01-力学-大学物理-习题集-海南大学

01-力学-大学物理-习题集-海南大学
01-力学-大学物理-习题集-海南大学

力学部分

1. 湖中有一小船,岸边人用绳

通过高h 处的滑轮拉小船, 收绳速率0V ,求船离岸边s 时 船速和加速度 解:222s h r +=,↓r dt

dr

V -=0 s

船速:dt ds V =,dt ds

s dt dr r 22=

02

20V s

s h V s r V +-

=-=,0V V > ds

dV

V

dt ds ds dV dt dV a =?===02032<-V s h V a ,同方向,船作加速运动

2. 质点从原点出发,以初速0V 沿x 轴正

向运动, 其加速度与速度成正比而反向 O 0V x 求:)(t V ,)(t x 及物体静止后距原点的距离

解:dt dV kV a =-=,??-=V

V t

kdt V dV

00

,kt V V -=0ln ,kt e V V -=0 kt

e V dt dx V -==0,??-=x t

kt dt e V dx 00

0,00t e k V x kt --=

)1(0

kt e k V x --=

,∞→t ,0=V ,物体静止,k

V x 0= * * dx dV V dt dx dx dV dt dV kV a =?==-=,k dx dV

-=,??-=00

0V x

kdx dV

kx V -=-0, k V x /0=

3. 质点作一维直线运动,已知,t kV a 2-=,0=t ,0V V =

求:)(t V

解:t kV dt dV a 2

-==

,??-=V V t

ktdt V dV 00

2,20211kt V V V -=- 202111kt V V -=+-

,20022t

kV V V += 4. 一飞行器关闭发动机后作直线运动,其加速度大小

与速度平方成正比而反向,2kV a -=,关机时,t=0,0V V =

求:)(t V 及关机后滑行的距离x ?与t 的关系

解: 2

kV dt dV a -==,??-=V V t

kdt V dV 00

2,kt V V V -=-

1 kt V V -=+-

1

1,t kV V V 001+=

t kV V dt dx V 001+==,??+=t x x dt t kV V dx 00010=0)1ln(00

t t kV kV V +

)1l n (1

0t kV k

x +=?

5. 带蓬卡车,高m 2,车静止时,雨滴可进入车内m 1处,

车以0V =15km/h 前进时,雨滴恰不能进入车内 求:雨速

解:地:S 系,车:S '系,牵连速度大小0V =15km/h ,方向→

设雨对地速度V ,雨对车速度V ',0V V V

+'=

0V =15km/h 2m

V ' V

1m

21

=θtg , 6.26=θ

6

.26sin 15

sin 0==θV V =33.5km/h 6. 1m ,2m ,l ,相互作用

符合万有引力定律 1m l 2m 求:两质点间距变为l /2时 2V 两质点的速度 1m 2/l 2m

θ

解:0=-V m V m

l m m G m V )(22121+=,l

m m G

m V )(22112+=

7. 在两个质点组成的系统中,若质点之间只有万有引力作用, 且此系统所受外力的矢量和为零,则此系统 (A )动量与机械能一定都守恒 (B )动量与机械能一定都不守恒 (C )动量不一定守恒,机械能一定守恒 (D )动量一定守恒,机械能不一定守恒 8. 恒力F

,1m 自平衡位置

由静止开始运动 求:AB 系统受合外力为零时的 速度,以及此过程中F A 、T A 解:A B 系统受水平方向合外力

k F x kx F /0=?=- k F Fx A F /2==

222121)(21kx V m m A F ++=, )

(21m m k F

V +=

=T A 2

121222

1222121m m m m k F kx V m ++=+

9. 三艘船(M )鱼贯而行,速度都是V ,从中间船上同时以 相对船的速度u 把质量都为m 的物体分别抛到前后两艘船上 u u

V

求:抛掷物体后,三艘船的速度?

解:以第二艘船和抛出的两个物体为系统,水平方向动量守恒 V V V u m V u m MV V m M =?+-+++=+2222)()()2( 以第一船和抛来物体为系统

1)()(V M m V u m MV +=++,m

M mu

V V ++=1 以第三船和抛来物体为系统

3)()(V M m V u m MV +=+-+,m

M mu

V V +-=3 10. 小球(m )从高出弹簧上端h 处落下 求:弹簧被压缩的最大距离?

解:22

1)

(kx x h mg =

+ k

mgh k mg k mg x 2)(2++=

11. 根据质点动量定理推导 两个质点组成的质点系

的动量定理并导出动量 f

守恒条件 2

解:dt f F P d )(111 +=

dt f F P d )(222

+=

dt f f dt F F P P d )()()(212121

+++=+

021=+f f

dt F P d =, ?=?21

t t dt F P

当0=F ,C P P P

=+=21 动量守恒

12.

子弹

s m V /700

1= s m V /5002= ?3=V 木板 木板 解:21222121mV mV fs -=-,222321

21mV mV fs -=-

02

1

21212223=+-mV mV mV ,2122232V V V -=,13100-=ms V

13. 子弹射中A 后嵌入其中 2/m V

2/m

m

求:(

1)A V =??=B V

A ,

B (2)?max =B V

解:(1)子弹射中A 后

子弹与A 组成的系统动量守恒

A V m m mV )2121(21+=,2

V

V A =,0=B V

(2)2/V V A =,B A m m =,2/max V V B =

14. 光滑水平面上放一小车

车上放一木箱,恒力F

将木箱从小车一端拉致 另一端,第一次小车固 定,第二次小车不固定,

(1)两次F

作功相同

(2)两次摩擦力对木箱作功相同 s l (3)两次木箱获得动能相同

(4)两次因摩擦产生热相同

解:(1)第一次F 作功Fl ,第二次F

作功)(s l F + (2)第一次f 对箱子作功fl -,第二次)(s l f +-

(3)第一次合力对箱子作功l f F )(-,第二次))((s l f F +- (4)第一次f 的总功fl -,第二次fl fs s l f -=++-)( 15. 容器自O 点(平衡位置)左端0l 处

从静止开始运动,每经过一次O 点 从上方滴入一质量为m 的油滴

求:(1)滴到容器n 滴后,容器 m 运动到O 点的最远距离 k (2)第n +1滴与第n 滴的时间

间隔 0l O

解:(1)从开始到O 点,机械能守恒 2202

1

21MV kl =

每次经过O 点,动量数值不变 V nm M MV '+=)(

滴入n 滴后到最远距离机械能守恒 222

1

)(21kx V nm M ='+

M

k

0)/(l nm M M x ?+=

(2)k nm M T t t n n n /)(2

1

1+==-+π

16. 链条kg m 10=,cm l 40=

32120l cm l l <==,kg m 101=

求:链条全部滑到桌面时 系统的速度及加速度 m

解:21111)(2

1

2121V m m l mg gl m ++=

m m =1,2/1l l =

s m gl V /21.18

3

==

a m m g m )(11+=,2/9.42/s m g a ==

17. m ,L 的链条

求:下落x 时链条对地面的作用力解:方法1: gx 2=

静压力L xmg

g x F ==ρ0 )0()(1V dm dt F g dm -='-? gx dm 2-= g

L

m g x

gx gx dt dx gx dt dm F 22221=

==='ρρ L

m g x

F F F 310=+=

方法2:V x L P ρ)(-=

[]V x L dt d

dt dP F mg ρ)(-=='- gx V 2=

dt

dV

x L V dt dx ρρ)(-+-= '

=g x L V ρρ)(2-+- =g x mg gx ρρ-+-2

L mgx

gx F 33=='ρ,L

mgx F F 3='=

18. 已知m ,M ,H h ,θ 所有接触面光滑 求:m ,M 脱离接触时 y

M 的速度及m 对M 的速度 x

解:V v v r

+=

V v v r x -=θcos θsin r y v v -=

0=-MV mv x

222222

1)(212121)(MV v v m MV mv h H mg y x ++=+=

- )

sin )((cos )(22

2θθ

m M m M h H g m V ++-=,θ2sin ))((2m M m M h H g v r ++-= 19. 已知m ,M ,θ,

所有接触面光滑 求:M 的加速度a

m 对M 的加速度a ' 及m M 之间的作用力 θ

Mg 解:以M 为参照系 m 受一惯性力

m 相对M 只沿斜面运动

对m : a m ma mg '=+θθcos sin (1)

0c o s s i n

=-+θθmg ma N (2)

对M ,以地面为参照系

Ma N =θsin (3)

θθθ2sin cos sin m M mg a +=,

θ2sin )

(g m M a +='

,θ

θ

2

sin sin Mmg N = 20. 光滑水平面内,OB OA ⊥ ?=B V

s m V A /4=,OA V A ⊥ B m OA d 5.0==,OB V B ⊥ 求:?=B L ?=B V A s m V A /4= 解:d mV L L A B A ===1215.045.0-=??s kgm

l mV L B B =,112

5.01

-=?==ms ml L V B B

21. 先使小球做半径为0r 向下拉绳子,使运动半径降为1r r 求:(1)此时小球的1ω、1V (2)小球由10r r →,拉力的功

解:(1)小球对O 点角动量守恒

1100r mV r mV =,0101V r r V =,2100111r r ==ω

(2)拉力的功

202121

21mV mV E A K -=

?= =)1(21212

20-r r mV

22. 证明 A

B B A A A A A B a r g r r a g r m Ja m 2

2

)

(-++= 证明:B B B B a m T g m =- (1) β A A A A a m g m T =- (2) βJ r T r T A A B B =- (3) T βB B r a = (4) A a

βA A r a = (5) A m B m B a

g m A g m B

A

B B A A A A A B a r g r r a g r m Ja m 2

2

)

(-++=

23. 空心圆环可绕竖直轴AC 自由转动

转动惯量0

I ,半径为R ,初角速0ω 质量为m 的小球原来静止于A 点

由于微小振动向下滑动,环内壁光 B 滑,求小球滑致B 、C 两点时环的 角速度和小球相对环的速度 B

解:B :2

0002000mR I I mR I I +=?+=ωωωωω

)(2

12121222202

00R V m I m g R I B ωωω++=+

2

02

2002mR I R

I gR V B ++=ω

C :0000ωωωω=?=I I

m g R

mV I mgR I C -+=+2202

002

12121ωω,gR V C 4= 24. 以恒力F

将一块粗糙平面压紧在轮子上,平面与轮子之间的摩擦 系数为μ,轮子初角速度0ω 求:转过多少角度时轮子停止转动? 解:dS ,2R F π,2R F

πdS μ=df 2

R

F

πdS f d r M d

?= μr r d f dM ==2R F

πdS ??==r d S R F dM M 2πμ??=θπμrrdrd R

F

2

??==R d dr r R F 020

22πθπμFR R R F μππμ32

31232= mR

F

mR FR I M 3421322μββμβ-=?=-?=-

θβωω?=-22

02,F

mR μωβωθ8322020=-=? 或:2

02

10ωθI M -=?-,F mR M I μωωθ8322

020==? C

25. 整个系统在光滑

?

=B

水平面内 OB OA ⊥ 0l 子弹射中木块并 0V

嵌入其中 m M

求:木块在B 点的?=B V

A

解:(1)A V M m mV )(0+=,M

m mV V A +=0

(2)2022)(2

1

)(21)(21l l k V M m V M m B A -++=+

M

m l l k M m mV V B +--

+=2

020)()( θs i n

)()(0l V m M l V m M B A +=+ 2

02020

00)()(s i n l l k M m V m l l mV l V l V B A -+-==θ

26. 圆盘(m 、R )可绕通过其中

心的竖直光滑轴转动,有一人 静止(10/m m =')站在2/R 处 开始圆盘载人以匀角速0ω转动 如果此人沿垂直半径方向相对 0 圆盘以速率V 作圆周运动,运 动方向与圆盘转动方向相反 求:(1)圆盘对地的角速度

(2)欲使圆盘静止,人沿2/R 圆周对圆盘的速度大小及方向

解:(1)???

???+-

'+=??????'+ωωω2/)2(21)2(2122022R V R m mR R m mR R

V

2120+=ωω

(2)2

2100R

V ωω-=?=,方向与圆盘转动方向相同

27. 大轮(M 、R )可绕其轴 无摩擦转动,初角速0ω

小轮(m 、r )可绕其轴 O f 无摩擦转动,开始静止 ω 求:两轮接触后最后的角速度 m O ' f r 解:r R ω=Ω 大轮:?-=-Ω=

-t

fRt MR MR fRdt 00222

1

21ω 小轮:frt mr frdt t

==

?0

2

2

ft MR MR -=-Ω021

21ω ft mr =ω2

1

00=+-Ωωωmr MR MR

M

m M +=

Ω0ω,M m M r R +=0

ωω

28.

撞后木块滑行的距离,(μ解:第一阶段:机械能守恒 )2(3121022l

Mg Ml -+?=ω l g /3=ω 第二阶段:碰撞瞬间角动量守恒(不是动量守恒)

m V l Ml Ml +'=ωω223131=

lV m M )3

1

(+,l V ω'= gl m

M M

m M l M V 333+=+=

ω 第三阶段:木块匀减速运动

g m mg m f a μμ===

μ

23)3(222l

m M M a V s ?+== 或22

1

0mV fs -=-

μ

μ23)3(3)3(2121

222

l

m M M mg gl m M M m f mV s ?

+=+== 29. 地面参照系S 中,在m x 6100.1?=处,于s t 02.0=时刻爆炸了

一颗炸弹。一飞船沿x 轴正向运动,速率c u 75.0= 求:飞船参照系S '中的观察者测得炸弹爆炸的地点和时间 解:2

2/1c u ut x x --=

'=

m 62

861029.5)75.0(102

.010375.0100.1?-=-???-?

222/1c u x c u t t --

='=s 0265.0)

75.0(1100.110375.002.02

68

=-???- 按照伽利略变换

m ut x x 6105.3?-=-='

s t t 02.0=='

30. 热核反应 n He H H 10423121

+→+ 氘核 氚核 氦核 中子

kg H m 272

10103437.3)(-?= kg H m 27310100049.5)(-?= kg He m 27420106425.6)(-?=

kg n m 27100106750.1)(-?=

求:这一反应释放的能量

解:质量亏损)()()()(1

0042031021

00n m He m H m H m m --+=? =kg 27100311.0-?

)(10799.21220J c m E -?=?=?

1kg 这样的核燃料完全反应

)(1035.3)

()(143

10210J H m H m E

?=+? g m 7.30≈?

1kg 汽油的燃烧热J Q 7107.5?=

1kg 汽油的静止能量J c m E 1628200109)103(1?=??== 亿

1610≈E Q 31. 火箭相对地面以c V 6.0=的

c V 6.0=

速度向上飞离地球,火箭发 射后s t 10='?(火箭上的钟),

该火箭向地球发射一枚导弹, c V 3.01= 导弹相对地面的速度c V 3.01= s 求:火箭发射后,经过多长时间

导弹到达地球?(地面上的钟) 解:地面S ,火箭S '

S :火箭发射导弹是在火箭发射后秒1t ?

s c V t t 5.126.0110

/12

221=-=-'?=? 此时,火箭到地面的距离1t V s ?= 导弹由发射到到达地面的时间 s t V V

V s t 251112=?==?

由火箭发射到导弹击中地面的时间 s t t t 5.3721=?+?=? 32.

y y ' S S ' u

O x O ' x ' z z '

O O '重合时在共同坐标原点发出一个光信号

在两个参照系中分别写出波前方程 解:S :22222t c z y x =++

S ':22222t c z y x '='+'+'

33. 一宇宙飞船相对地球以c 8.0的速度飞行,一光脉冲从船

尾传到船头。飞船上的观察者测得飞船的长度为m 90。 求:地球上的观察者测得光脉冲传播的距离和时间 解:地球S 系,飞船S '系,c u 8.0=

“光脉冲从船尾发出”为事件1 “光脉冲到达船头” 为事件2

S ':0L x ='?,c L t /0='? S :2

2/1c u t u x x -'?+'?=

?=

2

200/1/c u c uL L -+=c

u c

u L /1/10

-+

=m 2708.018

.0190

=-+ c x t ?=?=)(10910

3270

78

s -?=? 34. 地面观察者测得地面上 y y ' c u 6.0=

甲已两地相距m 6100.8?

一列火车从甲→已历时

s 0.2,一飞船相对地面

以匀速c u 6.0=的速度 甲 m 6100.8? 已 x 飞行,飞行方向与火车运动方向相同

求:飞船上观察者测得火车从甲→已运行的路程、时间及速度 解:地面:S ,飞船:S ',c u 6.0=

从甲出发:事件1,到达已地:事件2

S :m x 6100.8?=?,s t 0.2=?

速度:s m t x V /100.40.2100.866

?=?=??= S ':22/1c u t u x x -?-?='?=m 8

2

86104.46

.010.21036.0100.8?-=-???-? 222/1c u x c u t t -?-?='?=s 48.26.01100.81036.00.226

8

=-???- c s m t x V 59.0/10774.18-≈?-='

?'

?='0<

35. 地面上测得 c 9.0 c V A 9.0= c V B 9.0-= 求:A 上观察者测得 B 的速度 z

解:地面:S ,火箭A :S ',c V u A 9.0==,B 为研究对象 S :c V V B x 9.0-==

S ':c c

c c

c

c c V c u u V V x x

x 995.081.18.1)9.0(9.019.09.0122-=-=----=--=' 按伽利略变换,c u V V x x 8.1-=-='

x '

大学物理质点动力学习题答案

习 题 二 2-1 质量为m 的子弹以速率0v 水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k ,忽略子弹的重力,求:(1)子弹射入沙土后,速度大小随时间的变化关系; (2)子弹射入沙土的最大深度。 [解] 设任意时刻子弹的速度为v ,子弹进入沙土的最大深度为s ,由题意知,子弹所受的阻力 f = - kv (1) 由牛顿第二定律 t v m ma f d d == 即 t v m kv d d ==- 所以 t m k v v d d -= 对等式两边积分 ??-=t v v t m k v v 0 d d 0 得 t m k v v -=0ln 因此 t m k e v v -=0 (2) 由牛顿第二定律 x v mv t x x v m t v m ma f d d d d d d d d ==== 即 x v mv kv d d =- 所以 v x m k d d =- 对上式两边积分 ??=-00 0d d v s v x m k 得到 0v s m k -=- 即 k mv s 0 = 2-2 质量为m 的小球,在水中受到的浮力为F ,当它从静止开始沉降时,受到水的粘滞阻力为f =kv (k 为常数)。若从沉降开始计时,试证明小球在水中竖直沉降的速率v 与时间的关系为 [证明] 任意时刻t 小球的受力如图所示,取向下为y 轴的正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 t v m ma kv F mg d d ==-- 整理得 m t kv F mg v d d =--

对上式两边积分 ? ?=--t v m t kv F mg v 00 d d 得 m kt F mg kv F mg -=---ln 即 ??? ? ??--= -m kt e k F mg v 1 2-3 跳伞运动员与装备的质量共为m ,从伞塔上跳出后立即张伞,受空气的阻力与速率的平方成正比,即2kv F =。求跳伞员的运动速率v 随时间t 变化的规律和极限速率T v 。 [解] 设运动员在任一时刻的速率为v ,极限速率为T v ,当运动员受的空气阻力等于运动员及装备的重力时,速率达到极限。 此时 2 T kv mg = 即 k mg v = T 有牛顿第二定律 t v m kv mg d d 2=- 整理得 m t kv mg v d d 2= - 对上式两边积分 mgk m t kv mg v t v 21d d 00 2??=- 得 m t v k mg v k mg = +-ln 整理得 T 22221 111v e e k mg e e v kg m t kg m t kg m t kg m t +-=+-= 2-4 一人造地球卫星质量m =1327kg ,在离地面61085.1?=h m 的高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f 的大小;(2)卫星的速率v ;(3)卫星的转动周期T 。 [解] 卫星所受的向心力即是卫星和地球之间的引力 由上面两式得() () () N 1082.710 85.110 63781063788.9132732 63 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 h R v m f +=e 2

大学物理试题库刚体力学 Word 文档

第三章 刚体力学 一、刚体运动学(定轴转动)---角位移、角速度、角加速度、线量与角量的关系 1、刚体做定轴转动,下列表述错误的是:【 】 A ;各质元具有相同的角速度; B :各质元具有相同的角加速度; C :各质元具有相同的线速度; D :各质元具有相同的角位移。 2、半径为0.2m 的飞轮,从静止开始以20rad/s 2的角加速度做定轴转动,则t=2s 时,飞轮边缘上一点的切向加速度τa =____________,法向加速度n a =____________,飞轮转过的角位移为_________________。 3、刚体任何复杂的运动均可分解为_______________和 ______________两种运动形式。 二、转动惯量 1、刚体的转动惯量与______________ 和___________________有关。 2、长度为L ,质量为M 的均匀木棒,饶其一端A 点转动时的转动惯量J A =_____________,绕其中心O 点转动时的转动惯量J O =_____________________。 3、半径为R 、质量为M 的均匀圆盘绕其中心轴(垂直于盘面)转动的转动惯量J=___________。 4、两个匀质圆盘A 和B 的密度分别是A ρ和B ρ,若B A ρρ>,但两圆盘的质量和厚度相同,如两盘对通过盘心垂直于盘面轴的转动惯量各为A J 和B J 则:【 】 (A )B A J J >; (B )B A J J < (C )B A J J = (D )不能确定 三、刚体动力学----转动定理、动能定理、角动量定理、角动量守恒 1、一长为L 的轻质细杆,两端分别固定质量为m 和2m 的小球,此系统在竖直平面内可绕过中点O 且与杆垂直的水平光滑固定轴(O 轴)转 动.开始时杆与水平成60°角,处于静止状态.无初转速地释放以后, 杆球这一刚体系统绕O 轴转动.系统绕O 轴的转动惯量J = ___________.释放后,当杆转到水平位置时,刚体受到的合外力矩M =____ __;角加速度β= ____ __. 2、一个能绕固定轴转动的轮子,除受到轴承的恒定摩擦力矩M r 外,还受到恒定外力矩M 的作用.若M =20 N ·m ,轮子对固定轴的转动惯量为J =15 kg ·m 2.在t =10 s 内,轮子的角速度由ω =0增大到ω=10 rad/s ,则M r =_______. 3、【 】银河系有一可视为物的天体,由于引力凝聚,体积不断收缩。设它经过一万年体积收缩了1%,而质量保持不变。则它的自转周期将______;其转动动能将______ (A )减小,增大; (B)不变,增大; (C) 增大,减小; (D) 减小,减小 4、【 】一子弹水平射入一竖直悬挂的木棒后一同上摆。在上摆的过程中,一子弹和木棒为系统(不包括地球),则总角动量、总动量及总机械能是否守恒?结论是: (A )三者均不守恒; (B )三者均守恒;

大学物理06刚体力学

刚体力学 1、(0981A15) 一刚体以每分钟60转绕z 轴做匀速转动(ω? 沿z 轴正方向).设某时刻刚体上一点 P 的位置矢量为k j i r ??? ? 5 4 3++=,其单位为“10-2 m ”,若以“10-2 m ·s -1”为速度单位,则该时刻P 点的速度为: (A) k j i ???? 157.0 125.6 94.2++=v (B) j i ??? 8.18 1.25+-=v (C) j i ??? 8.18 1.25--=v (D) k ?? 4.31=v [ ] 2、(5028B30) 如图所示,A 、B 为两个相同的绕着轻绳的定滑轮.A 滑轮挂一质量为M 的物体,B 滑轮受拉力F ,而且F =Mg .设A 、 B 两滑轮的角加速度分别为A 和B ,不计滑轮轴的摩擦,则 有 (A) A =B . (B) A >B . (C) A < B . (D) 开始时 A = B ,以后 A < B . [ ] 3、(0148B25) 几个力同时作用在一个具有光滑固定转轴的刚体上,如果这几个力的矢量和为零,则此刚体 (A) 必然不会转动. (B) 转速必然不变. (C) 转速必然改变. (D) 转速可能不变,也可能改变. [ ] 4、(0153A15) 一圆盘绕过盘心且与盘面垂直的光滑固定轴O 以角速度 按图 示方向转动.若如图所示的情况那样,将两个大小相等方向相反但不在同一条直线的力F 沿盘面同时作用到圆盘上,则圆盘的角速度 (A) 必然增大. (B) 必然减少. (C) 不会改变. (D) 如何变化,不能确定. [ ] 5、(0165A15) 均匀细棒OA 可绕通过其一端O 而与棒垂直的水平固定光滑轴转动,如图所示.今使棒从水平位置由静止开始自由下落,在棒摆动到竖直位置的过程中,下述说法哪一种是正确的? (A) 角速度从小到大,角加速度从大到小. A M B F O F F ω O A

《大学物理学》习题解答

大学物理学 习 题 解 答 陕西师范大学物理学与信息技术学院 基础物理教学组 2006-5-8

说明: 该习题解答与范中和主编的《大学物理学》各章习题完全对应。每题基本上只给出了一种解答,可作为教师备课时的参考。 题解完成后尚未核对,难免有错误和疏漏之处。望使用者谅解。 编者 2006-5-8

第2章 运动学 2-1 一质点作直线运动,其运动方程为2 22t t x -+= , x 以m 计,t 以s 计。试求:(1)质点从t = 0到t = 3 s 时间内的位移;(2)质点在t = 0到t = 3 s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t =3时,x 3 = -1;所以, m 3)0()3(-==-==t x t x x ? (2)本题需注意在题设时间内运动方向发生了变化。对x 求极值,并令 022d d =-=t t x 可得t = 1s ,即质点在t = 0到t = 1s 内沿x 正向运动,然后反向运动。 分段计算 m 1011=-===t t x x x ?, m 4)1()3(2-==-==t x t x x ? 路程为 m 521=+= x x s ?? 2-2 已知质点沿x 轴作直线运动,其运动方程为3 2 262t t x -+=。试求:(1)质点在最初4s 内位移;(2)质点在最初4s 时间内所通过的路程 解 (1)t = 0时,x 0 = 2 ;t = 4时,x 4 = -30 所以,质点在最初4s 内位移的大小 m 3204-=-=?x x x (2)由 0612d d 2=-=t t t x 可求得在运动中质点改变运动方向的时刻为 t 1 = 2 s , t 2 = 0 (舍去) 则 m 0.8021=-=?x x x ,m 40242-=-=?x x x 所以,质点在最初4 s 时间间隔内的路程为 m 4821=?+?=x x s 2-3 在星际空间飞行的一枚火箭,当它以恒定速率燃烧它的燃料时,其运动方程可表示为 )1ln(1bt t b u ut x -?? ? ??-+=,其中m/s 100.33?=u 是喷出气流相对于火箭体的喷射速度, s /105.73 -?=b 是与燃烧速率成正比的一个常量。试求:(1)t = 0时刻,此火箭的速度和加速度;(2)t = 120 s 时,此火箭的速度和加速度 解 )1l n (d d bt u t x v --== ;bt ub t v a -==1d d (1)t = 0时, v = 0 ,23 3s .m 5.221 105.7103--=???= a (2)t = 120s 时, )120105.71ln(10333 ??-?-=-v 1 3 s .m 91.6-?= 23 3 3s .m 225120 105.71105.7103---=??-???=a

大学物理第二章(质点动力学)习题答案

习题二 2-1 质量为m得子弹以速率水平射入沙土中,设子弹所受阻力与速度反向,大小与速度成正比,比例系数为k,忽略子弹得重力,求:(1)子弹射入沙土后,速度大小随时间得变化关系; (2)子弹射入沙土得最大深度。 [解] 设任意时刻子弹得速度为v,子弹进入沙土得最大深度为s,由题意知,子弹所受得阻力f= - kv (1) 由牛顿第二定律 即 所以 对等式两边积分 得 因此 (2) 由牛顿第二定律 即 所以 对上式两边积分 得到 即 2-2 质量为m得小球,在水中受到得浮力为F,当它从静止开始沉降时,受到水得粘滞阻力为f=kv(k为常数)。若从沉降开始计时,试证明小球在水中竖直沉降得速率v与时间得关系为 [证明] 任意时刻t小球得受力如图所示,取向下为y轴得正方向,开始沉降处为坐标原点。由牛顿第二定律得 即 整理得 对上式两边积分 得 即 2-3 跳伞运动员与装备得质量共为m,从伞塔上跳出后立即张伞,受空气得阻力与速率得平方成正比,即。求跳伞员得运动速率v随时间t变化得规律与极限速率。 [解] 设运动员在任一时刻得速率为v,极限速率为,当运动员受得空气阻力等于运动员及装备得重力时,速率达到极限。 此时 即 有牛顿第二定律 整理得 对上式两边积分 得 整理得 2-4 一人造地球卫星质量m=1327kg,在离地面m得高空中环绕地球作匀速率圆周运动。求:(1)卫星所受向心力f得大小;(2)卫星得速率v;(3)卫星得转动周期T。 [解] 卫星所受得向心力即就是卫星与地球之间得引力

由上面两式得()() () N 1082.71085.110 63781063788.9132732 6 3 2 32 e 2 e ?=?+??? ?=+=h R R mg f (2) 由牛顿第二定律 ()() s m 1096.61327 1085.11063781082.736 33e ?=?+???=+= m h R f v (3) 卫星得运转周期 ()() 2h3min50s s 1043.710 96.61085.1106378223 3 63e =?=??+?=+=ππv h R T 2-5 试求赤道上方得地球同步卫星距地面得高度。 [解] 设同步卫距地面高度为h ,距地心为R +h ,则 所以 代入第一式中 解得 2-6 两个质量都就是m 得星球,保持在同一圆形轨道上运行,轨道圆心位置上及轨道附近都没有其它星球。已知轨道半径为R ,求:(1)每个星球所受到得合力;(2)每个星球得运行周期。 [解] 因为两个星球在同一轨道上作圆周运动,因此,她们受到得合力必须指向圆形轨道得圆心,又因星球不受其她星球得作用,因此,只有这两个星球间得万有引力提供向心力。所以两个星球必须分布在直径得两个端点上,且其运行得速度周期均相同 (1)每个星球所受得合力 (2) 设运动周期为T 联立上述三式得 所以,每个星球得运行周期 2-7 2-8 2-9 一根线密度为得均匀柔软链条,上端被人用手提住,下端恰好碰到桌面。现将手突然松开,链条下落,设每节链环落到桌面上之后就静止在桌面上,求链条下落距离s 时对桌面得瞬时作用力。 [解] 链条对桌面得作用力由两部分构成:一就是已下落得s 段对桌面得压力,另一部分就是正在下落得段对桌面得冲力,桌面对段得作用力为。显然 时刻,下落桌面部分长s 。设再经过,有落在桌面上。取下落得段链条为研究对象,它在时

大学物理刚体力学基础习题思考题及答案

习题5 5-1.如图,一轻绳跨过两个质量为 m 、半径为r 的均匀圆盘状定滑轮,绳的两端 分别挂着质量为2m 和m 的重物,绳与滑轮间无相对滑动,滑轮轴光滑,两个定 滑轮的转动惯量均为 mr 2 / 2,将由两个定滑轮以及质量为 2m 和m 的重物组成 的系统从静止释放,求重物的加速度和两滑轮之间绳的力。 解:受力分析如图,可建立方程: 广 2mg T 2 2ma ① T1 mg ma ② J (T 2 T)r J ③ (T T 1)r J ④ 虹 a r , J mr 2/2 ⑤ 联立,解得:a 1g, T 4 上,设开始时杆以角速度 °绕过中心O 且垂直与桌面的轴转动,试求: (1)作 用于杆的摩擦力矩;(2)经过多长时间杆才会停止转动。 解:(1)设杆的线密度为: d f dmg gd x, 微元摩擦力矩:d M g xd x , (2)根据转动定律 M J J 马, t 有: 0 Mdt Jd dt 1 . -mglt 1 [2 —m l 0, . . t _oL 4 12 3 g 或利用: M t J J 0,考虑到 0, J 1 | 2 一 ml , 12 有:t ol 。 11 a mg 5-2.如图所示,一均匀细杆长为 l ,质量为m ,平放在摩擦系数为 的水平桌面 一小质元dm dx,有微元摩擦力: 考虑对称性, l_ M 2 2 有摩擦力 矩: gxdx 1

5-3.如图所示,一个质量为m的物体与绕在定滑轮上的绳子相联,绳子的质量 可以忽略,它与定滑轮之间无滑动。假设定滑轮质量为M、半径为 R,其转动惯量为MR2/2,试求该物体由静止开始下落的过程中, 下落速度与时间的关系。 解:受力分析如图,可建立方程: r mg T ma ① * TR J ② —, 1 ~2 — k a R , J — mR —-③ 2 2mg Mmg 联立,解得:a ------------ — , T ----------- —, 考虑到a四,.?. v dv 「旦—dt,有:v dt 0 0 M 2m M 2m 5-4.轻绳绕过一定滑轮,滑轮轴光滑,滑轮的质量为M /4,均匀分布在其边缘上,绳子A端有一质量为M的人抓住了绳端,而在绳的另一端B系了一质量为M /4的重物,如图。已知滑轮对O 轴的转动惯量J MR2 /4 ,设人从静止开始以相对绳匀速向上爬时,绳与滑轮间无相对滑动,求B端重物上升的加速度? 解一: 分别对人、滑轮与重物列出动力学方程 Mg T1Ma A人 T2M 4g M 心 a B物 4 T1R T2R J滑轮 由约束方程:a A a B R 和J MR2/4,解上述方程组 得到a —. 2 解二: 选人、滑轮与重物为系统,设 U为人相对绳的速度,V为重

大学物理-力学考题

一、填空题(运动学) 1、一质点在平面内运动, 其1c r = ,2/c dt dv =;1c 、2c 为大于零的常数,则该质点作 运动。 2.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段 时间内所经过的路程为4 2 2t t S ππ+ = ,式中S 以m 计,t 以s 计,则在t 时刻质点的角速度为 , 角加速度为 。 3.一质点沿直线运动,其坐标x 与时间t 有如下关系:x=A e -β t ( A. β皆为常数)。则任意时刻t 质点的加速度a = 。 4.质点沿x 轴作直线运动,其加速度t a 4=m/s 2,在0=t 时刻,00=v ,100=x m ,则该质点的运动方程为=x 。 5、一质点从静止出发绕半径R 的圆周作匀变速圆周运动,角加速度为β,则该质点走完半周所经历的时间为______________。 6.一质点沿半径为0.1=R m 的圆周作逆时针方向的圆周运动,质点在0~t 这段时间内所经过的路程为2t t s ππ+=式中S 以m 计,t 以s 计,则t=2s 时,质点的法向加速度大小n a = 2/s m ,切向加速度大小τa = 2/s m 。 7. 一质点沿半径为0.10 m 的圆周运动,其角位移θ 可用下式表示3 2t +=θ (SI). (1) 当 2s =t 时,切向加速度t a = ______________; (2) 当的切向加速度大小恰为法向加速度 大小的一半时,θ= ______________。 (rad s m 33.3,/2.12) 8.一质点由坐标原点出发,从静止开始沿直线运动,其加速度a 与时间t 有如下关系:a=2+ t ,则任意时刻t 质点的位置为=x 。 (动力学) 1、一质量为kg m 2=的质点在力()()N t F x 32+=作用下由静止开始运动,若此力作用在质点上的时间为s 2,则该力在这s 2内冲量的大小=I ;质点在第 s 2末的速度大小为 。

清华大学《大学物理》习题库试题及答案10量子力学习题解析

10、量子力学 一、选择题 1.已知一单色光照射在钠表面上,测得光电子的最大动能是1.2 eV ,而钠的红限波长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? 2.在均匀磁场B 内放置一极薄的金属片,其红限波长为λ0。今用单色光照射,发现有电子放出,有些放出的电子(质量为m ,电荷的绝对值为e )在垂直于磁场的平面内作半径为R 的圆周运动,那末此照射光光子的能量是: (A) 0λhc (B) 0 λhc m eRB 2)(2 + (C) 0λhc m eRB + (D) 0λhc eRB 2+ 3.用频率为ν 的单色光照射某种金属时,逸出光电子的最大动能为E K ;若改用频率为2ν 的单色光照射此种金属时,则逸出光电子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K 4.在康普顿效应实验中,若散射光波长是入射光波长的1.2倍,则散射光光子能量ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 5.要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV 6.由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光 (B) 两种波长的光 (C) 三种波长的光 (D) 连续光谱 7.已知氢原子从基态激发到某一定态所需能量为10.19 eV ,当氢原子从能量为-0.85 eV 的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV 8.在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV ,10.2 eV 和1.9 eV (D) 12.1 eV ,10.2 eV 和3.4 eV 9.若α粒子(电荷为2e )在磁感应强度为B 均匀磁场中沿半径为R 的圆形轨道运动,则α粒子的德布罗意波长是 (A) )2/(eRB h (B) )/(eRB h (C) )2/(1eRBh (D) )/(1eRBh 10.如果两种不同质量的粒子,其德布罗意波长相同,则这两种粒子的 (A) 动量相同 (B) 能量相同 (C) 速度相同 (D) 动能相同 11.已知粒子在一维矩形无限深势阱中运动,其波函数为: a x a x 23cos 1)(π?= ψ ( - a ≤x ≤a ),那么粒子在x = 5a /6处出现的概率密度为 (A) 1/(2a ) (B) 1/a (C) a 2/1 (D) a /1 12.设粒子运动的波函数图线分别如图(A)、(B)、(C)、(D)所示,那么其中确定粒子动量的精确度最高的波函数是哪个图? 13.波长λ =5000 ?的光沿x 轴正向传播,若光的波长的不确定量?λ =10-3 ?,则利用不 确定关系式h x p x ≥??可得光子的x 坐标的不确定量至少为: (A) 25 cm (B) 50 cm (C) 250 cm (D) 500 cm x (A) x (C) x (B) x (D)

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

清华大学《大学物理》习题库试题及答案----10-量子力学习题解读

一、选择题 1.4185:已知一单色光照射在钠表面上, 测得光电子的最大动能是1.2 eV ,而钠的红限波 长是5400 ?,那么入射光的波长是 (A) 5350 ? (B) 5000 ? (C) 4350 ? (D) 3550 ? [ ] 2.4244:在均匀磁场B 内放置一极薄的金 属片,其红限波长为λ0。今用单色光照射,发现 有电子放出,有些放出的电子(质量为m ,电荷 的绝对值为e )在垂直于磁场的平面内作半径为 R 的圆周运动,那末此照射光光子的能量是: (A) (B) (C) (D) [ ] 3.4383:用频率为ν 的单色光照射某种金 属时,逸出光电子的最大动能为E K ;若改用频 率为2ν 的单色光照射此种金属时,则逸出光电 子的最大动能为: (A) 2 E K (B) 2h ν - E K (C) h ν - E K (D) h ν + E K [ ] 4.4737: 在康普顿效应实验中,若散射光 波长是入射光波长的1.2倍,则散射光光子能量 ε与反冲电子动能E K 之比ε / E K 为 (A) 2 (B) 3 (C) 4 (D) 5 [ ] 0λhc 0λhc m eRB 2)(2+0λhc m eRB +0λhc eRB 2+

5.4190:要使处于基态的氢原子受激发后能发射赖曼系(由激发态跃迁到基态发射的各谱线组成的谱线系)的最长波长的谱线,至少应向基态氢原子提供的能量是 (A) 1.5 eV (B) 3.4 eV (C) 10.2 eV (D) 13.6 eV [] 6.4197:由氢原子理论知,当大量氢原子处于n =3的激发态时,原子跃迁将发出: (A) 一种波长的光(B) 两种波长的光(C) 三种波长的光(D) 连续光谱[] 7.4748:已知氢原子从基态激发到某一定态所需能量为10.19 eV,当氢原子从能量为-0.85 eV的状态跃迁到上述定态时,所发射的光子的能量为 (A) 2.56 eV (B) 3.41 eV (C) 4.25 eV (D) 9.95 eV [] 8.4750:在气体放电管中,用能量为12.1 eV 的电子去轰击处于基态的氢原子,此时氢原子所能发射的光子的能量只能是 (A) 12.1 eV (B) 10.2 eV (C) 12.1 eV,10.2 eV和1.9 eV (D) 12.1 eV,10.2 eV和 3.4 eV [] 9.4241:若 粒子(电荷为2e)在磁感应

大学物理第3章 刚体力学习题解答

第3章 刚体力学习题解答 3、13 某发动机飞轮在时间间隔t 内的角位移为 ):,:(43s t rad ct bt at θθ-+=。求t 时刻的角速度与角加速度。 解:23212643ct bt ct bt a dt d dt d -== -+== ωθβω 3、14桑塔纳汽车时速为166km/h,车轮滚动半径为0、26m,发动机转速与驱动轮转速比为0、909, 问发动机转速为每分多少转? 解:设车轮半径为R=0、26m,发动机转速为n 1, 驱动轮转速为n 2, 汽车速度为v=166km/h 。显然,汽车前进的速度就就是驱动轮边缘的线速度, 909.0/2212Rn Rn v ππ==,所以: min /1054.1/1024.93426.014.3210 166909.02909.013 rev h rev n R v ?=?===????π 3、15 如题3-15图所示,质量为m 的空心圆柱体,质量均匀分布,其内外半径为r 1与r 2,求对通过其中心轴的转动惯量。 解:设圆柱体长为h ,则半径为r,厚为dr 的薄圆筒的质量dm 为: 2..dm h r dr ρπ= 对其轴线的转动惯量dI z 为 232..z dI r dm h r dr ρπ== 2 1 222211 2..()2 r z r I h r r dr m r r ρπ== -? 3、17 如题3-17图所示,一半圆形细杆,半径为 ,质量为 , 求对过细杆二端 轴的转动惯量。 解:如图所示,圆形细杆对过O 轴且垂直于圆形细杆所在平面的轴的转动惯量为mR 2,根据垂直轴定理z x y I I I =+与问题的对称性知:圆形细杆对过 轴的转动惯量为 1 2 mR 2,由转动惯量的可加性可求得:半圆形细杆对过细杆二端 轴的转动惯量为:21 4 AA I mR '=

大学物理习题及解答(刚体力学)

1 如图所示,质量为m 的小球系在绳子的一端,绳穿过一铅直套管,使小球限制在一光滑水平面上运动。先使小球以速度0v 。绕管心作半径为r D 的圆周运动,然后向下慢慢拉绳,使小球运动轨迹最后成为半径为r 1的圆,求(1)小球距管心r 1时速度大小。(2)由r D 缩到r 1过程中,力F 所作的功。 解 (1)绳子作用在 小球上的力始终通过中 心O ,是有心力,以小球 为研究对象,此力对O 的 力矩在小球运动过程中 始终为零,因此,在绳子缩短的过程中,小球对O 点的角动量守恒,即 1 0L L = 小球在r D 和r 1位置时的角动量大小 1100r mv r mv = 1 00r r v v = (2)可见,小球的速率增大了,动能也增大了,由功能定理得力所作的功 ??????-=-=-=1)(21 2 1)(21 2 1212102020210202021r r mv mv r r mv mv mv W

2 如图所示,定滑轮半径为r ,可绕垂直通过轮心的无摩擦水平轴转动,转动惯量为J ,轮上绕有一轻绳,一端与劲度系数为k 的轻弹簧相连,另一端与质量为m 的物体相连。 物体置于倾角为θ的光滑斜面上。 开始时,弹簧处于自然长度,物体速度为零,然后释放物体沿斜面下 滑,求物体下滑距离l 时, 物体速度的大小。 解 把物体、滑轮、弹簧、 轻绳和地球为研究系统。在 物体由静止下滑的过程中,只有重力、弹性力作功,其它外力和非保守内力作功的和为零,故系统的机械能守恒。 设物体下滑l 时,速度为v ,此时滑轮的角速度为ω 则 θωsin 2121210222mgl mv J kl -++= (1) 又有 ωr v = (2) 由式(1)和式(2)可得 m r J kl mgl v +-=22 sin 2θ

大学物理学上册习题参考答案

第一章 质点运动学 1.4一个正在沿直线行驶的汽船,关闭发动机后,由于阻力得到一个与速度反向、大小与船速平方成正比例的加速度,即d v /d t = -kv 2,k 为常数. (1)试证在关闭发动机后,船在t 时刻的速度大小为011kt v v =+; (2)试证在时间t 内,船行驶的距离为 01 ln(1)x v kt k = +. [证明](1)分离变量得2d d v k t v =-, 积分 020d d v t v v k t v =-??, 可得 0 11kt v v =+. (2)公式可化为0 01v v v kt = +, 由于v = d x/d t ,所以 00001 d d d(1) 1(1)v x t v kt v kt k v kt = =+++ 积分 000 01 d d(1) (1)x t x v kt k v kt =++?? . 因此 01 ln(1)x v kt k = +. 证毕. 1.5 一质点沿半径为0.10m 的圆周运动,其角位置(以弧度表示)可用公式表示:θ = 2 + 4t 3.求: (1)t = 2s 时,它的法向加速度和切向加速度; (2)当切向加速度恰为总加速度大小的一半时,θ为何值? (3)在哪一时刻,切向加速度和法向加速度恰有相等的值? [解答](1)角速度为 ω = d θ/d t = 12t 2 = 48(rad·s -1), 法向加速度为 a n = rω2 = 230.4(m·s -2); 角加速度为 β = d ω/d t = 24t = 48(rad·s -2), 切向加速度为

a t = rβ = 4.8(m·s -2). (2)总加速度为a = (a t 2 + a n 2)1/2, 当a t = a /2时,有4a t 2 = a t 2 + a n 2,即 n a a = 由此得 2r r ω= 即 22 (12)24t = 解得 3 6t =. 所以 3242(13)t θ=+==3.154(rad). (3)当a t = a n 时,可得rβ = rω2, 即 24t = (12t 2)2, 解得 t = (1/6)1/3 = 0.55(s). 1.6 一飞机在铅直面内飞行,某时刻飞机的速度为v = 300m·s -1,方向与水平线夹角为30°而斜向下,此后飞机的加速度为a = s -2,方向与水平前进方向夹角为30°而斜向上,问多长时间后,飞机又回到原来的高度?在此期间飞机在水平方向飞行的距离为多少? [解答]建立水平和垂直坐标系,飞机的初速度的大小为 v 0x = v 0cos θ, v 0y = v 0sin θ. 加速度的大小为 a x = a cos α, a y = a sin α. 运动方程为 2 01 2x x x v t a t =+, 2 01 2y y y v t a t =-+. 即 201 c o s c o s 2x v t a t θ α=?+?, 2 01 sin sin 2y v t a t θα=-?+?. 令y = 0,解得飞机回到原来高度时的时间为 t = 0(舍去) ; 02sin sin v t a θ α= =.

大学物理习题集力学试题

练习一 质点运动的描述 一. 选择题 1. 以下四种运动,加速度保持不变的运动是( ) (A) 单摆的运动; (B) 圆周运动; (C) 抛体运动; (D) 匀速率曲线运动. 2. 质点在y 轴上运动,运动方程为y =4t 2-2t 3,则质点返回原点时的速度和加速度分别为: ( ) (A) 8m/s, 16m/s 2. (B) -8m/s, -16m/s 2. (C) -8m/s, 16m/s 2. (D) 8m/s, -16m/s 2. 3. 物体通过两个连续相等位移的平均速度分别为v 1=10m/s ,v 2=15m/s ,若物体作直线运动,则在整个过程中物体的平均速度为( ) (A) 12 m/s . (B) 11.75 m/s . (C) 12.5 m/s . (D) 13.75 m/s . 4. 质点沿X 轴作直线运动,其v - t 图象为一曲线,如图1.1,则以下说法正确的是( ) (A) 0~t 3时间内质点的位移用v - t 曲线与t 轴所围面积绝对值之和表示, 路程用v - t 曲线与t 轴所围面积的代数和表示; (B) 0~t 3时间内质点的路程用v - t 曲线与t 轴所围面积绝对值之和表示, 位移用v - t 曲线与t 轴所围面积的代数和表示; (C) 0~t 3时间内质点的加速度大于零; (D) t 1时刻质点的加速度不等于零. 5. 质点沿XOY 平面作曲线运动,其运动方程为:x =2t , y =19-2t 2. 则质点位置矢量与速度矢量恰好垂直的时刻为( ) (A) 0秒和3.16秒. (B) 1.78秒. (C) 1.78秒和3秒. (D) 0秒和3秒. 二. 填空题 1. 一小球沿斜面向上运动,其运动方程为s =5+4t -t 2 (SI),则小球运动到最高点的时刻为 t = 秒. 2. 一质点沿X 轴运动, v =1+3t 2 (SI), 若t =0时,质点位于原点. 则质点的加速度a = (SI);质点的运动方程为x = (SI). 3. 一质点的运动方程为r=A cos ω t i+B sin ω t j , 其中A , B ,ω为常量.则质点的加速度矢量 为 图1.1

大学物理学上册习题解答

大学物理学习题答案 习题一答案 习题一 1.1 简要回答下列问题: (1) 位移和路程有何区别?在什么情况下二者的量值相等?在什么情况下二者的量值不相等? (2) 平均速度和平均速率有何区别?在什么情况下二者的量值相等? (3) 瞬时速度和平均速度的关系和区别是什么?瞬时速率和平均速率的关系和区别又是什么? (4) 质点的位矢方向不变,它是否一定做直线运动?质点做直线运动,其位矢的方向是否一定保持不变? (5) r ?v 和r ?v 有区别吗?v ?v 和v ?v 有区别吗?0dv dt =v 和0d v dt =v 各代表什么运动? (6) 设质点的运动方程为:()x x t = ,()y y t =,在计算质点的速度和加速度时,有人先求出 r = dr v dt = 及 22d r a dt = 而求得结果;又有人先计算速度和加速度的分量,再合成求得结果,即 v = 及 a = 你认为两种方法哪一种正确?两者区别何在? (7) 如果一质点的加速度与时间的关系是线性的,那么,该质点的速度和位矢与时间的关系是否也是线性 的? (8) “物体做曲线运动时,速度方向一定在运动轨道的切线方向,法向分速度恒为零,因此其法向加速度 也一定为零.”这种说法正确吗? (9) 任意平面曲线运动的加速度的方向总指向曲线凹进那一侧,为什么? (10) 质点沿圆周运动,且速率随时间均匀增大,n a 、t a 、a 三者的大小是否随时间改变? (11) 一个人在以恒定速度运动的火车上竖直向上抛出一石子,此石子能否落回他的手中?如果石子抛出后,火车以恒定加速度前进,结果又如何? 1.2 一质点沿x 轴运动,坐标与时间的变化关系为224t t x -=,式中t x ,分别以m 、s 为单位,试计算:(1)在最初s 2内的位移、平均速度和s 2末的瞬时速度;(2)s 1末到s 3末的平均加速度;(3)s 3末的瞬时加速度。 解: (1) 最初s 2内的位移为为: (2)(0)000(/)x x x m s ?=-=-= 最初s 2内的平均速度为: 0(/)2 ave x v m s t ?= ==?

大学物理习题精选-答案解析-第2章质点动力学

质点动力学习题答案 2-1一个质量为P 的质点,在光滑的固定斜面(倾角为α)上以初速度0v 运动,0v 的方向 与斜面底边的水平线AB 平行,如图所示,求这质点的运动轨道. 解: 物体置于斜面上受到重力mg ,斜面支持力N .建立坐标:取0v 方向为X 轴,平行 斜面与X 轴垂直方向为Y 轴.如图2-1. 图2-1 X 方向: 0=x F t v x 0= ① Y 方向: y y ma mg F ==αsin ② 0=t 时 0=y 0=y v 2sin 2 1 t g y α= 由①、②式消去t ,得 22 sin 21 x g v y ?= α 2-2 质量为m 的物体被竖直上抛,初速度为0v ,物体受到的空气阻力数值为f KV =,K 为 常数.求物体升高到最高点时所用时间及上升的最大高度. 解:⑴研究对象:m ⑵受力分析:m 受两个力,重力P 及空气阻力f ⑶牛顿第二定律: 合力:f P F += a m f P =+ y 分量:dt dV m KV mg =-- dt KV mg mdV -=+? 即 dt m KV mg dV 1 -=+ ??-=+t v v dt m KV mg dV 01

dt m KV mg KV mg K 1ln 10-=++ )(0KV mg e KV mg t m K +?=+- mg K e KV mg K V t m K 1 )(10-+=?- ① 0=V 时,物体达到了最高点,可有0t 为 )1ln(ln 000mg KV K m mg KV mg K m t +=+= ② ∵ dt dy V = ∴ Vdt dy = dt mg K e KV mg K Vdt dy t t m K t y ??? ?? ????-+==-0000 1)(1 mgt K e KV mg K m y t m K 11)(02-??????-+-=- 021 ()1K t m m mg KV e mgt K K -+--??=???? ③ 0t t = 时,max y y =, )1ln(11)(0)1ln(02max 0mg KV K m mg K e KV mg K m y mg KV K m m K + ?-????????-+=+?- )1ln(1 1)(0 22 02mg KV g K m mg KV mg KV mg K m +-?? ??? ? ?????? +-+= )1ln()(022 0002mg KV g K m KV mg KV KV mg K m +-++= )1ln(0 220mg KV g K m K mV +-= 2-3 一条质量为m ,长为l 的匀质链条,放在一光滑的水平桌面,链子的一端由极小的一 段长度被推出桌子边缘,在重力作用下开始下落,试求链条刚刚离开桌面时的速度.

大学物理学-习题解答-习题10

第十章 10-1 无限长直线电流的磁感应强度公式为B =μ0I 2πa ,当场点无限接近于导线时(即 a →0),磁感应强度B →∞,这个结论正确吗?如何解释? 答:结论不正确。公式a I B πμ20=只对理想线电流适用,忽略了导线粗细,当a →0, 导线的尺寸不能忽略,电流就不能称为线电流,此公式不适用。 10-2 如图所示,过一个圆形电流I 附近的P 点,作一个同心共面圆形环路L ,由于电流分布的轴对称,L 上各点的B 大小相等,应用安培环路定理,可得∮L B ·d l =0,是否可由此得出结论,L 上各点的B 均为零?为什么? 答:L 上各点的B 不为零. 由安培环路定理 ∑?=?i i I l d B 0μρ ρ 得 0=??l d B ρ ρ,说明圆形环路L 内的电流代数和为零, 并不是说圆形环路L 上B 一定为零。 10-3 设题10-3图中两导线中的电流均为8A ,对图示的三条闭合曲线a ,b ,c ,分别写出安培环路定理等式右边电流的代数和.并讨论: (1)在各条闭合曲线上,各点的磁感应强度B ? 的大小是否相等? (2)在闭合曲线c 上各点的B ? 是否为零?为什么? 解: ?μ=?a l B 08d ? ? ? μ=?ba l B 08d ? ? ?=?c l B 0d ?? (1)在各条闭合曲线上,各点B ? 的大小不相等. (2)在闭合曲线C 上各点B ?不为零.只是B ? 的环路积分为零而非每点0=B ?. 习题10-2图

题10-3图 10-4 图示为相互垂直的两个电流元,它们之间的相互作用力是否等值、反向?由此可得出什么结论? 答:两个垂直的电流元之间相互作用力不是等值、反向的。 B l Id F d ρρρ ?= 2 0?4r r l Id B d ?=? ?πμ 2 21 2122110221212201112)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ 2 12 12112 20212121102212)?(4?4r r l d I l d I r r l d I l d I F d ??=??=? ρ?ρρπμπμ ))?()?((42 12 121221************r r l d l d r r l d l d I I F d F d ??+??-=+? ρ?ρρρπμ 2 122112 210212112221212102112) (?4))?()?((4r l d l d r I I r l d r l d l d r l d I I F d F d ?ρ? ρ?ρρρ??=?-?=+πμπμ 一般情况下 02112≠+F d F d ρ ρ 由此可得出两电流元(运动电荷)之间相互作用力一般不满足牛顿第三定律。 10-5 把一根柔软的螺旋形弹簧挂起来,使它的下端和盛在杯里的水银刚好接触,形成串联电路,再把它们接到直流电源上通以电流,如图所示,问弹簧会发生什么现象?怎样解释? 答:弹簧会作机械振动。 当弹簧通电后,弹簧内的线圈电流可看成是同向平行 的,而同向平行电流会互相吸引,因此弹簧被压缩,下端 会离开水银而电流被断开,磁力消失,而弹簧会伸长,于是电源又接通,弹簧通电以后又被压缩……,这样不断重复,弹簧不停振动。 10-6 如图所示为两根垂直于xy 平面放置的导线俯视图,它们各载有大小为I 但方向相反的电流.求:(1)x 轴上任意一点的磁感应强 度;(2)x 为何值时,B 值最大,并给出最大值B max . 习题10-4图 r 12 r 21 习题10-5图 y

相关文档
最新文档