给排水水力计算工具集

给排水水力计算工具集
给排水水力计算工具集

给排水水力计算工具集

*********************************************************** ********************

版本号:1.1

更新日期:2004.7.28

版本更新说明:

1.修正了给水水力计算默认管材下改变温度时计算报错的bug;

2.修正了排水水力计算铸铁管和PVC-U排水管管径变化时无法

自动调整坡度的bug,修正了PVC-U管材计算内径。

*********************************************************** ********************

摘要依据国家最新规范及标准图等,并通过实际工程应用,设计开发的给排水计算工具。

关键词给排水设计计算软件开发Visual Basic

从事给排水设计过程中,使用过一些他人开发的计算软件,发现有些软件的操作不太方便,功能不全,毕业到现在2年来,机器上积攒了不少软件,存在功能交叉,管理不便,同时由于新规范的颁布,有些计算方法已不能满足新规范要求,为此决定开发一个功能相对集成的软件。部分版块参考相关软件进行界面设计,经过数月内部测试,目前v1版基本完成,主要包括如下版块:给水水力计算、满流非满

流水力计算、雨水水力计算、消火栓水力计算、灭火器配置计算、化粪池选型、钢制管件、防水套管、排水管件。下面将介绍各版块的设计依据及设计思路。https://www.360docs.net/doc/dc15742948.html, 中国最大的管理资料库下载 1. 给水水力计算

用于钢衬塑复合管、PP-R 冷、热水管、薄壁不锈钢管、衬树脂铸铁管、普通钢管、铸铁管、铜管的水力计算。

设计依据

《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版

《2003全国民用建筑工程设计技术措施》给排水分册 沿程水头损失h i =k ·i ·L= k ·105C h -1.85d j -4.87q g 1.85·L, 流速v=

2g 4

1q j d S

h i -沿程水头损失 i-单位长度水头损失

d j-管道计算内径

q g-给水设计流量

C h-海澄-威廉系数

L-管道长度

v-流速

k-温度修正系数,默认值为1.0

当输入流量、管长后,选择管材、管径,软件自动确定海澄-威廉系数、计算内径等。若该管材需要修改温度修正系数,则温度列表变为可选,可根据实际情况选择温度,系统自动确定修正系数。计算输出流速、水头损失等,同时还可将当前流量转换为对应的秒流量(L/s)或小时流量(t/h)。

https://www.360docs.net/doc/dc15742948.html,中国最大的管理资料库下载

2.满流非满流水力计算

用于建筑室内、外的排水流速、流量计算,包括排水铸铁管、PVC-U塑料管、混凝土管、聚乙烯双壁波纹管等。

设计依据:

《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版

满流计算公式采用:v=2/13/21i R n

Q=vA A=24

D π

P=πD R=

4

D 非满流计算公式采用:v=2/13/21i R n

Q=vA

当h<2

D

时,A=(θθθcos sin -)r 2 θ

ρ2=r R=

r θ

θθθ2)

cos sin (- 当

h>

2

D

时,A=(θθθπcos sin +-)r 2

)

(2θπρ-=r

R=

r )

(2)

cos sin (θπθθθπ-+- 充满度=D

h D-管径 v-流速

n-粗糙系数,混凝土管满流0.013,非满流0.014,聚乙烯双壁波纹管0.01

Q-流量 i-水力坡降 A-水流断面 P-湿周(满流) ρ-湿周(非满流) R-水力半径 h-管内水深

3. 雨水水力计算

用于国内不同城市的暴雨强度计算、目前已集成了国内各省市的一些较大城市的数据资料,可进行屋面(单雨水斗系统)、室外雨水流量、流速、管径的计算。

设计依据

《建筑给排水设计规范》GB50015-2003

《给水排水设计手册》第二版

《2003全国民用建筑工程设计技术措施》给排水分册

雨水计算流量Q=ψqF

q=

n

b

t P

c A

) (

) lg

1(

67

.1

+

+

Q-雨水流量ψ-径流系数F-汇水面积q-暴雨强度P-降雨重现期

t –降雨历时

A、b、c、n-当地降雨参数

当选定城市后,软件自动载入当地暴雨强度公式,然后选择汇水区域形式(屋面、室外),可自定义重现期、降雨历时、径流系数等,输入汇水面积,以及雨水管道数量,即可确定该区域的暴雨强度、雨水流量以及每根管道的流量,流速、管径、坡度(标准坡度)等,点击校核可以查看该管径下的满流最大流量,以检验当前管径是否满足要求。

由管径确定流量在版块二“满流、非满流水力计算”中已经提到,而由流量反算管径相对较麻烦,这里先由版块二确定各管径在标准坡度下的满流流量:D300标准坡度为0.003,最大流量Q300;大于300的管道坡度均采用0.002,对应的流量分别为Q400、Q500……

软件计算出流量Q,管径D则通过条件语句来实现。

If Q < = Q300 Then

D = "d300"

ElseIf Q < = Q400 Then

D = "d400"

ElseIf Q < = Q500 Then

D = "d500"

……

……

……

End If

4. 消火栓水力计算

用于计算消火栓在不同充实水柱、喷嘴、龙带口径、材质、长度下的水头损失、水压、水量。

设计依据:

《建筑设计防火规范》GBJ16-87(2001年版) 《2003全国民用建筑工程设计技术措施》给排水分册 《给排水设计手册》第二版 《建筑给水排水工程》第四版

消火栓水压计算公式:H xh =H d +H q +H sk =A d L d q xh 2+B

q

xh 2

+H sk ;

H q =

m

f m f H a H a ??-??1 q xh =q BH

H xh =消火栓栓口最低压力 H d -消防水带水头损失

H q -水枪喷嘴造成一定长度充实水柱所需压力

H m -充实水柱 A d -水带比阻 L d -水带长度 q xh -水枪喷嘴射流量 B-水枪水流特性系数

H sk -消火栓栓口水头损失,宜取0.02MPa 。 αf -实验系数,αf =1.19+80×(0.01×H m )4 φ-喷嘴阻力系数,φ=

3

)

1.0(25

.0f f d d ?+ 首先确定充实水柱长度,然后选择喷嘴口径、水带口径、材质、长度,以上数据确定后,所有系数即可自动确定,从而计算得到水压、水量、水头损失等。

https://www.360docs.net/doc/dc15742948.html, 中国最大的管理资料库下载 5. 灭火器配置计算

用于工业及民用建筑工程A 、B 、C 类火灾灭火器配置计算。

设计依据:

《建筑灭火器配置设计规范》GBJ140-90(1997年版) Q=K

U S Qe=N

Q Q-灭火器配置场所的灭火级别,A 或B S-灭火器配置场所的保护面积 U-灭火器配置场所的灭火器配置基准 K-修正系数

Q e -灭火器配置场所每个设置点的灭火级别,A 或B N-灭火器配置场所中设置点数量

当确定火灾种类、危险等级、建筑物类型后,灭火器的配置基准、保护距离、每具最小配置级别等参数即可确定;输入保护面积、配置点数量后,灭火器选型可以通过自动或手动配置。当选择自动配置时,计算后会给出各种规格的灭火器配置方式,违反规范的配置方式(如:每处数量超过5具、每具灭火级别小于规范规定的最小配置级别)会给出警告;当选择手动配置,可以手工选定灭火器规格,计算出配置数量。

6. 化粪池选型

用于化粪池的选型、计算,并确定化粪池的外形尺寸(仅限砖砌化粪池)。

设计依据:

《砖砌化粪池》02S701 《钢筋混凝土化粪池》03S702 化粪池有效容积计算: 合流系统: W=W 1+W 2=1000

24????t

q N z α+1.2(T Nz ???α00028.0)

N z =

)

6.331

7.4(105

T t q W

?+????-α 分流系统:W=W 1+W 2=1000

24????t

q N z α+1.2(T Nz ???α00016.0)

N z =

)

2.1917.4(105

T t q W

?+????-α W-化粪池有效容积 W 1-化粪池内污水部分容积 W 2-化粪池内污泥部分容积 N z -化粪池设计总人数

q- 污水定额

t- 污水停留时间

α-实际使用人数与设计总人数百分比

T- 清掏周期

软件使用时,首先选择建筑物类别,从而确定使用系数,用水定额,然后确定污水停留时间、排水类型和清掏周期等。以上参数均可以手工输入,较之国标图选型,灵活性更强。考虑到大部分时候我们根据设计人数选定化粪池,因此将设计人数作为软件计算过程中的一个手动输入的参数。计算得到化粪池规格后,作为校核,同时输出能够满足的最大使用人数。当污泥容积超过有效容积70%(W≤25m3)或80%(W≥30m3),按污泥容积相应等于有效容积的70%或80%,用污泥容积公式计算确定化粪池设计总人数。

另外也可以选择环境情况,包括有无覆土、地下水、是否过汽车等,主要体现在化粪池的代号上——Z2-4 [/S /Q /F],对计算过程没有影响。

7.钢制管件、排水管件、防水套管

用于确定各种规格给排水管件的尺寸。给水管件包括弯头、三通、偏心异径管、同心异径管等管件的尺寸及壁厚;排水管件包括三通、四通、弯头等,并能计算出各管件连接时的最小尺寸。用途为:在较狭小空间内布置管道时须考虑各管件的连接尺寸。

参考文献及资料:

1.《建筑给排水设计规范》GB50015-2003

2.《建筑设计防火规范》GBJ16-87(2001年版)

3.《建筑灭火器配置设计规范》GBJ140-90(1997年版)

4.《给水排水设计手册》第1、2册(第二版)

5.《给水排水设计手册》第5册

6.《建筑给水排水工程》第四版中国建筑工业出版社

7.《2003全国民用建筑工程设计技术措施》给排水分册

8.《卫生设备安装工程》98S1

9.《砖砌化粪池》02S701

10《钢筋混凝土化粪池》03S702

11.《给排水在线工具集》

12.《暴雨强度及雨水流量计算v1.0.8.18》designed by Jing

给水排水管道系统水力计算汇总

第三章给水排水管道系统水力计算基础 本章内容: 1、水头损失计算 2、无压圆管的水力计算 3、水力等效简化 本章难点:无压圆管的水力计算 第一节基本概念 一、管道内水流特征 进行水力计算前首先要进行流态的判别。判别流态的标准采用临界雷诺数Re k,临界雷诺数大都稳定在2000左右,当计算出的雷诺数Re小于2000时,一般为层流,当Re大于4000时,一般为紊流,当Re介于2000到4000之间时,水流状态不稳定,属于过渡流态。 对给水排水管道进行水力计算时,管道内流体流态均按紊流考虑 紊流流态又分为三个阻力特征区:紊流光滑区、紊流过渡区及紊流粗糙管区。 二、有压流与无压流 水体沿流程整个周界与固体壁面接触,而无自由液面,这种流动称为有压流或压力流。水体沿流程一部分周界与固体壁面接触,另一部分与空气接触,具有自由液面,这种流动称为无压流或重力流 给水管道基本上采用有压流输水方式,而排水管道大都采用无压流输水方式。 从水流断面形式看,在给水排水管道中采用圆管最多 三、恒定流与非恒定流 给水排水管道中水流的运动,由于用水量和排水量的经常性变化,均处于非恒定流状态,但是,非恒定流的水力计算特别复杂,在设计时,一般也只能按恒定流(又称稳定流)计算。 四、均匀流与非均匀流 液体质点流速的大小和方向沿流程不变的流动,称为均匀流;反之,液体质点流速的大小和方向沿流程变化的流动,称为非均匀流。从总体上看,给水排水管道中的水流不但多为非恒定流,且常为非均匀流,即水流参数往往随时间和空间变化。 对于满管流动,如果管道截面在一段距离内不变且不发生转弯,则管内流动为均匀流;而当管道在局部有交汇、转弯与变截面时,管内流动为非均匀流。均匀流的管道对水流的阻力沿程不变,水流的水头损失可以采用沿程水头损失公式进行计算;满管流的非均匀流动距离一般较短,采用局部水头损失公式进行计算。

建筑给排水系统设计方法和步骤

建筑给排水系统设计方法和步骤 1.根据建筑物的性质及给定的设计依据。确定室内与室外的给排水方案。 2.在建筑图上布置给排水立管位置。(原则:沿柱、墙角、墙面布置)布置给水干管位置。 3.在建筑图中从给水立管引水到各用水点。从各用水点将排水引入排水立管。 4.在建筑图上布置消火栓箱、消防立管、水平干管及连接消防栓管道和连接消防水泵接合器;消防水箱;消防水泵出水管。 5.绘制给水、消防管网的总系统图和排水、雨水系统图;绘制给排水详图。 6.确定最不利点的配水点及最不利点消火栓。 7.绘制计算简图——总系统图,删去部分连接管。(使得环状管网变成枝状管网计算) 8.确定计算管路,进行管段编号和确定管段流量。 9.列表进行水力计算: 10.确定系统的总水压:H=△Z+∑h+hч 11.排水(雨水)管径按最小管径法和负荷流量法(负荷面积法)查表确定。最后将计算结果标注于图纸上。並按规定布置灭火器。 12.选择生活及消防水泵,满足:Qp>Qx;Hp>H 并使工作点落在高效区内。 13.确定生活及消防水箱容积Vx=10min的室内消防水量(住宅≥6立方米;一般高层≥12立方米;大于50米的高层≥18立方米)並绘制水箱配管图。 14.确定消防水箱的高度(可提供给土建参考)若水箱出口到最不利点消火栓出口高差(高层<7m;超高层<15m)需要增设加压稳压设备(泵)。 消火栓系统Q≤5L/S,H——满足最不利点消火栓的灭火要求; 自喷系统Q≤1L/S, H——满足最不利点喷头出水要求。

15.确定生活水池容积;消防水池容积V=(Q内+Q外) X T 並绘制水池配管图 注:Q内—室内消防水量 Q外—室外消防水量 T—火灾持续时间 16.作水泵房工艺设计:①作平面布置②绘制管路系统图③统计材料表④写设计说明 17.整理设计图纸,统计总材料表,编写给排水工程设计说明及图纸目录。 18.整理设计计算说明书。 相关规范:《建筑给排水设计规范》;《建筑设计防火规范》

住宅套内给水排水管道水力计算知识交流

住宅套内给水排水管道水力计算 专业--给排水常识2010-05-26 18:06:18 阅读21 评论0 字号:大中小订阅 1 入户管管径计算 《住宅建筑规范》[1]第5.1.4条规定:“卫生间应设置便器、洗浴器、洗面器等设施或预留位置;……。”这是现阶段住宅内卫生器具配置的最低要求,从《建筑给水排水设计规范》[2]中可知普通住宅Ⅱ、Ⅲ类符 合此项要求。 以普通住宅Ⅱ类为计算算例,表1-1为普通住宅Ⅱ类最高日生活用水定额及小时变化系数,表1-2为住宅常见卫生器具的给水额定流量、当量和连接管公称管径。表1-3为生活给水管道的水流流速要求值。 普通住宅Ⅱ类常见户型配置情况:所有户型配置均配置一间厨房,一套洗衣设施,以卫生间间数不同,分为一卫户(一间卫生间的户型)、二卫户(二间卫生间的户型)和三卫户(三间卫生间的户型)。表1-4 为常见户型卫生器具不同组合的当量数。 以PP-R管道和PAP管道作为典型管材进行水力计算。三通分水连接方式常用的建筑给水用无规共聚聚丙烯(PP-R)管道,当冷水管工作压力≤0.6MPa时,常选用S5系列,S5系列计算内径较大;分水器分水连接方式常用的铝塑复合(PAP)管道,铝塑复合(PAP)管道采用对接焊型,计算内径较小。表1-5为住宅常见户型入户管水力计算表。由表1-5可知,普通住宅Ⅱ类常见户型入户管公称管径应为DN25~DN32;如入户管管径采用小一级的,首先流速不满足规范要求,其次同样长度的入户管水头损失比满足流 速要求管径的水头损失大3倍左右。 表1-1 最高日生活用水定额及小时变化系数[2]

注:(1)流出水头[7] 是指给水时,为克服配水件内摩阻、冲击及流速变化等阻力而能放出的额定流量的 水头所需的静水压。 (2)最低工作压力[2] 是指在此压力下卫生器具基本上可以满足使用要求,它与额定流量无对应关系。 住宅入户管上水表的水头损失取0.010[2]~0.015MPa[4]。笔者以水表本层出户集中布置方式(水表距楼面1.0m),常见户型厨房、卫生间和阳台用水点为算例,根据管件采用三通分水或分水器分水的连接情况,经过管道、配件沿程和局部水头损失计算后,加上卫生器具的最低工作压力和水表的水头损失不同组合,表前最低工作压力在0.10~0.15MPa。对分水器集中配水连接方式水头损失较小,对应的表前最低工 作压力可采用较小的数值。 现代住宅给水支管设计常常只到水表后(或在室内预留一处接口),表前最低压力值的大小关系到住户将来装修后的正常用水,对于这一点应加以重视。同时必须指出,目前大部分水箱供水方式,水箱设置高度难以满足顶上1~3层表前最低工作压力(卫生器具的最低工作压力)的要求,这一点在设计时应特别注意。 3 排水横支管管径计算 排水横支管设计排水流量(通水能力)是按照重力流(不满流)进行计算,同管径的排水横支管设计排水流量远小于排水立管的设计排水流量。表3-1 为住宅常见卫生器具排水的流量、当量和排水(连接)管的 管径。 以常用的建筑排水硬聚氯乙烯(UPVC)管道(公称外径50~110mm)作为计算算例。表3-2为水力 计算参数、计算过程和计算结果。 表3-1卫生器具排水的流量、当量和排水管的管径[2]

城给水管网水力计算程序及例题

给水排水管道工程 课程设计指导书 环境科学与工程学院

第一部分城市给水管网水力计算程序及习题 一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); }

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M-1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M-1;k++) { printf("%d)",k+1);

专题二-建筑给排水水力计算

建筑给水排水工程 专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室管网所需的总压力与室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。 (1)试进行室给水系统设计。 (2)试进行室排水系统设计。

给水水力计算

给水水力计算 1. 给水水力计算:1,根据轴测图最不利配水点,确定计算管路2,节点编号3,计算各管段的设计秒流量4,校核,将H与市政管网提供的水压比较 5.增压:水泵,气压给水设备 6.贮水设备:贮水池,吸水井,水箱 7.供水方式:1,直接给水方式,适用于室外给水管网的水量,水压在一天内均能满足用水要求的建筑;2,设水箱的给水方式,宜在室外给水管网供水压力周期性不足时采用;3,社水泵的给水方式,宜在室外给水管网的水压经常不足时采用;4,设水泵,水箱联合的给水方式,宜在室外给水管网压力低于或经常不满足建筑内给水管网所需的水压,且室内用水不均匀时采用;5,气压给水方式,宜在室外给水管网压力低于或经常不能满足建筑内给水管网所需水压,室内用水不均匀,且不宜设置高位水箱时采用;6分区给水方式,室外给水管网的压力只能满足建筑下层供水要求时;7,分质给水方式,只能用于建筑内冲洗便器,绿化洗车,扫除等用水。 8.高层建筑供水分区:垂直并联分区,H<100M,垂直串联分区,H>100M。 9.自动喷淋的两个设计要素:作用面积,设计喷水强度 10.屋顶试验消防栓作用:1,检查其他消火栓是否能工作;2,避免临近建筑火灾波及 11.自动喷水系统分类:1,湿式自动喷水灭火系统2,干式自动喷水灭火系统3,预作用喷水灭火系统4,雨淋喷水灭火系统5,水幕系统 12.管网水力计算方法:1,作用面积法2,特性系数法 13.水封:设在卫生器具排水口下,用来抵抗排水管内气压变化防止排水管道中气体窜入室内的一定高度的水柱。 14.充满度:管道当中水流的高度

15.自净流速:能边排冲洗杂质不致沉淀淤积的最小流速 水封破坏:因静态和动态原因造成存水弯内水封高度减少,不足以抵抗管道内允许的压力变化值时,管道内气体进入室内的现象叫做水封破坏。 存水弯:卫生器具排水管上或卫生器具内部设置的有一定高度的水柱,防止排水管内气体窜入室内的附件。 给水设计秒流量:建筑物内卫生器具按最不利情况组合出流时的最大瞬时流量通气系统:建筑内部排水管道内是水气两相流。为使排水管道系统内空气流通,压力稳定,避免因管道内压力波动使有毒有害气体进入室内,需要设置与大气相通的通气管道系统。 13.排水最小管径:DN50 特殊要求:DN75 14.通用坡度:条件允许时采用;最小坡度:管长非常长时或空间受限制 15.为什么排水系统采用通气设备:让有害气体排出,保证排水系统里水压稳定 16.为什么高层采用底层单排:防止底层卫生器具发生正压喷溅 17.一个排水当量:0.33L/S 18.排水系统的水力计算步骤:1,计算管路2,节点编号3 19.通气管道的设置方式:伸顶通气管,汇合通气管,结合通气管 20.中水:区别于上水、下水,指给类排水经过一定的物理处理、物理化学处理或生物处理,达到规定的水质标准,其标准低于生活饮用水水质标准,所以称为中水。 21.檐沟排水:建筑屋面面积较小,重力流 22.天沟排水:建筑屋面面积较大,重力半有压流 23.内排水:由雨水斗,连接管,悬吊管,立管,排出管,埋地干管和附属构筑物组成 24.热水组成:热媒系统,热水供水系统 25.热水分类:局部热水供应系统,集中热水供应系统,区域热水供应系统

专题二-建筑给排水水力计算

建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室内给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室内管网所需的总压力与室外管网提供的压力进行比较。比较结果按节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图为某办公楼女卫生间平面图。办公楼共2层,层高,室内外地面高差为。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图所示,管径为100mm,管中心标高为–(以室内一层地面为±,室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。 (1)试进行室内给水系统设计。 (2)试进行室内排水系统设计。

专题二-建筑给排水水力计算

专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室内给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室内管网所需的总压力与室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室内外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室内一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。 (1)试进行室内给水系统设计。 (2)试进行室内排水系统设计。

给排水水力计算工具集

给排水水力计算工具集 *********************************************************** ******************** 版本号:1.1 更新日期:2004.7.28 版本更新说明: 1.修正了给水水力计算默认管材下改变温度时计算报错的bug; 2.修正了排水水力计算铸铁管和PVC-U排水管管径变化时无法 自动调整坡度的bug,修正了PVC-U管材计算内径。 *********************************************************** ******************** 摘要依据国家最新规范及标准图等,并通过实际工程应用,设计开发的给排水计算工具。 关键词给排水设计计算软件开发Visual Basic 从事给排水设计过程中,使用过一些他人开发的计算软件,发现有些软件的操作不太方便,功能不全,毕业到现在2年来,机器上积攒了不少软件,存在功能交叉,管理不便,同时由于新规范的颁布,有些计算方法已不能满足新规范要求,为此决定开发一个功能相对集成的软件。部分版块参考相关软件进行界面设计,经过数月内部测试,目前v1版基本完成,主要包括如下版块:给水水力计算、满流非满

流水力计算、雨水水力计算、消火栓水力计算、灭火器配置计算、化粪池选型、钢制管件、防水套管、排水管件。下面将介绍各版块的设计依据及设计思路。https://www.360docs.net/doc/dc15742948.html, 中国最大的管理资料库下载 1. 给水水力计算 用于钢衬塑复合管、PP-R 冷、热水管、薄壁不锈钢管、衬树脂铸铁管、普通钢管、铸铁管、铜管的水力计算。 设计依据 《建筑给排水设计规范》 GB50015-2003 《给水排水设计手册》第二版 《2003全国民用建筑工程设计技术措施》给排水分册 沿程水头损失h i =k ·i ·L= k ·105C h -1.85d j -4.87q g 1.85·L, 流速v= 2g 4 1q j d S h i -沿程水头损失 i-单位长度水头损失 d j -管道计算内径

城给水管网水力计算程序及例题

给水排水管道工程课程设计指导书

环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6 #define ep 0.01 #include int sgn(double x); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; double f[N+1],r[N+1],dq[N+1]; for(k=0;k<=M-1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M-1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop:

for(k=0;k<=M-1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]); } for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M-1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like;

建筑给排水计算书

1.建筑给水系统设计 (1) 1.1给谁用水定额及时变化系数 (1) 1.2最高日用水量 (1) 1.3最大时用水量 (1) 1.4设计秒流量 (1) 1.5给水管网水力计算 (1) 1.6水表的选择及水头损失计算 (4) 1.6.1水表选择 (4) 1.6.2给水系统所需压力 (5) 2.建筑排水系统设计 (6) 2.1生活排水设计秒流量计算公式 (6) 2.2排水定额 (6) 2.3排水管网的水力计算 (6) 2.3.1横管的水力计算 (6) 2.3.2立管计算 (9) 3.建筑消防系统设计 (11) 3.1消防栓布置 (11) 3.2水枪喷嘴出所需的水压 (11) 3.3水枪喷嘴的出流量 (12) 3.4水带阻力 (12) 3.5消火栓口所需水压 (13) 3.6水力计算 (13) 3.7消防水箱 (15)

1.建筑给水系统设计 1.1给谁用水定额及时变化系数 已知,该办公楼预计工作人员250人,查手册可知办公楼的每人每班最高日用水量为30,小时变化系数Kh 为1.5,使用时数8h 。 1.2最高日用水量 d m d mq Q d d /10/L 10000402503==?==; 式中 d Q --最高日用水量,d m /3; m —用水人数; d q —最高日生活用水定额,L/(人.d ) 1.3最大时用水量 h Q =Q p ·K h=(Q d /T )·K h=1.875m 3/h 1.4设计秒流量 根据规范,办公楼的生活给水设计秒流量计算公式为: N q g g α 2.0=(L/s ) 其中,α取值1.5,则N q g g 3 .0=, N g 为计算管段卫生器具给水当量总数,0.2L/s 为一个当量。 1.5给水管网水力计算 1、计算步骤 1) 绘制轴测图,根据轴测图选择最不利配水点,确定计算管道; 2) 以计算管段流量变化处为节点,从最不利配水点开始进行节点编号,将计算 管段划分为计算管段,并标出两节点计算管段的长度; 3) 根据设计秒流量公式,计算各管段的设计秒流量值;

给水管网水力计算基础

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于v d Av Q )4/(2 π==所以管径v Q v Q d /13.1/4== π。但是,仅依靠这个公式还不能完全解决问题,因为在流 量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =0.6-1.0m/s ; ——当直径d>400mm ,经济流速v=1.0~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 建筑物层数 1 2 3 4 5 6 7 8 自由水头Hz (m ) 10 12 16 20 24 28 32 36 这一类的计算,首先应从各管段末端开始,向水塔方向求出各管段的流量,然后选用经

建筑给排水中水力计算及其优化

建筑给排水中水力计算及其优化 摘要:作为建筑的重要保障系统,建筑给水排水系统担负着保 障居民生产、生活用水,以及消防安全用水的重要职责。进一步优化建筑给水排水水力计算,科学进行给水排水计算,对保障居民生产、生活安全意义十分重大。水力计算是给水排水管网设计的基础,水力计算采用的计算公式或参数依管材和截面形状而异,随着给水排水管材类别和规格的增多,水力计算工作越来越繁重。本文归纳了水头损失的计算公式,对建筑给排水水力计算中的要点进行了分析,最后提出了优化计算和设计的措施。 关键词:建筑;给排水;水力计算;给水管网;优化 abstract: as an important guarantee of the building system, building water supply and drainage system charged with the safeguard residents of production, domestic water, water for fire safety important duty. further optimization of building water supply and drainage hydraulic calculation, scientific water supply and drainage, to protect the residents of production, life safety is of great significance. hydraulic calculation is the basis for the design of water supply and drainage network, the hydraulic calculation formula or parameters differ depending on the pipe and the cross-sectional shape, with an increase in water supply and

建筑给排水水力计算

目录 前言 (1) 一、设计原始资料 (2) 1、设计题目 (2) 2、设计技术参数 (2) 3、基本要求 (3) 二、给水系统有关计算 (4) 1.生活给水系统 (4) 2.给水管道水力计算 (4) 三、消防栓系统的计算 (5) 1.消火栓的布置 (5) 2.水枪喷嘴处所需压力 (5) 3.水枪喷嘴的出流量 (5) 4.水带阻力 (5) 5.消火栓口所需的水压 (5) 6.水力计算 (6) 四、建筑排水系统设计计算 (7) 1.系统的选择 (7) 2.排水管道水力计算 (7) 总结 (8) 参考资料 (9)

前言 建筑给排水课程设计是我们给水排水工程的重要的集中性实践环节之一。安排在我们学完大学的全部基础课和部分专业课之后进行的,该课程设计的任务是使我们在掌握给建筑排水系统的基本理论知识的基础上,进一步掌握建筑给排水工艺的设计步骤和设计方法,是我们所学的专业知识加以系统化、整体化、以便于巩固和扩大所学的专业知识。 本课程设计的主要内容是通过所给的某学校宿舍楼的基本资料及周围市政供水管网和污水处理及消防的有关资料,通过有关的设计计算,合理的安排,设计计算出该宿舍楼室内给水系统、排水系统、消火栓系统及灭火器配置.并绘制设计总说明图(含说明、图例及主要材料表、图纸目录等)、首层给排水消防平面图(1:100)二层给排水消防平面图(1:100)、标准层给排水消防平面图(1:100)、系统图及卫生间大样图(含给水系统原理图、排水系统原理图、消火栓系统原理、卫生间给排水支管系统图、卫生间和盥洗间及洗衣房给排水大样图,系统原理图可不按比例,大样图1:50) 这次课程设计是对我们未来将从事的工作进行一次适应性训练,在提高我们分析问题、解决问题能力的同时,提高了我们的团结合作的能力,为今后走出学校、走向社会打一个良好的基础。 由于所学知识和能力有限,设计中有不足和不合理之处,请老师给予指正。

专题二建筑给排水水力计算

` 专题二建筑给水工程 2.1 建筑给水系统设计实例 1. 建筑给水系统设计的步骤 (1) 根据给水管网平面布置绘制给水系统图,确定管网中最不利配水点(一般为距引入管起端最远最高,要求的流出压力最大的配水点),再根据最不利配水点,选定最不利管路(通常为最不利配水点至引入管起端间的管路)作为计算管路,并绘制计算简图。 (2) 由最不利点起,按流量变化对计算管段进行节点编号,并标注在计算简图上。 (3) 根据建筑物的类型及性质,正确地选用设计流量计算公式,并计算出各设计管段的给水设计流量。 (4) 根据各设计管段的设计流量并选定设计流速,查水力计算表确定出各管段的管径和管段单位长度的压力损失,并计算管段的沿程压力损失值。 (5) 计算管段的局部压力损失,以及管路的总压力损失。 (6) 确定建筑物室给水系统所需的总压力。系统中设有水表时,还需选用水表。并计算水表压力损失值。 (7) 将室管网所需的总压力与室外管网提供的压力进行比较。比较结果按2.3.1节处理。 (8) 设有水箱和水泵的给水系统,还应计算水箱的容积;计算从水箱出口至最不利配点间的压力损失值,以确定水箱的安装高度;计算从引入管起端至水箱进口间所需压力来校核水泵压力等。 2. 建筑给水系统设计实例 图2.1为某办公楼女卫生间平面图。办公楼共2层,层高3.6m,室外地面高差为0.6m。每层盥洗间设有淋浴器2个,洗手盆2个,污水池1个;厕所设有冲洗阀式大便器6套。室外给水管道位置如图2.1所示,管径为100mm,管中心标高为–1.5m(以室一层地面为±0.000m),室外给水管道的供水压力为250kPa,镀锌钢管,排水管道采用塑料管材。 (1)试进行室给水系统设计。 (2)试进行室排水系统设计。

城给水管网水力计算程序及例题

给水排水管道工程

课程设计指导书 环境科学与工程学院 第一部分城市给水管网水力计算程序及习题一、程序 #define M 18 #define N 6

#define ep 0.01 #include int sgn(doublex); main() { int k, i,ko,q,p,flag=0; double h[M]; double l[]={?}; double D[]={?}; double Q[]={?}; int io[]={?}; int jo[]={?}; doublef[N+1],r[N+1],dq[N+1]; for(k=0;k<=M -1;k++) { Q[k]=Q[k]*0.001; } for(k=0;k<=M -1;k++) { Q[k]=Q[k]*sgn(io[k]); } ko=0; loop: for(k=0;k<=M -1;k++) { h[k]=10.67*pow(fabs(Q[k]),1.852)*l[k]; h[k]=h[k]/(pow(100,1.852)*pow(D[k],4.87))*sgn(Q[k]);

for(i=1;i<=N;i++) { f[i]=0;r[i]=0; dq[i]=0; for(k=0;k<=M -1;k++) { if(abs(io[k])!=i) goto map; f[i]=f[i]+h[k]; r[i]=r[i]+(h[k]/Q[k]); map: if( abs(jo[k])!=i) continue; f[i]=f[i]+h[k]*sgn(jo[i]); r[i]=r[i]+(h[k]/Q[k]); } dq[i]=-(f[i]/(r[i]*2)); } { if (fabs(f[N])<=ep) flag=1; } if (flag==1) goto like; for(k=0;k<=M -1;k++) { p=abs(io[k]);q=abs(jo[k]); Q[k]=Q[k]+dq[p]+(dq[q]*sgn(jo[k])); } ko=ko+1; if(flag==0) goto loop; like: printf("\n\n"); for(i=1;i<=N;i++) {printf("%f\n",f[i]);} printf("ep=%f\n",0.01); printf("n=%d,m=%d,ko=%d\n",N,M,ko); for(k=0;k<=M -1;k++) { printf("%d)",k+1); printf("k=%d, l=%f, h=%f, ",k+1,l[k],h[k]); printf("Q=%f, ",Q[k]*1000); printf("v=%f\n",4*Q[k]/(3.1416*pow(D[k],2))); } } int sgn(doublex) { if(x>0)return 1; elseif(x==0) return 0; elsereturn -1;

给水管网水力计算基础

给水管网水力计算基础-CAL-FENGHAI-(2020YEAR-YICAI)_JINGBIAN

给水管网水力计算基础 为了向更多的用户供水,在给水工程上往往将许多管路组成管网。管网按其形状可分为枝状[图1(a)]和环状[图1(b)]两种。 管网内各管段的管径是根据流量Q 和速度v 来决定的,由于 v d Av Q )4/(2π==所以管径v Q v Q d /13.1/4==π。但是,仅依靠这个公式还不能完全解决问题,因为在流量Q 一定的条件下,管径还随着流速v 的变化而变化。如果所选择的流速大,则对应的管径就可以小,工程的造价可以降低;但是,由于管道内的流速大,会导致水头损失增大,使水塔高度以及水泵扬程增大,这就会引起经常性费用的增加。反之,若采用较大的管径,则会使流速减小,降低经常性费用,但反过来,却要求管材增加,使工程造价增大。 图 1管网的形状 (a)枝状管网;(b)环状管网 因此,在确定管径时,应该作综合评价。在选用某个流速时应使得给水工程的总成本(包括铺设水管的建筑费、泵站建筑费、水塔建筑费及经常抽水的运转费之总和)最小,那么,这个流速就称为经济流速。 应该说,影响经济流速的因素很多,而且在不同经济时期其经济流速也有变化。但综合实际的设计经验及技术经济资料,对于一般的中、小直径的管路,其经济流速大致为: ——当直径d =100~400mm ,经济流速v =-1.0ms ; ——当直径d>400mm ,经济流速v=~1.4m/s 。 一、枝状管网 枝状管网是由多条管段而成的干管和与干管相连的多条支管所组成。它的特点是管网内任一点只能由一个方向供水。若在管网内某一点断流,则该点之后的各管段供水就有问题。因此供水可靠性差是其缺点,而节省管料,降低造价是其优点。 技状管网的水力计算.可分为新建给水系统的设计和扩建原有给水系统的设计两种情况。 1.新建给水系统的设计 对于已知管网沿线的地形资料、各管段长度、管材、各供水点的流量和要求的自由水头(备用水器具要求的最小工作压强水头),要求确定各管段管径和水塔水面高度及水泵扬程的计算,属于新建给水系统的设计。 自由水头由用户提出需要,对于楼房建筑可参阅下表。 表 自由水头Hz 值

02-4给水管网的水力计算

第2章建筑内部给水系统 2.4给水管网的水力计算

在求得各管段的设计秒流量后,根据流量公式,即可求定管径: 给水管网水力计算的目的在于确定各管段管径、管网的水头损失和确定给水系统的所需压力。 υπ42d q g =πυg q d 4=式中 q g ——计算管段的设计秒流量,m 3/s ; d j ——计算管段的管内径,m ; υ——管道中的水流速,m/s 。 (2-12)

当计算管段的流量确定后,流速的大小将直接影响到管道系统技术、经济的合理性,流速过大易产生水锤,引起噪声,损坏管道或附件,并将增加管道的水头损失,使建筑内给水系统所需压力增大。而流速过小,又将造成管材的浪费。 考虑以上因素,建筑物内的给水管道流速一般可按表2-12选取。但最大不超过2m/s。

工程设计中也可采用下列数值: DN15~DN20,V =0.6~1.0m/s ;DN25~DN40,V =0.8~1.2m/s 。 生活给水管道的水流速度 表2-12

2.4.2 给水管网和水表水头损失的计算 2.4.2 给水管网和水表水头损失的计算 给水管网水头损失的计算包括沿程水头损失和局部水头损失两部分内容。 1. 给水管道的沿程水头损失 (2-13)——沿程水头损失,kPa; 式中 h y L——管道计算长度,m; i——管道单位长度水头损失,kPa/m,按下式计算:

2.4 给水管网的水力计算 2.4.2 给水管网和水表水头损失的计算 式中i——管道单位长度水头损失, kPa/m ; d j ——管道计算内径,m; q g——给水设计流量,m3/s; C h ——海澄-威廉系数: 塑料管、内衬(涂)塑管C h = 140; 铜管、不锈钢管C h = 130; 衬水泥、树脂的铸铁管C h = 130; 普通钢管、铸铁管C h = 100。 (2-14)

水力计算表

液压计算图简单,清晰,易于查阅。有关水力计算是根据新标准编制的。适用于给排水工程,环境工程,房屋建设,水利水电工程,污水处理,市政管道,暖通空调等领域的规划设计,施工,管理和决策人员。也可以作为工厂,矿业企业及相关高等学校的师生参考。 执行摘要 水力计算图是给水排水工程设计中常用的水力计算图的集合。内容包括供水工程用钢管,铸铁管和塑料管的水力计算表,圆形截面钢筋混凝土输水管的水力计算表,圆形,矩形,马蹄形和蛋形截面排水管道的水力计算图,梯形明渠水力计算图,热水管,钢塑复合管,蒸汽和压缩空气管的流量和压力损失计算表等。为了充分发挥实用的设计功能并配合应用在计算机辅助设计方面,“液压计算表”配备了上述所有液压计算表的电子软件,可以通过计算机准确,方便,快速地检索,查询和计算。 目录 1,给水管道水力计算 1.钢管和铸铁管 1.1计算公式 1.2表格和说明 1.3水力计算 2.钢筋混凝土供水管 2.1计算公式 2.2水力计算

3.塑料给水管 3.1计算公式 3.2准备和说明 3.3水力计算 2,排水道水力计算 4.钢筋混凝土圆形排水管(全流量,n = 0.013)4.1计算公式 4.2水力计算 5.钢筋混凝土圆形排水管(非全流量,n = 0.014)5.1计算公式 5.2水力计算图及说明 6.矩形横截面沟槽(全流量,n = 0.013) 6.1计算公式 6.2水力计算 7.矩形横截面沟槽(非全流量,n = 0.013) 7.1计算公式 7.2水力计算 8.梯形截面明渠(n = 0.025,M = 1.5) 8.1计算公式 8.2水力计算图及说明 9.马蹄形断面沟 9.1马蹄形(I型)涵洞

相关文档
最新文档