低压配电系统短路电流计算

低压配电系统短路电流计算
低压配电系统短路电流计算

低压配电系统短路电流计算说明

中冶京诚工程技术有限公司电气工程技术所

2004年7月

低压配电系统短路电流计算

在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。

假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。

本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N 是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。

计算中遵循下列规定:

1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。

2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电

缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。

一、高压系统阻抗(S-System)

高压系统的阻抗可按下式计算:

32

10?"

=

S

n S u Zs Ωm

式中:u n —变压器低压侧线电压,0.4KV

"

S S --变压器高压侧系统短路容量,MVA 系统电阻Rs 及系统电抗Xs 可按下式计算: Rs =0.1Xs Xs=0.995Zs

无论D,yn11及Y ,yno 接线的变压器,低压侧发生单相短路,零序电流均不能在三相三线制、且该变压器中性点又不接地的高压系统中流通,而只能经低压侧中性点完成回路。从低压侧短路点往电源看,高低压侧正(负)序阻抗是串联的,而高低压侧零序阻抗则是并联的。并联一个无穷大阻抗,就等效于串联一个零阻抗,故在计算相保阻抗时,不计高压系统的零序阻抗。又由于短路点离发电机较远,可认为所有元件的负序阻抗等于正序阻抗,即相阻抗,因此高压系统的相保电阻及相保电抗可按下式计算:

32)(31)0()2()1(Rs

R R R R S S S PS =

++=? Ωm 3

2)(31)0()2()1(Xs

X X X X S S S PS =

++=? Ωm 式中S R )1(,S R )2(,S R )0(,S X )1(,S X )2(,S X )0(分别为系统的正序、负序、零序电阻及电抗。 按上述公式计算出变压器高压侧在不同短路容量时的系统阻抗与相保阻抗值(归算到0.4KV 侧)列于表1。

请注意:“高压系统相保阻抗”一词,只为了采用阻抗相加的办法(串联)来计算低压侧单相短路电流而引入的抽象概念,实际上并不存在高压系统的相保回路。因而,如果试图仅用高压系统相保阻抗去除系统相电压来求取高压侧单相短路电流,那就错了!

表1 高压侧系统阻抗与相保阻抗值 m Ω

二、配电变压器阻抗(T —Transformer )

变压器的每相正(负)序电阻及电抗可按下式计算:

R T =622

10??n n d S u

P Ωm

32

10%10?=n

n

X T S u u X

22%)(%)%r Z X u u u -(=

n

d

r S P u 10%?=

式中:R T —变压器相电阻 Ωm X T —变压器相电抗 Ωm △P d —变压器负载损耗 KW Sn —变压器额定容量 KVA U Z %--变压器阻抗电压百分数 U r %--变压器电阻电压百分数 U x %--变压器电抗电压百分数

U n %--变压器低压侧额定线电压,为0.4KV

变压器的零序电阻及电抗,对于D ,yn11接线来说,可考虑等于其正(负)序电阻及电抗,但是Y ,yno 接线的变压器,需由制造厂通过测试提供。

变压器的相保电阻及相保电抗可按下式计算:

)(3

1

)0()2()1(T T T PT R R R R ++=φ

)(3

1

)0()2()1(T T T PT X X X X ++=φ

式中R (1)T 、R (2)T 、R (0)T 、X (1)T 、X (2)T 、X (0)T 分别为变压器的正序、负序、零序电阻及电抗。 S 9(S9-M)系列变压器的阻抗值列于表2。由于没有取得Y,yno 接线变压器零序阻抗的数据,故表2中列出的是S 7系列变压器的数据,用括号表示,估计出入不会太大,可供参考。

表2 S9,S9-M系列变压器的阻抗值(归算到0.4KV侧)

精品

精品

三、低压主母线阻抗(M —Main busbar ) 1.母线交流电阻可按下式计算:

R m =K jf ?K lf ?ρ20

A

l

Ω 式中:ρ20—母线温度为20℃时的电阻率,铜母线取0.0172Ω-mm 2/m ,铝母线取0.0282Ω-mm 2/m 。

l ---母线长度 m A —母线截面 mm 2 K jf —集肤效应系数,见表3 K lf —邻近效应系数,取1.03

若取l =1m ,则单位长度的交流电阻为320

1003.1?='A

Kjf R m ρ m m /Ω

对于相母线320

1003.1?='?

ρφ

A Kjf R m m m /Ω 对于保护母线320

1003.1?='Ap

Kjf

R pm ρ m m /Ω

式中A ?及Ap 分别为相母线及保护母线的截面,mm 2 2.单位长度的母线相保电阻可按下式计算:

)(3

1)0()0()2()1(m P m m m Pm R R R R R '+'+'+'='????

式中:m R )1(?

'--相母线正序电阻 m m /Ω m R )2(?

'--相母线负序电阻 m m /Ω m R )0(?

'--相母线零序电阻 m m /Ω m o

R )0('--保护母线零序电阻 m m /Ω 因为:m R )1(?

'=m R )2(?'=m R )0(?'=m R ?' Pm m P

R R '='3)0( 所以:Pm m Pm m pm R R R R R '+'='+'='???

)33(3

1

表3 母线的集肤效应系数 Kjf

3.母线电抗可按下式计算 lm lm X m πω100== Ω

而 z

n

D D l l lm ???

πμ20= 所以: z m D D lm

l X ???πππ??=-21041007

式中:lm —母线的电感 H

0μ--空气的导磁系数为4104-?π H/Km

l —母线长度 m

??D --线母线间互几何均距,??D =3CA BC AB D D D ?? AB D ,BC D ,CA D 为三相母线相互之

间的距离 cm

z D ?--相母线自几何均距,??D =0.224(b+h ),b ,h 为母线的厚和宽 cm

若取l =1m ,则单位长度的电感为:

z

m D D X ????

πln 101020034--??=' m

=z

D D ???πlg

303.2102007

??- m /Ω

=z

D D ???πlg

303.2102004

??- m m /Ω

=0.145z

D D ???lg

m m /Ω

4.单位长度的母线相保电抗可按下式计算

)(31)0()0()2()1(m p m m m pm X X X X X '+'+'+'='????

式中:m X )1(?

'--相母线正序电抗 m m /Ω m X )2(?

'--相母线负序电抗 m m /Ω m X )0(?

'--相母线零序电抗 m m /Ω m p X )0('--保护母线零序电抗 m m /Ω

由于:m m m X X X ???

'='=')2()1( m m /Ω 3

2

)0(lg 145.03??

???

?

D D D X z m ??=' m m /Ω

pz

p m p D D X ?lg

145.03)0(?=' m m /Ω

式中:p D ?--相母线至保护母线的互几何均距,3CP BP AP p D D D D ??=?,AP D ,bp D ,cp D 为相母线至保护母线之间的距离 cm

pz D --保护母线的自几何均距,pz D =0.224(b+h ) cm

因而:pz p z p m pm D D D D D X X ???

????lg 435.0lg 435.02(3132

+?+'=' m m /Ω

经计算后母线的阻抗及相保阻抗列于表4

表4

精品

精品

四、配电线路阻抗(L-Line )

由于缺乏各类电缆的几何尺寸及钢管的电气参数,无法计算其阻抗值。现采用现成的,刊载在《工业与民用配电设计手册》第二版。(1992年电力出版社出版)第135~137页上列的数值,见表5。请注意,按计算规定,配电线路中电缆及导线的相保电阻计算温度取+20℃时的1.5

倍,即:)(5.1Pl l pl R R R '+'='??

。 表5 线 路 单 位 长 度 阻 抗 值 单位:m m /Ω

续表5

精品

精品

续表5

l R '为导线

20℃时单位长度电阻值,

l R '=)(10320

Ω?m S

C j

ρ,铝

),1082.2(/0282.06220cm m mm ?Ω??Ω=-ρ

)(铜cm m mm ?Ω??Ω=-62201072.1/0172.0ρ。C j 为绞入系数,导线截面≤6mm 2时,C j 取为1.0;导线截面>6mm 2时,C j 取为1.02。

②S 为相线线芯截面,Sp 为PEN 线线芯截面。

③Pl R ?

'为计算单相对地短路电流用,其值取导线20℃时电阻的1.5倍。

④架空线水平排列,PEN线在中间,线间距离依次为400、600、400mm。

⑤绝缘子布线水平排列,PEN线在边位,D(mm)为线间距离。

精品

电力系统短路电流计算书

电力系统短路电流计算书 1 短路电流计算的目的 a. 电气接线方案的比较和选择。 b. 选择和校验电气设备、载流导体。 c. 继电保护的选择与整定。 d. 接地装置的设计及确定中性点接地方式。 e. 大、中型电动机起动。 2 短路电流计算中常用符号含义及其用途 a. 2I -次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 b. ch I -三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳 定及断路器额定断流容量。 c. ch i -三相短路冲击电流,用于校验电气设备及母线的动稳定。 d. I ∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e. "z S -次暂态三相短路容量,用于检验断路器遮断容量。 f. S ∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3 短路电流计算的几个基本假设前提 a. 磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原理。 b. 在系统中三相除不对称故障处以外,都认为是三相对称的。 c. 各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。 d. 短路性质为金属性短路,过渡电阻忽略不计。 4 基准值的选择 为了计算方便,通常取基准容量S b =100MVA ,基准电压U b 取各级电压的平均 电压,即 U b =U p =,基准电流 b b I S =;基准电抗 2b b b b X U U S ==。

常用基准值表(S 基准电压U b (kV ) 37 115 230 基准电流I b (kA ) 基准电抗X b (Ω) 132 530 各电气元件电抗标么值计算公式 元件名称 标 么 值 备 注 发电机(或电动机) " % "*100 cos d b N X S d P X φ =? "%d X 为发电机次暂态电抗的百 分值 变压器 %" * 100 k b N U S T S X = ? %k U 为变压器短路电压百分值, S N 为最大容量线圈额定容量 电抗器 2%*100 3k N b N b X U S k I U X =? ? %k X 为电抗器的百分电抗值 线路 2*0b b S l U X X l =? 其中X 0为每相电抗的欧姆值 系统阻抗 *b b kd S S c S S X = = S kd 为与系统连接的断路器的开断容量;S 为已知系统短路容量 其中线路电抗值的计算中,X 0为: a. 6~220kV 架空线 取 Ω/kM b. 35kV 三芯电缆 取 Ω/kM c. 6~10kV 三芯电缆 取 Ω/kM 上表中S N 、S b 单位为MVA ,U N 、U b 单位为kV ,I N 、I b 单位为kA 。 5 长岭炼油厂短路电流计算各主要元件参数 系统到长炼110kV 母线的线路阻抗(标么值) a. 峡山变单线路供电时: 最大运行方式下:正序; 最小运行方式下:正序 b. 巴陵变单线路供电时: 最大运行方式下:正序

电力系统短路计算课程设计

南昌工程学院 课程设计 (论文) 机械与电气工程学院电气工程及其自动化专业课程设计(论文)题目电力系统短路电流计算 学生姓名 班级 学号 指导教师 完成日期2013 年11 月30 日

成绩: 评语: 指导教师: 年月日

南昌工程学院 课程设计(论文)任务书

机械与电气工程学院 10电气工程及其自动化专业班学生: 日期:自 2013 年 11 月 18 日至 2013 年 11 月 30 日 指导教师: 助理指导教师(并指出所负责的部分): 教研室:电气工程教研室主任: 附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量: S B=100MVA 基准电压:U B=U av 二、计算各元件电抗标幺值: =0.0581, (1)X L=0.401Ω/km ,L1=16.582km L2=14.520km ,X d1=X d2=X'' d 系统电抗标幺值X'' =0.0581,两条110kV进线为LGJ-150型 d 线路长度一条为16.582km,另一条为14.520km.。 (2)主变铭牌参数如下: 1﹟主变:型号 SFSZ8-31500/110 接线 Y N/Y N/d11 变比 110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=10.47 U K(3-1)=18 U K(2-3)=6.33 短路损耗(kw) P K(1-2)=169.7 P K(3-1)=181 P K(2-3)=136.4 空载电流(%) I0(%)=0.46 空载损耗(kW) P0=40.6 2﹟主变:型号 SFSZ10-40000/110 接线 Y N/Y N/d11 变比 110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%) U K(1-2)=11.79 U K(3-1)=21.3 U K(2-3)=7.08 短路损耗(kW) P K(1-2)=74.31 P K(3-1)=74.79 P K(2-3)=68.30 空载电流(%) I0(%)=0.11 空载损耗(kW) P0=26.71 (3)转移电势E∑=1

低压配电系统短路电流计算

低压配电系统短路电流计算说明 中冶京诚工程技术有限公司电气工程技术所 2004年7月

低压配电系统短路电流计算 在设计低压配电系统时,需要进行短路电流计算,以选择低压电器、校验其稳定性及确定保护方案等。目前,钢铁企业电力设计手册上虽有此内容,但不够详细,特别是单相短路计算,很不具体。现从实用角度出发,编写此资料,目的是使设计者在具体工程中能很快地计算出各点的短路电流值。 假定三相电源和网络元件阻抗都是对称的,因此三相短路是对称的短路,元件的阻抗是指元件的相阻抗,即正序阻抗。但是单相短路是不对称的短路,在TN系统中,发生单相接地短路时,短路电流从相线流出,经保护中性线(TN-C中的PEN线)或保护线(TN-S中的PE线)流回,遇到的是相线与保护线间的阻抗,这一阻抗过去叫相零阻抗,即从相线流出,零线流回,如今TN系统叫保护线,故引入了相保阻抗这一概念。 本资料中列出了高压系统、配电变压器、低压主母线,配电线路的相阻抗及相保阻抗。相阻抗供计算三相短路电流用,相保阻抗供计算单相短路电流用。应该说明,单相接地短路的短路电流除经由PE或PEN线流回外,尚有一部分经接地的其它金属构架回流,但后者难以计算,故本资料中全部按经由保护线流回计算。关于相线与中性线(N线)的单相短路,在TN-C系统,与单相接地短路一样,因PE与N 是合一的,而在TN-S系统短路电流经中性线流回,阻抗应略有不同,在中性线与保护线截面相同的情况下,可仍用单相接地短路时的阻抗值,如中性线与保护线的截面不同,则仅更换其电阻值即可。一般工程上只要计算单相接地短路(如碰壳故障)电流值,因这种故障和相线与中性线短路故障相比,其机率要高得多。 计算中遵循下列规定: 1.计算三相短路电流时,计算相电压取230V,计算单相短路电流时,取220V。 2.计算三相短路电流时,导体计算温度取为+20℃,计算单相短路电流的相保电阻时,对电 缆及导线来说,计算温度提高,相应电阻值加大,取+20℃时的1.5倍,母线则不需要提高计算温度,仍按+20℃考虑。 一、高压系统阻抗(S-System) 高压系统的阻抗可按下式计算:

电力系统下课程设短路电流计算

《电力系统分析》课程设计报告题目:3G9bus短路电流计算 系别电气工程学院 专业班级10级电气四班 学生姓名 学号 指导教师 提交日期 2012年12月10日

目录 一、设计目的 (3) 二、短路电流计算的基本原理和方法 (3) 2.1电力系统节点方程的建立 (3) 2.2利用节点阻抗矩阵计算短路电流 (4) 三、3G9bus短路电流在计算机的编程 (6) 3.1、三机九节点系统 (6) 3.3输出并计算结果 (13) 四.总结 (15)

一、设计目的 1.掌握电力系统短路计算的基本原理; 2.掌握并能熟练运用一门计算机语言(MATLAB 语言或FORTRAN 或C 语言或C++语言); 3.采用计算机语言对短路计算进行计算机编程计算。 二、短路电流计算的基本原理和方法 2.1电力系统节点方程的建立 利用节点方程作故障计算,需要形成系统的节点导纳(或阻抗)矩阵。一般短路电流计算以前要作电力系统的潮流计算,假定潮流计算的节点导纳矩阵已经形成,在此基础上通过追加支路的方式形成电力短路电流计算的节点导纳矩阵YN 。 1)对发电机节点 在每一发电机节点增加接地有源支路 i E 与i i i Z R jX =+串联 求短路稳态解: i Qi E E = i i qi Z R jX =+ 求短路起始次暂态电流解:i i E E ''= i i i Z R jX ''=+ 一般情况下发电机定子绕组电阻忽略掉,并将i E 与i i i Z R jX =+的有源支路转化成电流源 i i i I E Z =与导纳 1 i i i i i Y G B R jX =+= +并联的形式 2)负荷节点的处理 负荷节点在短路计一算中一般作为节点的接地支路,并用恒定阻抗表示,其数值由短路前瞬间的负荷功率和节点实际电压算出,即首先根据给定的电力系统运行方式制订系统的等值电路,并进行各元件标么值参数的计算,然后利用变压器和线路的参数形成不含发电机和负荷的节点导纳矩阵 YN 。 2?k LDk LDk LDk LDk V Z R jX S =+= 2 ?LDk LDk LDk LDk k S Y G jB V =+=

低压三相短路电流计算

目录 一、低压短路电流计算 (2) 1、三相短路电流周期分量计算 (2) 2、三相短路冲击电流计算 (2) 3、三相短路电流第一周期(0.02S)全短路电流有效值计算 (3) 4、电动机晶闸管装置对短路电流的影响 (3) 二、配电变压器出口侧总断路器的短路校验 (14) 1、额定短路分断能力(I cn)的校验 (14) 2、额定短路接通能力(I cm)的校验 (15) 3、额定短时耐受电流(Icw)的校验 (16)

Ta Z e I 01.0''*2-Ta e Kch 01.01- +=Ta e 01.0- ε εR X Ta 314= 一、 低压短路电流计算 1、 三相短路电流周期分量计算 三相短路电流周期分量按下式计算: 式中I Z ’’ …………三相短路电流周期分量有效值,KA ; Up …………低压网络平均额定线电压,Up 取400V ; Z ε …………每相总阻抗,m Ω; R ε …………每相总电阻,m Ω; X ε …………每相总电抗,m Ω。 低压网络一般以三相短路电流为最大,与中性点是否接地无关。 2、 三相短路冲击电流计算 电源供给的短路冲击电流值,按下式计算: 式中 i chx …………………三相短路冲击电流,KA ; ………………三相短路电流周期分量的峰值,KA ; …………三相短路电流非周期分量,KA ; …………三相短路电流冲击系数; ………………三相短路电流非周期分量衰减系数; ………………三相短路电流非周期分量衰减时间常数,S 。 ) 11(*32 2 ' '------------------+= ε εX R Up I Z ) 21(**2)1(2*2*2' '01.0' '01.0' '''-----=+=+=- - Z Ta Z Ta Z Z chx I Kch e I e I I i ' '2Z I

低压系统短路电流计算与断路器选择

低压系统短路电流计算与断路器选择 低压系统短路电流计算是电气设计中的一项重要组成部分,计算数据量大,过程繁琐,设计人员大多以经验估算,常常影响设计质量,甚至埋下安全隐患。本文拟在通过对低压短路电流的计算简述以及实例介绍,说明低压断路器的选择及校验方法。 在设计中,短路电流计算与断路器选择的步骤如下: ①简单估算低压短路电流; ②确定配电中心馈出电缆满足热稳定的最小截面; ③选择合适的低压断路器; ④合理选择整定值,校验灵敏度及选择性。 1.低压短路电流估算 1.1短路电流的计算用途 短路电流的计算用途主要有以下几点: ①校验保护电器的整定值,如断路器、熔断器的分断能力应大于安装处最大预期短路电流。 ②确定保护电器的整定值,使其在短路电流对开关电器及线路器材造成破坏之前切断故障电路。 ③校验开关电器及线路器材的动热稳定是否满足规范和实际运行的要求。 1.2短路电流的计算特点 短路电流计算的特点:

①用户变压器容量远小于系统容量,短路电流周期分量不衰减。 ②计入短路各元件有效电阻,但不计入元件及设备的接触电阻和电抗。 ③因线路电阻较大,不考虑短路电流非周期分量的影响。 ④变压器接线方式按D、yn11考虑。 1.3短路电流的计算方法 短路电流计算的方法: ——三相短路电流或单相短路电流kA; 式中 I k Z ——短路回路总阻抗mΩ(包括系统阻抗、变压器阻抗、母 k 线阻抗及电缆阻抗等,其中阻抗还包括电阻、电抗、相保电阻、相保电抗) U——电压V(用于三相短路电流时取230,用于单相短路电流时取220) 1.4短路电流的计算示例 下面通过范例来叙述低压短路电流的计算过程。

用计算机程序实现短路电流计算

基于Matlab语言实现电力系统短路电流计算 [摘要]在发电厂,变电所以及整个电力系统设计和运行的许多工作中都必须依靠短路计算作为依据。基于Matlab最重要的组件之一Simulink中的电力元件库(SimPowerSystems)构建电力系统仿真模型,利用Simulink中的画图工具搭建电力系统模型也是进行电力系统故障分析,它让电力研究者从大量繁琐的理论分析及复杂的矩阵计算中解脱出来,让庞大的电力系统很直观的呈现在研究者的面前,从而将庞大的电力网搬进了办公室,为研究带来了巨大的便利。 [关键词]Matlab 仿真;SimPowerSystems;短路电流计算 Based on Matlab programs to achieve power system of short-circuit current calculation Abstract:Based on Matlab the most important component of the electrical component library (simulink.this SimPowerSystems) eletric power system simulation model. In Matlab simulation of lans power system for engineering design and maintenance to provide important basis. Also for the electric power research bring great convenience . Using Simulink tool builds the drawing power system model is of power system fault analysis of the common method. It makes power researchers from a large number of tedious theoretical analysis and complex matrix calculations in earnest. Make huge power system is very intuitive appear in front of the researchers, thus the huge power grids in the office for the study of the move has brought great convenience. Key words:Matlab SimpowerSystems Short-circuit current calculation simulation 1 引言 工厂供电系统要求正常地不间断地对用电负荷供电,以保证工厂生产和生活的正常进行。但是由于短路,而供电系统产生极大地危害。主要有:(1)由于短路时产生的很大的点动力和很高的温度,而使故障元件和短路电路中的其他元件破坏;(2)短路时电路中电压要骤降,严重影响其中电气设备的正常运行;(3)短路时保护装置动作,要造成停电,而且越靠近电源,停电范围越大,造成的损失也越大;(4)严重的短路要影响电力系统的运行稳定性,可使并列运行的发电机组失去同步,造成系统解列;(5)不对称短路包括单相短路的两相短路,其短

电力系统短路计算设计

轉騎44焙 电力系统设计 设计人______________ 专业_______________ 学号_______________ 指导老师____________ 日期_______________ 成绩

Z 、设计题目2:电力系统短路计算 、电力系统原理接线图 A1 U 220 Kg 电力系统元件型号敕据 如图所示 衍3萨示 MCL — 10 1000 X R %=10 输电线路 LK L2 LGJ —300 60KM L3. L4 LGJ —300 80KM L5. L6 LGJ —300 20KM L7. L8 LGJ —300 20KM 四、设计任务 4.2短路类型的短路电流计算 4.3不同点短路时的短路电流计算 4.3.1 计算2M 母线上发生三相短路流到短路点的短路电流。 220--0.8 益性0.124 r ■/ 卜:? 2 x240^ 丿 2 x 打

432 计算5M母线上发生三相短路流到短路点的短路电流。 4.4输电线上的短路电流 计算5M母线上发生三相短路,流到1L~8L上的短路电流。 4.5任意时刻短路电流的计算 计算4M母线上发生三相短路,分别计算t=Os, t=0.2s, t=4s, 过的短路电流周期分量及各电源的短路电流。 五、设计说明书撰写要求 1. 设计内容全面,说明部分条理清晰,计算工程详略得当。 2. 数据列表分析明晰,需要列表的有: 不同短路类型的短路电流计算结果 不同点短路时的短路电流计算结果 任意时刻短路电流的计算结果 课程设计说明书装订顺序:封面、成绩评审意见表、任务书、目录、正文献 故障点流、参考

电力系统短路电流计算书

电力系统短路电流计算书 Final revision by standardization team on December 10, 2020.

电力系统短路电流计算书 1短路电流计算的目的 a.电气接线方案的比较和选择。 b.选择和校验电气设备、载流导体。 c.继电保护的选择与整定。 d.接地装置的设计及确定中性点接地方式。 e.大、中型电动机起动。 2短路电流计算中常用符号含义及其用途 I-次暂态短路电流,用于继电保护整定及校验断路器额定断充容量。 a. 2 I-三相短路电流第一周期全电流有效值,用于校验电气设备和母线的动稳定及b. ch 断路器额定断流容量。 i-三相短路冲击电流,用于校验电气设备及母线的动稳定。 c. ch d.I∞-三相短路电流稳态有效值,用于校验电气设备和导体的热稳定。 e."z S-次暂态三相短路容量,用于检验断路器遮断容量。 f.S∞-稳态三相短路容量,用于校验电气设备及导体的热稳定. 3短路电流计算的几个基本假设前提 a.磁路饱和、磁滞忽略不计。即系统中各元件呈线性,参数恒定,可以运用叠加原 理。 b.在系统中三相除不对称故障处以外,都认为是三相对称的。 c.各元件的电阻比电抗小得多,可以忽略不计,所以各元件均可用纯电抗表示。

d.短路性质为金属性短路,过渡电阻忽略不计。 4基准值的选择 为了计算方便,通常取基准容量S b=100MVA,基准电压U b取各级电压的平均电压,即 U b =U p = ,基准电流 b b I S = ;基准电抗2 b b b b X U U ==。 常用基准值表(S b=100MVA) 各电气元件电抗标么值计算公式

第七章 电力系统的短路计算2010分析

第七章电力系统的短路计算华中科技大学电力工程系 罗毅 luoyee@https://www.360docs.net/doc/dc15598715.html, 87544274(o)

本章习题 P214-216:7-2、3、5、6、7、11、12 11月3日(星期三)交

学习目标 ?掌握无限大功率电源系统三相短路计算?掌握有限容量电源系统三相短路计算?掌握序阻抗的基本概念;掌握各元件的各序等值电路及其序阻抗的确定方法?掌握应用对称分量法分析不对称短路的方法,序网方程,复合序网 ?掌握电力系统发生简单不对称短路时的短路电流计算

学习方法 ?1、理解短路计算涉及的基本概念是短路计算的基础; ?2、注意各种短路的物理过程及短路的分析过程,而不是简单地记忆相关公式;

电力系统的短路故障 短路:电力系统中一切不正常的相与相之间或相与地之间发生通路的情况。 一、短路的原因及其后果 ?短路的原因 ?电气设备及载流导体因绝缘老化,或遭受机械损 伤,或因雷击、过电压引起绝缘损坏; ?架空线路因大风或导线履冰引起电杆倒塌等,或 因鸟兽跨接裸露导体等; ?电气设备因设计、安装及维护不良所致的设备缺 陷引发的短路; ?运行人员违反安全操作规程而误操作,如带负荷 拉隔离开关,线路或设备检修后未拆除接地线就 加上电压等。

电力系统的短路故障 ?短路的后果 ?强大的短路电流通过电气设备使发热急剧增加,短路持续时间较长时,足以使设备因过热而损坏甚至烧毁; ?巨大的短路电流将在电气设备的导体间产生很大的电动力,可能使导体变形、扭曲或损坏; ?短路将引起系统电压的突然大幅度下降,系统中主要负荷异步电动机将因转矩下降而减速或停转,造成产品报废甚至设备损 坏; ?短路将引起系统中功率分布的突然变化,可能导致并列运行的发电厂失去同步,破坏系统的稳定性,造成大面积停电。这是 短路所导致的最严重的后果。 ?巨大的短路电流将在周围空间产生很强的电磁场,尤其是不对称短路时,不平衡电流所产生的不平衡交变磁场,对周围的通 信网络、信号系统、晶闸管触发系统及自动控制系统产生干扰。

低压短路电流计算方法

一、短路原因及危害 短路是电力系统中常见的故障之一,它是指供配电系统中相导体之间或者相导 体与大地之间不通过负载阻抗而直接电气连接所产生的。产生短路电流的主要 原因有绝缘老化或者机械损伤;雷击或高电位浸入;误操作;动、植物造成的 短路等。发生短路时会产生很大的短路电流,短路电流会产生很大的电动力和 很高的温度,也就是短路的电动效应和热效应,可能会造成电路及电气装置的 损坏;短路将系统电压骤减,越靠近短路点电压越低,严重影响设备正常运行;还有发生短路后保护装置动作,从而造成停电事故,越靠近电源造成停电范围 越大;对于电子信息设备可能会造成电磁干扰。短路电流可以分为:三相短路,两相短路,单相短路。两相短路分为相间短路和两相接地短路。单相短路可以 分为相对地短路和相对中性线短路。一般三相短路电流值最大,单相短路电流 值最小。 二、计算短路电流的意义 1 选择电器。《低压配电设计规范》GB 50054—2011第3.1.1的5和6条关 于选择低压电器需要考虑短路电流的有关规定如下: 电器应满足短路条件下的动稳定与热稳定的要求; 用于断开短路电流的电器应满足短路条件下的接通能力和分断能力。 2 选择导体。《低压配电设计规范》GB 50054—2011第3.2.2的3条关于选 择电缆需要考虑短路电流的有关规定如下: 导体应满足动稳定与热稳定的要求;

3 断路器灵敏度校验。《低压配电设计规范》GB 50054—2011第6.2.4条关于低压断路器灵敏度校验有关规定如下: 当短路保护电器为断路器时,被保护线路末端的短路电流不应小于断路器瞬时或短延时过电流脱扣器整定电流的1.3倍。 4 根据 IEC60364-434.2 和IEC60364-533.2 条文中的规定,必须计算在回路首端的预期最大短路电流和回路末端的预期最小短路电流。 5 预期最大短路电流用在:断路器的分断能力;电器的接通能力;电气线路和开关装置的热稳定性和动稳定性。 6 预期最小短路电流主要用在:断路器脱扣器和熔断器灵敏度校验。 三、实用低压短路电流计算低压系统的短路计算,应计入短路电路各元件的有效电阻,但短路点的电弧电阻、导线连接点、开关设备和电器的接触电阻可忽略不计。低压短路电流的计算宜采用有名值法。1 配电变压器低压侧出口短路电流计算 配电变压器低压侧出口短路电流计算公式可以按照19DX101-1《建筑电气常用数据》15-3页,如下所示。 上面公式可用于主配电柜三相短路电流计算,用于校验主配电柜中断路器在短路条件下的分断能力和接通能力,用于校验主配电柜中母排的热稳定性和动稳定性。

电力系统两相短路计算与仿真(2)

辽宁工业大学 《电力系统分析》课程设计(论文)题目:电力系统两相短路计算与仿真(2) 院(系):工程技术学院 专业班级:电气工程及其自动化 学号: 学生姓名: 指导教师:王 教师职称 起止时间:15-06-15至15-06-26

课程设计(论文)任务及评语

摘要 目前,随着科学技术的发展和电能需求的日益增长,电力系统规模越来越庞大,电力系统在人民的生活和工作中担任重要的角色,电力系统的稳定运行直接影响人们的日常生活,因此,关于电力系统的短路计算与仿真也越来越重要。 本论文首先介绍有关电力系统短路故障的基本概念及短路电流的基本算法,主要讲解了对称分量法在不对称短路计算中的应用。其次,通过具体的简单环网短路实例,对两相接地短路进行分析和计算。最后,通过MATLAB软件对两相接地短路故障进行仿真,观察仿真后的波形变化,将短路运行计算结果与各时刻短路的仿真结果进行分析比较,得出结论。 关键词:电力系统分析;两相接地短路;MATLAB仿真

目录 第1章绪论 (1) 1.1短路的原因、类型及后果 (1) 1.1.1电路系统中的短路 (1) 1.1.1短路的后果 (1) 1.2短路计算的目的 (2) 第2章电力系统不对称短路计算原理 (3) 2.1对称分量法基本原理 (3) 2.2三相序阻抗及等值网络 (3) 2.3 两相不对称短路的计算步骤 (4) 2.4两相(b相和c相)短路 (4) 第3章电力系统两相短路计算 (7) 3.1系统等值电路的化简 (7) 3.2两相短路计算 (9) 第4章短路计算的仿真 (11) 4.1仿真模型的建立 (11) 4.2 仿真结果及分析 (11) 第5章总结 (14) 参考文献 (15)

(完整版)低压短路电流计算方法

短路电流计算及设备选择 1短路电流计算方法 (2) 2.母线,引线选择及其计算方法 (4) 2.1 主变压器35KV侧引线:LGJ-240/30 ............ 错误!未定义书签。 2.2 35KV开关柜内母线:TMY-808 ................. 错误!未定义书签。 2.3 主变压器10KV侧引线及柜内主接线:TMY-10010 . 错误!未定义书签。 3. 35KV开关柜设备选择............................. 错误!未定义书签。 3.1 开关柜..................................... 错误!未定义书签。 3.2 断路器..................................... 错误!未定义书签。 3.3 电流互感器................................. 错误!未定义书签。 3.4 电流互感器................................. 错误!未定义书签。 3.5 接地隔离开关............................... 错误!未定义书签。 4. 10KV开关柜设备选择............................. 错误!未定义书签。 4.1 开关柜..................................... 错误!未定义书签。 4.2 真空断路器................................. 错误!未定义书签。 4.3 真空断路器................................. 错误!未定义书签。 4.4 真空断路器................................. 错误!未定义书签。 4.5 电流互感器................................. 错误!未定义书签。 4.6 电流互感器................................. 错误!未定义书签。 4.7电流互感器................................. 错误!未定义书签。 4.8 电流互感器................................. 错误!未定义书签。 4.9 零序电流互感器............................. 错误!未定义书签。 4.10 隔离接地开关.............................. 错误!未定义书签。 4.11 高压熔断器................................ 错误!未定义书签。 5. 电力电缆选择................................... 错误!未定义书签。 5.1 10KV出线电缆.............................. 错误!未定义书签。 5.2 10KV电容器出线............................ 错误!未定义书签。

电力系统短路电流计算及标幺值算法

第七章短路电流计算 Short Circuit Current Calculation §7-1 概述General Description 一、短路的原因、类型及后果 The cause, type and sequence of short circuit 1、短路:是指一切不正常的相与相之间或相与地(对于中性点接地 的系统)发生通路的情况。 2、短路的原因: ⑴元件损坏 如绝缘材料的自然老化,设计、安装及维护不良等所造成的设备缺陷发展成短路. ⑵气象条件恶化 如雷击造成的闪络放电或避雷器动作;大风造成架空线断线或导线覆冰引起电杆倒塌等. ⑶违规操作 如运行人员带负荷拉刀闸;线路或设备检修后未拆除接地线就加电压. ⑷其他原因 如挖沟损伤电缆,鸟兽跨接在裸露的载流部分等. 3、三相系统中短路的类型: ⑴基本形式: )3(k—三相短路;)2(k—两相短路; )1( k—单相接地短路;)1,1(k—两相接地短路; ⑵对称短路:短路后,各相电流、电压仍对称,如三相短路; 不对称短路:短路后,各相电流、电压不对称; 如两相短路、单相短路和两相接地短路. 注:单相短路占绝大多数;三相短路的机会较少,但后果较严重。4、短路的危害后果 随着短路类型、发生地点和持续时间的不同,短路的后果可能只破坏局部地区的正常供电,也可能威胁整个系统的安全运行。短路的危险后果一般有以下几个方面。 (1)电动力效应 短路点附近支路中出现比正常值大许多倍的电流,在导 体间产生很大的机械应力,可能使导体和它们的支架遭 到破坏。 (2)发热 短路电流使设备发热增加,短路持续时间较长时,设备 可能过热以致损坏。 (3)故障点往往有电弧产生,可能烧坏故障元件,也可能殃

短路电流计算

短路电流计算 第一节概述 一、电力系统或电气设备的短路故障原因 (1)自然方面的原因。如雷击、雾闪、暴风雪、动物活动、大气污染、其他外力破坏等等,造成单相接地短路和相间短路。 (2)人为原因。如误操作、运行方式不当、运行维护不良或安装调试错误,导致电气地设备过负荷、过电压、设备损坏等等造成单相接地短路和相间短路。 (3)设备本身原因。如设备制造质量、设备本身缺陷、绝缘老化等等造成单相接地短路和相间短路。 二、短路种类 1.单相接地短路 电力系统及电气设备最常见的短路是单相接地,约占全部短路的75%以上。对大电流接地系统,继电保护应尽快切断单相接地短路。对中性点经小电阻或中阻接地系统,继电保护应瞬时或延时切断单相接地短路。对中性点不接地系统,当单相接地电流超过允许值时,继电保护亦应有选择性地切断单相接地短路。对中性点经消弧线圈接地或不接地系统,单相接地电流不超过允许值时,允许短时间单相接地运行,但要求尽快消除单相接地短路点。 2.两相接地短路 两相接地短路一般不超过全部短路的10%。大电流接地系统中,两相接地短路大部分发生于同一地点,少数在不同地点发生两相接地短路。中性点非直接接地的系统中,常见是发生一点接地,而后其他两相对地电压升高,在绝缘薄弱处将绝缘击穿造成第二点接地,此两点多数不在同一点,但也有时在同一点,继电保护应尽快切断两相接地短路。 3.两相及三相短路 两相及三相短路不超过全部短路的10%。这种短路更为严重,继电保护应迅速切断两相及三相短路。

4.断相或断相接地 线路断相一般伴随相接地。而发电厂的断相,大都是断路器合闸或分闸时有一相拒动造成两相运行,或电机绕组一相开焊的断相,或三相熔断器熔断一相的两相运行,两相运行一般不允许长期存在,应由继电保护自动或运行人员手动断开健全相。 5.绕组匝间短路 这种短路多发生在发电机、变压器、电动机、调相机等电机电器的绕组中,虽然占全部短路的概率很少,但对某一电机来说却不一定。例如,变压器绕组匝间短路占变压器全部短路的比例相当大,这种短路能严重损坏设备,要求继电保护迅速切除这种短路。 6.转换性故障和重叠性故障 发生以上五种故障之一,有时由于故障的演变和扩大,可能由一种故障转换为另一种故障,或发生两种及两种以上的故障(称之复故障),这种故障不超过全部故障的5%。 第二节 对称短路电流计算 一、阻抗归算 为方便和简化科计算,通常将发电机、变压器、电抗器、线路等元件的阻抗归算至同一基准容量bs S (一般取100MVA 或1000MVA 基准容量)和基准电压bs U (一般取电网的平均额定电压bv U )时的基准标么阻抗(以下不作单独说明,简称标么阻抗);归算至额定容量的标么阻抗称相对阻抗。 (一)标么阻抗的归算 1.发电机等旋转电机阻抗的归算 发电机等旋转电机一般给出的是额定条件下阻抗对值,其标么可按下式计算 bs G G GN S X X S * = (1-1) 式中 G X * ——发电机在基准条件下电抗的标么值; G X ——发电机额定条件电抗的标对值; G X ——基准容量(MVA );

电力系统短路计算设计

电力系统设计 设计人__________专业__________ 学号__________指导老师__________日期__________成绩__________

一、设计题目2:电力系统短路计算 二、电力系统原理接线图 四、设计任务 4.1计算系统各元件的电抗以av B B U U MVA S ==,100为基准 4.2 短路类型的短路电流计算 4.2.1 当发电机电势取08.1=E 时 计算4M 母线发生三相短路,两相短路,单相短路流到短路点的短路电流。 4.3不同点短路时的短路电流计算

4.3.1 计算2M母线上发生三相短路流到短路点的短路电流。 4.3.2 计算5M母线上发生三相短路流到短路点的短路电流。 4.4输电线上的短路电流 计算5M母线上发生三相短路,流到1L~8L上的短路电流。 4.5任意时刻短路电流的计算 计算4M母线上发生三相短路,分别计算t=0s, t=0.2s, t=4s,故障点流过的短路电流周期分量及各电源的短路电流。 五、设计说明书撰写要求 1.设计内容全面,说明部分条理清晰,计算工程详略得当。 2.数据列表分析明晰,需要列表的有: 不同短路类型的短路电流计算结果 不同点短路时的短路电流计算结果 任意时刻短路电流的计算结果 课程设计说明书装订顺序:封面、成绩评审意见表、任务书、目录、正文、参考文献

目录 1. 绪论 1.1电力系统三大计算................................................. (5) 1.2电力系统短路故障概述 (5) 2.短路电流分析 2.1对称分量法................................................. . (6) 2.2序网络................................................. (6) 3.正文 3.1不同短路类型的短路电流计算 (7)

电力系统分析短路电流的计算汇总

1课程设计的题目及目的 1.1课程设计选题 如图所示发电机G ,变压器T1、T2以及线路L 电抗参数都以统一基准的标幺值给出,系统C 的电抗值是未知的,但已知其正序电抗等于负序电抗。在K 点发 生a 相直接接地短路故障,测得K 点短路后三相电压分别为0=a U , 1201-∠=b U , 1201∠=c U 。试求:(1)系统C 的正序电抗; (2)K 点发生bc 两相接地短路时故障点电流; (3)K 点发生bc 两相接地短路时发电机G 和系统C 分别提供的故障电流(假设故障前线路电流中没有电流)。 系统C 发电机G 15. 01=T X 15 . 00=T X 25 . 02=T X 25. 02==''X X d 图1-1

1.2课程设计的目的 1. 巩固电力系统的基础知识; 2. 练习查阅手册、资料的能力; 3.熟悉电力系统短路电流的计算方法和有关电力系统的常用软件; 2短路电流计算的基本概念和方法 2.1基本概念的介绍 1. 在电力系统中,可能发生的短路有:三相短路、两相短路、两相短路接地和单相短路。三相短路也称为对称短路,系统各相与正常运行时一样仍处于对称状态。其他类型的短路都属于不对称短路。 2. 正序网络:通过计算对称电路时所用的等值网络。除中性点接地阻抗、空载线路(不计导纳)以及空载变压器(不计励磁电流)外,电力系统各元件均应包括在正序网络中,并且用相应的正序参数和等值电路表示。 3. 负序网络:与正序电流的相同,但所有电源的负序电势为零。因此,把正序网络中各元件的参数都用负序参数代替,并令电源电势等于零,而在短路点引入 代替故障条件的不对称电势源中的负序分量,便得到负序网络。 4. 零序网络:在短路点施加代表故障边界条件的零序电势时,由于三项零序电流大小及相位相同,他们必须经过大地(或架空地线、电缆包庇等)才能构成回路,而且电流的流通与变压器中性点接地情况及变压器的解法有密切关系。 2.2 短路电流计算的基本方法 1. 单相(a相接地短路 单相接地短路是,故障处的三个边界条件为: 0fa V = ; 0fb I = ; 0fc I =

质(电力行业)电力系统短路计算课程设计优质

(电力行业)电力系统短路计 算课程设计

成绩: 评语: 指导教师: 年月日

南昌工程学院 课程设计(论文)任务书 一、课程设计(论文)题目: 电力系统短路计算 二、课程设计(论文)使用的原始资料(数据)及设计技术要求: 1、系统图及参数见附录 2、分组分别计算K1、K2、K3点单相接地短路、两相短路、两相短路接地及三相短路下的短路电流:周期分量有效值的有名值、短路冲击电流的有名值、短路容量; 3、对上述情况下的短路电流进行分析比较。 三、课程设计(论文)工作内容及完成时间:共2周 1、复习短路计算基本方法(11.18~11.20) 2、对各短路点进行短路电流计算(11.21~11.26) 3、整理设计说明书(11.27~11.30) 四、主要参考资料: 1、《电力系统分析》孟祥萍高等教育出版社 2、《电力系统基础》陈光会王敏中国水利电力出版社 3、《电力系统分析》(上册)何仰赞等华中理工大学出版社

机械与电气工程学院10电气工程及其自动化专业班学生: 日期:自2013 年11 月18 日至2013 年11 月30 日指导教师: 助理指导教师(并指出所负责的部分): 教研室:电气工程教研室主任: 附录:短路点的设置如下,计算时桥开关和母连开关都处于闭合状态。

一、取基准容量: S B=100MVA基准电压:U B=U av 二、计算各元件电抗标幺值: (1)X L=0.401Ω/km,L1=16.582kmL2=14.520km,X d1=X d2=X=0.0581, 系统电抗标幺值X=0.0581,两条110kV进线为LGJ-150型线路长度一条为16.582km,另一条为14.520km.。 (2)主变铭牌参数如下: 1﹟主变:型号SFSZ8-31500/110 接线Y N d11 变比110±4×2.5%∕38.5±2×2.5%∕10.5 短路电压(%)U K(1-2)=10.47U K(3-1)=18U K(2-3)=6.33 短路损耗(kw)P K(1-2)=169.7P K(3-1)=181P K(2-3)=136.4 空载电流(%)I0(%)=0.46 空载损耗(kW)P0=40.6 2﹟主变:型号SFSZ10-40000/110 接线Y N d11 变比110±8×1.25%∕38.5±2×2.5%∕10.5 短路电压(%)U K(1-2)=11.79U K(3-1)=21.3U K(2-3)=7.08 短路损耗(kW)P K(1-2)=74.31P K(3-1)=74.79P K(2-3)=68.30 空载电流(%)I0(%)=0.11

低压开关整定及短路电流计算方法(技术相关)

高、低压开关整定计算方法: 1、 1140V 供电分开关整定值=功率×0.67, 馈电总开 关整定值为分开关整定值累加之和。 2、 660V 供电分开关整定值=功率×1.15,、馈电总开关 整定值为分开关整定值累加之和。 3、 380V 供电分开关整定值=功率×2.00,、馈电总开 关整定值为分开关整定值累加之和。 低压开关整定及短路电流计算公式 1、馈电开关保护计算 (1)、过载值计算:I Z =I e =1.15×∑P (2)、短路值整定计算:I d ≥I Qe +K X ∑I e (3)、效验:K=d d I I )2( ≥1.5 式中:I Z ----过载电流整定值 ∑P---所有电动机额定功率之和 I d ---短路保护的电流整定值 I Qe ---容量最大的电动机额定启动电流(取额定电流的6倍) K X ---需用系数,取1.15 ∑I e ---其余电动机的额定电流之和 P max ---------容量最大的电动机 I (2) d ---被保护电缆干线或支线距变压器最远点的两相短路 电流值

例一、馈电开关整定: (1)型号:KBZ16-400,Ie=400A,Ue=660V, 电源开关;负荷统计P max=55KW,启动电流I Qe=55×1.15×6=379.5A, ∑I e =74KW。∑P=129KW (2)过载整定: 根据公式:I Z=I e=1.15×∑P =129×1.15=148.35A 取148A。 (3)短路整定: 根据公式 I d≥I Qe+K X∑I e =379.5+1.15x74=464.6A 取464A。 例二、开关整定: (1)、型号:QBZ-200,Ie=200A,Ue=660V,所带负荷:P=55KW。(2)、过载整定: 根据公式:I Z=I e=1.15×P =1.15×55=63.25A 取65A。 井下高压开关整定: 式中: K Jx -------结线系数,取1 K K -------可靠系数,通常取(1.15-1.25)取1.2

相关文档
最新文档