Gauss 法求数值积分; ?Runge-Kutta法解常微分方程。 ——了解如下计算方法及其在化学中的应用: ?样条函数插值法; ?Jacobi方法、QL方法求本征值; ?单纯形优化; ?化工调优; ?化学化工中常用的计算机软件与网络资源; ?分子动力学模拟;Monte Carlo模拟法。 三、理论教学内容与要求 1.前言(1学时)什么计算化学;计算机在化学中的应用;计算化学的过去、现在和将来;学习方法。 2.代数方程及代数方程组的求解在化学中的应用(5学时)二分法;Newton-Raphson迭代法;Gauss消去法;Gauss-Seidel迭代法。 3.插值法和回归分析——实验数据的拟合及模型参数的确定(5学时)线性插值;Lagrange插值;中心差商;一元线性回归分析;一元非线性回归;多元回归;多项式回归分析(自学)。 4.数值积分与常微分方程的数值解法(4学时)梯形法;Simpson法;离散点数据的求积;Gauss法(自学);Euler法及其改进;Runge-Kutta法。 5.本征值和本征向量(1.5学时)Jacobi方法;QL方法(自学)。 6.化学化工中常用的软件及网络资源简介(1.5学时)结构式绘图软件;科学数据处理软件;化学化工重要网站;化工信息源。 7.化学化工中的最优化方法简介(1.5学时)单纯形法优化;化工调优。 8.化学化工过程计算机模拟简介(1.5学时)分子动力学模拟;Monte Carlo法;化工过程模拟;课程小结。 9.拓展课堂(1学时)上机实践主讲教师作计算化学相关的研究报告。 或外请专家作计算化学相关的专题报告。 10.学生讨论课(2学时)学生根据自查资料,写出课程报告并进行课堂讨论。

20120914哈尔滨工业大学计算颗粒流体力学及两相流技术研讨会新闻

哈尔滨工业大学计算颗粒流体力学及两相流技术研讨会成功举办 北京海基科技于2012年9月14日在哈尔滨工业大学能源科学工程学院举办了“计算颗粒流体力学及两相流技术研讨会”。 本次研讨会上,海基科技的技术工程师与参会的哈尔滨工业大学的师生共同探讨专业的计算颗粒流体力学软件Barracuda和离散元模拟软件EDEM的创新性技术特色和工程应用实例。本次会议吸引了哈尔滨工业大学能源科学学院、机电工程学院、土木工程学院、市政环境学院、东北农业大学、东北大学以及黑龙江工程学院的师生参与,会上讨论热烈。 以下是本次会议的图片信息

EDEM简介 EDEM是世界上第一款基于离散元技术的通用CAE软件,通过模拟散状物料加工处理过程中颗粒体系的行为特征,协助设计人员对各类散料处理设备进行设计、测试和优化,其基于1971年Cundall提出的专门处理非连续介质问题的离散元方法(Discrete Element Method,简称DEM)。 利用其独特的功能,用户可以以一种更加恰当的方式对颗粒生产、加工过程进行研究,从而获得对散料处理过程崭新的认识。EDEM被广泛应用于工程机械、矿山机械、农业机械、制药、石油化工、冶金工业、能源工业等所有涉及颗粒的设备和工艺的优化设计。目前,国内已有近80家用户在使用EDEM辅助科研和产品设计工作。 Barracuda简介 Barracuda是由美国CPFD Software, LLC采用自己开发的CPFD专利技术,专业模拟工业级尺度的流体-颗粒系统动力学及化学反应的商用软件包。Barracuda软件与化工、石化、能源、冶金等工业领域对流态化研究需求完全匹配,确立了它在这些领域流化装置模拟中的领导地位。众多政府研究机构和世界财富500强企业选用它来做流化设备设计和工艺过程优化。典型用户包括:阿尔斯通、埃克森美孚、陶氏化学、道康宁公司、美国能源部国家能源技术实验室、利安德巴塞尔工业公司、石川岛播磨重工业株式会社、新奥集团、中科院过程所、上海GE煤炭多联产技术研究室、清华大学化工系、中国科学院工程热物理所、中冶赛迪、神华集团NICE等。

从计算化学到生物学_计算生物学的起源

从计算化学到生物学 杨金才 1501110432 尽管我是生物背景,但我所用的分子模拟方法却多是由计算化学家所建立的,然 后被应用于生物学领域。在计算化学领域主要荣获两次诺贝尓化学奖,第一次是1998年,用于表彰WalterKohn发展了密度泛函理论和John Pople发展了量子化学(QM)计算方法;第二次是2013年,授予Martin Karplus, Michael Levitt 和AriehWarshel,获奖理由 是“为复杂化学系统创立了多尺度模型”。如果说1998年获奖的量子化学计算方法使计算小分子化学体系成为可能,那2013年获奖的分子动力学计算方法则为计算生物大分子的行为提供了有力的工具,并且真正应用于揭示生物大分子功能和药物设计等实际应用 中来,理论化学终于走向了应用。 毫无疑问,量子力学计算方法的发展是极其重要的,但由于其计算量巨大,难以 应用于生物学大分子。因为如果采用量子力学计算方法算蛋白的运动轨迹,或许算100 年也不一定能算出来,对于生物大分子的计算,我们需要的是能在可以接受的时间内获 得有意义的结果。这就要求对体系作一定的近似以减少计算量,同时又最大可能地揭示 其生物学特性。而Martin Karplus在这方面做出了重要的工作,并开辟了用分子模拟解 决生物问题这一全新领域。 时间回到1950年,20岁的Martin Karplus,刚从哈佛大学毕业,当时他有两个选择,学化学或者学生物。经过美国理论物理学家、美国“原子弹之父” Robert Oppenheimer的推荐,他最终选择了生物学。于是Karplus到了西海岸的加州大学攻读生 物博士学位,师从Linus Carl Pauling。Pauling是著名美国化学奖,是量子化学和结构生 物学的先驱之一。他是唯一的一位两次独自获得诺贝尔奖的人。一次是1954年的诺贝尔化学奖,表彰其将量子力学应用于化学键的研究,深刻改变了我们对化学键的认识。于1935年出版了《量子力学导论——及其在化学中的应用》,这是历史上第一本以化学家 为读者的量子力学教科书。另一次则因参与反战反核获得1964年诺贝尔和平奖。Pauling还根据晶体衍射图,于1951年最早提出了蛋白质α螺旋结构模型。有科学史学 者认为沃森和克里克提出的DNA双螺旋结构模型就是受到了鲍林的影响。Pauling在量 子化学和结构生物学上的成就深刻影响了Karplus,“我的导师鲍林对我的科学研究产生了非常大的影响。”他说。正是在这样的学术背景下,Karplus开创了自己的领域。

2009年哈工大物理化学考研真题

哈尔滨工业大学 二○○九年硕士研究生考试物理化学试题 一.填空题(20分) 1、 某反应中,反应物消耗掉3/4所需的时间是消耗掉1/2所需时间的3倍,则反应属于( )级反应。 2、 在体积为V ,温度为T 带有活塞的容器中,C (s )+ CO2(g )= 2CO (g ),反应达到平衡,平衡总压力为P ,若保持P 、T 不变,通入惰性气体N2,使系统体积变为2V ,则CO2与CO 的比值为( ),保持T 、V 不变通入惰性气体N2,使系统压强变为2P ,则CO2与CO 的比值为( )。 3、 质量摩尔浓度为0.001mol/kg 的LaCl3的水溶液的离子强度I =( ),平均活度系数为γ =( )。 4、 胶体系统的主要特征是( )。 5、 298K 下的体积为2dm3的刚性绝热容器内装有1mol 的O2(g )和2mol 的H2(g ),发生反应生成液态水,该反应过程的?U =( )。 6、 在真空密封的容器中,1mol 温度为100℃,压力为101.325 kPa 的液体谁完全蒸发为100℃、101.325 kPa 的水蒸气,测得此过程中从环境中吸热为37.53 kJ ,则此过程中的?H =( ),?G =( )。 7、 85℃、101.325 kPa 的1mol 水蒸气在恒温恒压条件下变成85℃、101.325 kPa 的液态水,判断此过程用( )作判据。 二.选择题(20分) 1、反应C (g )+ 2H2(g )= CH4(g )在100 K 的r m G θ? = 19.29 kJ ,当总压为 101 kPa ,气体组成为H2 70%、CH4 20%、N2 10%的条件下,上述反应( ) A 、正向进行 B 、逆向进行 C 、平衡 D 、不一定

计算化学在化学中的应用

计算化学在化学方面的应用 摘要:计算化学在最近十年中是发展最快的化学研究领域之一,通过对具体的分子系统进行理论分析和计算,能比较准确地回答有关稳定性、反应机理等基本化学问题。如今计算化学已被广泛用于材料、催化和生物化学等研究领域。本文主要就计算化学的背景、计算化学常用的方法及其在化学化工中的应用等几个方面作一简单介绍。 关键词计算化学材料催化应用 Abstract: Computational chemistry is one of the fastest growing areas of chemical research in the last decade.Through theoretical analysis and calculations to a specific molecular system, one can accurately answer the basic chemical problems, for example, the stability and the reaction mechanism, etc. Today, computational chemistry has been widely used in materials, catalysis and biochemistry research. In this paper, the background of computational chemistry, the commonly used methods in computational chemistry and its application in chemistry and chemical industry have been briefed respectively. Key words:Computational chemistry; Materials; Catalysis; Application 1、计算化学的背景介绍 计算化学(Computational Chemistry)在最近10年是发展最快的化学研究领域之一。它是根据基本的物理化学理论(通常是量子化学)以大量的数值运算方式来探讨化学系统的性质。最常见的例子是以量子化学计算来解释实验上的各种化学现象,帮助化学家以较具体的概念来了解、分析观察到的结果。除此之外,对于未知或不易观测的化学系统,计算化学还常扮演着预测的角色,提供进一步研究的方向。另外,计算化学也常被用来验证、测试、修正或发展较高层次的化学理论。同时,更为准确或高效的计算方法的开发创新也是计算化学领域中非常重要的一部分。 量子化学,作为量子力学的一个分支,是将量子力学的基本原理和方法,应用于研究化学问题的一门基础科学,其核心问题就是通过一系列近似,求解薛

计算化学软件在大学有机化学教学中的应用_孙林

TECHNOLOGY WIND [摘要]随着我国新课程改革体制的不断推广,我国教育界在教学方面已经发生了极大的转变,这为我国教育事业的发展奠定了坚实的基础。 加之近年来计算机技术的发展,在教育中的应用,我国教育事业日益提升。在大学有机化学教学当中,为了能够更加有效的反应其机理,巩固其稳定性,计算机化学得到了快速的发展。本文主要针对计算化学软件在大学有机化学教学中的应用展开相应的研究,其目的在于通过在大学有机化学教学中,应用计算机化学软件来提升化学教学效率,最终实现提升大学整体教学效果的目的。[关键词]大学;计算化学软件;有机化学教学 计算化学软件在大学有机化学教学中的应用 孙林 王素玲 (宣化科技职业学院,河北张家口075100) 众所周知,当前计算机技术的发展给我国很多领域发展带来了一定的机遇。为此,在化学研究领域计算机软件也被广泛的应用。应用计算机软件可将化学符号以及化学结构等表达的淋漓尽致,不仅能够吸引学生在课堂上的注意力,还能够让学生更容易理解与应用化学知识点。为此,当前计算机软件不仅被广泛的应用在科研界,还被当成重要的教学工具被教育界广泛使用。 计算机软件在化学教学中的使用,改变了传统的化学教学方式,而是以幻灯片以及挂图等形式进行教学,不仅弥补了传统教学的缺点,还能够丰富学生的想象力,提升化学课堂教学效率。 1计算机化学软件在分析立体模型显示方面的分析 纵观以往的有机化学教学而言,在分子立体结构降解方面,很多教师仅仅依靠分子结构进行展示,但是这种展示方式一般缺少形象直观因素作支撑,为此对于学生而言学生依旧很难懂得分析立体结构知识,导致学生无法想象出分子结构,无法深入理解,更加无法达到学以致用的目的[1]。可在化学教学中,有机化合物分子结构是化学整体教学的重点,它的立体几何构成与化学分子反应机理与物理、化学性质等之间存在着极大的关联。 伴随计算机技术的发展,已经有很多软件能够对分子结构展开模拟演示,教师也能够利用这些软件进行教学,从而使得学生能够更加清楚的认识到化学分子结构模式,使学生能够真正理解分子结构,应用这部分知识。 例如ChemOffice等相关化学辅助教学软件,都能够利用3D技术完成分子立体结构模拟演示操作,并且对化学分子中各种模型结构都能够完成模拟,例如球棍模型等,都能够提升学生对分子结构的理解,也能够提升学生的想象力等。 例如在对乙烷分子构象教学过程中,教师可以应用Gaussian03软件进行教学,通过对该软件的操作来完成分子构成,将其和分子能量展开关联。 具体做法为:首先需要建立乙烷分子模型,之后优化分子模型[2]。其次,为了能够有效的完成360度旋转C-C,就需要改变H4-C3-C2-H1二面角,将Scan输入其中,扫描所有旋转过程中的势能曲线。最后,对C-C旋转曲线先开分析,同时研究分子势能构象变化规律,最终和势能曲线最低点对应的构象便为稳定构象,也可以被称之为交叉型构象。 2计算化学软件对分子光学模拟的分析 在有机化合物分子光谱学习中,对其特征的学习能够使得学生更加灵活的应用相应的化学知识来分析物质世界。在现代社会发展中,科学家们要真正的完成对分子光谱的分析与了解工作,一般需要现代仪器对有机物的分子结构展开分析,但是这些仪器却不能在实际教学课堂上应用。 但是Gaussian03软件却与之不同,该软件能够被应用在实际混血教学课堂当中,在课堂上完成对分子光谱的模拟和预测操作。例如在对有机分子红外光谱与振动模式学习的过程中便可利用这款软件,引导学生分析与观察模型演示,从而使得学生更加直观的学习其知识,并且 理解与运用化学知识。 另外在化学教学课堂上利用软件ChemOffice也可以对有机化物的质荷比与核磁共振谱图实施预测与模拟工作。例如,可以对苯内酮模拟测试等。 除此之外,计算机软件也可以对化学反应机理展开演示。在相应有机化学教学过程中,化合物的有机反应是教学的一个重点[3],同时也是教学难点,由于机理反应后所带来的影响一般较为复杂,并且具有较多的种类,过于抽象,因此学生在学习这部分知识的过程中感觉到很吃力,对知识点也是很难理解,无法深入的把我与研究。可实际上掌握这部分的知识,能够帮助学生对日后学习合成工艺与合理选择等有着极大的帮助,具有提升学生科研能力的作用。 为此,我们可以认为有机反应教学能够对学生的学习带来较大的意义,能够推动学生的发展。实践表明,Gaussian03软件在这部分知识教学中能够有效的解决其中的问题,不仅可以让学生理解其中的知识,还能够让学生较为轻松的掌握与了解这一理论。例如,在学习双分子亲核反应的过程中,具体操作可为: 第一,需要建立起相应的模型,如CH3CL+BR-等等,并且对所建模型进行优化;第二,利用相应程序将相关反应形态表现出来,并且对其包含的关键词展开深入的计算与设计;第三,通过相应的计算,将分子结构与能量在化学反应过程中将其变化规律展现出来,并且通过软件对该反应的演示,学生更容易观察亲核试剂以及离去基团等之间的演变过程[4],从而使得学生更轻松的理解该部分的知识,在仔细观察之下,学生对反应过程中呈现的状态有所了解,这有利于学生在实际应用该部分知识的时候灵活思考与使用,最终实现大学有机化学教学效率提升的目的。 3总结 本文主要针对计算化学软件在大学有机化学教学中的实际应用进行分析,通过对计算机化学软件在分析立体模型显示方面的分析以及计算化学软件对分子光学模拟的分析等,明确在大学有机化学教学中,计算机软件占据着极为重要的位置。 它的应用不仅有利于协助教师的化学教学任务的完成,还有利于学生理解其化学知识,通过计算机软件模拟演示的观察,对化学分子知识进行深入理解,从而提升化学课堂教学效率,更加提升学生的知识运用能力等。 [参考文献] [1]郑燕,孙文新.计算机化学软件在大学有机化学教学中的应用研究[J].石家庄学院学报,2014. [2]莫倩,郑燕升.计算化学软件在高等有机化学研究性教学中的应用[J].广东化工,2013. [3]付婧婧,黄丹,廖奕等.计算化学软件在高中化学教学中的应用[J].中国校外教育(下旬刊),2014. [4]裴克梅.Gaussian软件在环境化学教学中的应用[J].大学化学,2012. 应用科技 117

相关文档
最新文档