整理—激光位移传感器原理

整理—激光位移传感器原理
整理—激光位移传感器原理

1、组成:

激光位移传感器是由激光器、激光检测器和测量电路组成。

2、外观图:

它能够精确非接触测量被测物体的位置、位移等变化。可以测量位移、厚度、振动、距离、直径等精密的几何测量。

3、激光位移传感器原理——原理分类

激光位移传感器按照测量原理分,可以分为激光三角测量法和激光回波分析法两种。

激光回波分析法则用于远距离测量。

激光三角测量法适用于高精度、短距离的测量。(我们用到的就是高精度短距离的激光三角测量法)

4、激光三角测量法原理

激光位移传感器的激光发射器通过镜头将可见红色激光射向被测物体表面,经物体反射的激光通过接收器镜头,被内部的CCD线性相机接收,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。

根据这个角度及已知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物体之间的距离。

同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可独立设置检测窗口。

5、测量方式(直射式、斜射式)

最简单的三角位移测量系统是从光源发射一束光到被测物体表面 ,在另一方向通过成像观察反射光点的位置 ,从而计算出物点的位移。由于入射和反射光构成一个三角形 ,所以这种方法被称为三角测量法 ,又可按入射光线与被测工件表面法线的关系分为直射式和斜射式。

(1)直射式

直射式三角法测量等效光路如图 1所示。

激光器发出的光线 ,经会聚透镜聚焦后垂直入射到被测物体表面上 ,物体移动或表面变化导致入射光点沿入射光轴移动。接收透镜接收来自入射光点处的散射光 ,并将其成像在光点位置探测器 (如 PSD、CCD)敏感面上。但由于传感器激光光束与被测面垂直 ,因此只有一个准确的调焦位置 ,其余位置的像都处于不同程度的离焦状态。离焦将引起像点的弥散 ,从而降低了系统的测量精度。为了提高精度 , θ1 和θ2 必须满足tgθ1= Utgθ2 ;

式中 ,U为横向放大率。此时一定景深范围内的被测点都能正焦成像在探测器上 ,从而保证了精度。

若光点在成像面上的位移为 x′ ,利用相似三角形各边之间的比例关系 ,按下式可求出被测面的位移:

式中 , a 为激光束光轴和接收光轴的交点到接收透镜前主面的距离; b 为接收透镜后主面到成像面中心点的距离; θ1为激光束光轴与接收透镜光轴之间的夹角 ; θ2 为探测器与接收透镜光轴之间的夹角。

(2)斜射式

图 2为斜射式三角测量原理图。

激光器发出的光与被测面的法线方向成一定角度入射到被测面上 ,同样用接收透镜接收光点在被测面的散射光或反射光。此时应满足

tg(θ1+ θ2 )= Utgθ3 ;

若光点的像在探测器敏感面上移动 x′,利用相似三角形的比例关系 ,则物体表面沿法线方向的移动距离为

式中 , θ1为激光束光轴与被测面法线之间的夹角;θ2 为成像透镜光轴与被测面法线之间的夹角; θ3为探测器光轴与成像透镜光轴之间的夹角。

(3)斜射式特例

当θ2为 0°时 ,此时为斜入射直接收式 ,如图 3所示。

光点移动 x 时 ,被测面沿法线方向移动的距离为

式中各个参数的含义与图 2所示相同 ,它属于斜入射式传感器的一个特例。

华中科技大学激光原理2002-2015历年真题

华科考研激光原理2002--2015真题 2015年(839) 一、简单 1、激光产生的必要条件? 2、激光的四种特性?选择一种说明其用途 3、谐振腔的稳区图,并写明稳定腔和非稳腔的位置 4、四能级系统速率方程和图示 二、共焦腔与一般稳定腔的对应计算 三、行波腔的均匀加宽和多普勒加宽的最大输出功率计算 四 2015激光原理(900) 一、简答题 1、△n 大于0,激光器是否能够产生自激振荡? 2、光学谐振腔的结构和作用 3、共焦腔与一般腔的等价性 4、均匀加宽与非均匀加宽的特点 5、连续激光器从开始振荡到产生稳定输出增益系数的变化情况 6、光学模式以及横模和纵模 二、三能级四能级的本质区别,以及为什么四能级更容易产生粒子数反转

三、三能级能级示意图,速率方程 四、稳定腔,非稳腔,临界腔计算判断(很简单) 五,光线传输矩阵相关的题 2014年 一.解释题 1.描述自然加宽和多普勒加宽的成因,说明他们属于什么加宽类型。(15) 2.描述一般稳定腔和对称共焦腔的等价性。(15) 3.增益饱和在连续激光器稳定输出中起什么作用? 谱线加宽是怎样影响增益饱和特性的?(15) 4.说明三能级系统和四能级系统的本质区别,哪个系统更容易形成粒子数反转,为什么?(15) 二.解答题 1. 一个折射率为η,厚度为d 的介质放在空气中,界面是曲率半径为R 的凹面镜和平面镜。 (1)求光线从空气入射到凹面镜并被凹面镜反射的光线变换矩阵。 (2)求光线从凹面镜进入介质经平面镜反射再从凹面镜射出介质的光线变换矩阵。 (3)求光线从凹面镜进入介质再从平面镜折射出介质的光线变换矩阵。(25) 2. 圆形镜共焦腔的腔长L=1m ,(1)求纵模间隔q υ?,横模间隔m υ?,n υ?. (2)若在增益阈值之上的增益线宽为60Mhz ,问腔内是否可能存在两个以上的纵模震荡,为什么?(25) 3. 虚共焦型非稳腔的腔长L=0.25m ,由凹面镜M1和凸面镜M2组成,M2的曲率半径和直径为m R 12-=,cm a 322=,若M2的尺寸不变,要求从M2单端输出,则M1的尺寸为多少;腔的往返放大率为多少。(20) 4. 某连续行波激光放大器,工作物质属于均匀加宽型,长度是L ,中心频率的小信号增益为m G ,初始光强为0I 中心频率饱和光强为s I ,腔内损耗系数为i α (m i G <<α),试证明有:

位移传感器原理与分类

位移传感器原理与分类 传感器之家中将位移传感器分为线位移跟物位移两类,这是按照位移的特征分的。位移传感器就是测量空间中距离的大小,线位移就是在一条线上移动的长度,角位移就是转动的角度。下面就线位移做下介绍,线位移按原理分主要有电阻式、电容式、电感式、变压器式、电涡流式、激光式等等。前面三种主要用来测量小位移,中位移一般则用变压器式,大的位移则用电位器式的比较多,对于精密的场合,则需要选择激光式。 电容式位移传感器是把位移的变化换作电容的变化进行制作的。对于振动频率很高的环境条件下,最适合选用这种类型的传感器。它具有灵敏度高、能实现非接触量的测量,而且可以在恶劣场合下工作。它也有一些缺点,比如对连接线缆有很高的要求,它要有屏蔽性能;而且最好选用高频电源用来供电。现在做的最好的电容式位移传感器可以测量0.001微米的位移,误差非常小。 电感式位移传感器是将测量量换作互感的变化的传感器,它既可以测量角位移也可以测量线位移。目前常用到的电感式位移传感器有气隙式,面积式,螺管式三种。变气隙型中电感的变化与传感器中活动衔铁的位移相对应。变面积型是用铁芯与衔铁之间重合面积的变化来反映位移。螺管型是衔铁插入长度的变化导致电感变化的原理。

变压器式位移传感器是用途最广的一种位移传感器,线圈中感应电动势随着位移的变化而变化。这种传感器它的灵敏度都很高,有时都不用放大器。缺点在于质量一般比较大,不应用于高频场合。 电涡流式位移传感器是基于电涡流效应,它的感应参数是阻抗的变化,尽量使阻抗是位移的函数,它还与被测物体的形状跟尺寸有关。该传感器的量程一般在0到80毫米。 电阻式位移传感器是通过测量变化的电阻值来计算位移的变化,它通常分为电位器式跟应变式。前面一种适合测量位移大、精度要求不高的场合;后面一种是利用电阻应变效应,它具有线性度跟分辨率都比较高,失真小的优点。

激光位移传感器的工作原理

ZLDS10河定制激光位移传感器 量程:2?1000m(可定制) 精度:最高0.1% (玻璃0.2%) 分辨率:最高0.03% 频率响应:2K.5K.8K.10K 基本原理是光学三角法: 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光传感器原理与应用 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。 激光和激光器一一激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。反之,在频率为v的光的诱发下,处于能级E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v 的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。激光具有3个重要特性: (1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米; (2)高单色性,激光的频率宽度比普通光小10倍以上; (3)高亮度,利用激光束会聚最高可产生达几百万度的温度。

激光原理简答题(西南科技大学)

光学谐振腔的作用 1、提供正反馈(放大)作用(1)腔镜的反射率(吸收、透射少,反射率大;反之亦然);(2)腔镜的形状及组合方式。 2、控制振荡光束,表现在三个方面(1)控制纵模的数目—光的模式少,光子的简并度高 (2)控制高阶横模—基模光强大、光斑小、发散角小(3)控制各种损耗—在增益一定的条件下,通过控制损耗来控制激光的输出。 横模的形成 a 、谐振腔中稳定的激光等效于任何波面的光通过一系相同列光栏后形成的自再现光场 b 、光栏有衍射,因此在光束的不同位置光将形成干涉叠加,这种稳定的叠加就形成了横模 c 、不同位置稳定场形成的条件不同,故而有不同频率。不同频率的横模的光场有不同的横向分布,它们是重叠在激光腔的同一空间内。 1、损耗的种类 (1)几何损耗:非平行轴的光线,折、反出腔外的损耗。 ① 光腔结构和尺寸影响的损耗;② 横模阶次的高低不同损耗不同。一般,高阶模的损耗大。 (2)衍射损耗:反射镜尺寸有限、腔中有插件,必有衍射。 ① 损耗与菲涅尔数N=a2/Lλ有关,该常数越小,损耗越大。② 与腔的几何结构有关,参数g=1-L/R 越小损耗越大。③ 与横模的阶次有关,阶次越高损耗越大。 (3)腔镜反射不完全引起的损耗 ① 反射镜吸收、散射引起的损耗;②反射镜的部分出射引起的损耗(对固体激光器可达50%) (4)非激活吸收、散射引起的损耗① 腔内加插件引起的损耗 a 、产生偏振光的布儒斯特窗口 b 、提高激光瞬间强输出功率的调Q 元件 c 、各种用途的加载调制元件 ② 非激活介质的吸收、散射 两个相同腔面共振漠视的积分方程 意义 腔内可能存在着得稳定的共振光波场,他们由一个腔面传播到另一个腔面的过程中虽然经受了衍射效应,但这些光波场在两个腔面处得相应振幅分布和相位分布保持不变,亦即共振光波场在腔内多次往返过程中始终保持自洽或自再现的条件。 方形镜共焦腔: 长椭球函数,在N 很大的情况,可以表示成厄米多项式与高斯函数乘积的形式。 圆形镜共焦腔: 超椭球函数,在N 很大的情况,可以表示成拉盖尔多项式与高斯函数乘积的形式。 单程衍射损耗 损耗随着菲涅耳系数N 的增大而迅速减小 菲涅耳系数相同时,不同横模的损耗不同,模的阶次越高,损耗越大; 共焦腔模的损耗要小于平面腔模的损耗,这是因为共焦腔对光束会聚作用的结果。 自再现模的衍射损耗小于均匀平面波的衍射损耗,因为自再现模的形成过程反应了衍射损耗的影响,从而使得边缘部分强度变小,衍射损耗的作用变小。 1 模式的损耗随菲涅耳数N 值的增大而急剧减小; 2 共焦腔损耗<共心腔损耗<平面腔损耗 3 基模的损耗<高阶模的损耗,模阶次越高,损耗越大; 稳定腔的优点:衍射损耗小 稳定腔的缺点:模体积小,利用的反转粒子数少, 平行平面腔的优点:模体积大 平行平面腔的缺点:调节精度很高 一、非稳定腔的优点和缺点: 非稳定腔的优点:大的可控模体积,通过扩大反射镜的尺寸,扩大模的横向尺寸; 可控的衍射耦合输出,输出耦合率与腔的几何参数g 有关;容易鉴别和控制横模; 易于得到单端输出和准直的平行光束。 非稳定腔的缺点:输出光束截面呈环状;光束强度分布是不均匀的,显示出某种衍射环。 高斯光束聚焦的方法(1)采用短焦距透镜,使f 尽量减小;(2)使入射高斯光束腰斑远离透镜焦点,满足: 若使一个稳定腔所产生的高斯光束与另一个稳定腔产生的高斯光束相匹配,需在合适的位置放置一个焦距适当的透镜,使两束高斯光束互为物象共轭光束。该透镜称为模匹配透镜。 f z

位移传感器的工作原理都有哪些

电位器式位移传感器,位移传感器它通过电位器元件将机械位移转换成与之成线性或任意函数关系的电阻或电压输出。普通直线电位器和圆形电位器都可分别用作直线位移和角位移传感器。但是,为实现测量位移目的而设计的电位器,要求在位移变化和电阻变化之间有一个确定关系。电位器式位移传感器的可动电刷与被测物体相连。 下面笔者来跟大家讲一下位移传感器的工作原理都有哪些 由于作为确定位置的活动磁环和敏感元件并无直接接触,位移传感器因此传感器可应用在极恶劣的工业环境中,不易受油渍、溶液、尘埃或其它污染的影响,IP防护等级在IP67以上。此外,传感器采用了高科技材料和先进的电子处理技术,因而它能应用在高温、高压和高振荡的环境中。传感器输出信号为绝对位移值,即使电源中断、重接,数据也不会丢失,更无须重新归零。由于敏感元件是非接触的,就算不断重复检测,也不会对传感器造成任何磨损,可以大大地提高检测的可靠性和使用寿命。 磁致伸缩位移传感器,是利用磁致伸缩原理、通过两个不同磁场相交产生一个应变脉冲信号来准确地测量位置的。测量元件是一根波导管,波导管内的敏感元件由特殊的磁致伸缩材料制成的。测量过程是由传感器的电子室内产生电流脉冲,该电流脉冲在波导管内传输,从而在波导管外产生一个圆周磁场,当该磁场和套在波导管上作为位置变化的活动磁环产生的磁场相交时,由于磁致伸缩的作

用,波导管内会产生一个应变机械波脉冲信号,这个应变机械波脉冲信号以固定的声音速度传输,并很快被电子室所检测到。 磁致伸缩位移传感器是根据磁致伸缩原理制造的高精度、长行程绝对位置测量的位移传感器。它采用非接触的测量方式,由于测量用的活动磁环和传感器自身并无直接接触,不至于被摩擦、磨损,因而其使用寿命长、环境适应能力强,可靠性高,安全性好,便于系统自动化工作,即使在恶劣的工业环境下,也能正常工作。此外,它还能承受高温、高压和强振动,现已被广泛应用于机械位移的测量、控制中。 杭州奥仕通自动化系统有限公司成立于2011年,是一家专业提供塑料机械行业自动化系统解决方案的高科技技术企业。公司为意大利杰佛伦(GEFRAN)和法国赛德(CELDUC)在中国大陆地区的核心代理商,主要产品有塑料机械控制器(PLC)、伺服驱动器、位移传感器、压力传感器、注射力和合模力传感器、高温熔体压力传感器、固态继电器(SSR)、温控表等。

激光位移传感器与压电式加速度传感器

传感器原理及其应用 右图是激光测量机器人,利用两 个激光位移传感器进行板材厚度测量 的。 由于生产车间的板材不能无间 隙的且较水平的放在工作台上,那么 若直接测量的话误差较大,若采用两 个激光位移传感器进行测量时,可实 时精确测量板材厚度。按照操作手册 对两个传感器主从站的分布,将测量 结果发送给PLC,那么PLC就很容易 计算出板材厚度的结果。例如:两个 传感器测量的结果分别为A、B,两个 传感器之间距离为S,那么板材厚度 W=S-(A+B)。 本文主要对激光位移传感器及压 电式加速度传感器进行介绍。 激光位移传感器 激光位移传感器能够利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光位移传感器(磁致伸缩位移传感器)就是利用激光的这些优点制成的新型测量仪表,它的出现,使位移测量的精度、可靠性得到极大的提高,也为非接触位移测量提供了有效的测量方法。 激光位移传感器因其较高的测量精度和非接触测量特性,广泛应用于高校和研究机构、汽车工业、机械制造工业、航空与军事工业、冶金和材料工业的精密测量检测。激光位移传感器可精确非接触测量被测物体的位置、位移等变化,主要应用于检测物的位移、厚度、振动、距离、直径等几何量的测量。按照测量原理,激光位移传感器原理分为激光三角测量法和激光回波分析法,激光三角测量法一般适用于高精度、短距离的测量,而激光回波分析法则用于远距离测量,下面分别介绍激光位移传感器的两种测量原理。 一.激光位移传感器的测量原理 激光三角法测量原理

图1 激光三角法测量原理图 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光发射器通过镜头将可见红色激光射向物体表面,经物体反射的激光通过接受器镜头,被内部的CCD线性相机接受,根据不同的距离,CCD线性相机可以在不同的角度下“看见”这个光点。根据这个角度即知的激光和相机之间的距离,数字信号处理器就能计算出传感器和被测物之间的距离。由传感器探头(发光LED)发射出的一束670nm激光,通过特殊的多重透镜被汇聚成一个直径极小的光束,此光束被测量表面漫反射到一个分辨率极高的CCD/PSD/CMOS探测器上,通过CCD/PSD/CMOS所感应到光束位置的不同,可精确测量被测物体位置的变化。 同时,光束在接收元件的位置通过模拟和数字电路处理,并通过微处理器分析,计算出相应的输出值,并在用户设定的模拟量窗口内,按比例输出标准数据信号。如果使用开关量输出,则在设定的窗口内导通,窗口之外截止。另外,模拟量与开关量输出可设置独立检测窗口。 激光回波分析法测量原理 激光位移传感器采用回波分析原理来测量距离可以达到一定程度的精度。传感器内部是由处理器单元、回波处理单元、激光发射器、激光接受器等部分组成。激光位移传感器通过激光发射器每秒发射一百万个脉冲到检测物并返回至接收器,处理器计算激光脉冲遇到检测物并返回接收器所需时间,以此计算出距离值,该输出值是将上千次的测量结果进行的平均输出。

激光原理简答题整理

1.什么是光波模式? 答:光波模式:在一个有边界条件限制的空间内,只能存在一系列独立的具有特定波矢的平面单色驻波。这种能够存在于腔内的驻波(以某一波矢为标志)称为光波模式。 2.如何理解光的相干性?何谓相干时间、相干长度? 答:光的相干性:在不同的空间点上、在不同的时刻的光波场的某些特性的相关性。相干时间: 光沿传播方向通过相干长度所需的时间,称为相干时间。相干长度:相干光能产生干涉效应的最大光程差,等于光源发出的光波的波列长度。 3.何谓光子简并度,有几种相同的含义?激光源的光子简并度与它的相干性什么联系? 答:光子简并度:处于同一光子态的光子数称为光子简并度。光子简并度有以下几种相同含义: 同态光子数、同一模式内的光子数、处于相干体积内的光子数、处于同一相格内的光子数。联系: 激光源的光子简并度决定着激光的相干性,光子简并度越高,激光源的相干性越好。 4.什么是黑体辐射?写出公式,并说明它的物理意义。 答:黑体辐射:当黑体处于某一温度的热平衡情况下,它所吸收的辐射能量应等于发出的辐射能量,即黑体与辐射场之间应处于能量(热)平衡状态,这种平衡必然导致空腔内存在完全确定的辐射场,这种辐射场称为黑体辐射或平衡辐射。物理意义:在单位体积内,频率处于附近的单位频率间隔中黑体的电磁辐射能量。 5.描述能级的光学跃迁的二大过程,并写出它们的特征和跃迁几率。 答:(1)自发辐射:处于高能级的一个原子自发的向跃迁,并发射一个能量为hv的光子,这种过程称为自发跃迁,由原子自发跃迁发出的光波称为自发辐射。 特征:a)自发辐射是一种只与原子本身性质有关而与辐射场无关的自发过程,无需外来光。b)每个发生辐射的原子都可看作是一个独立的发射单元,原子之间毫无联系而且各个原子开始发光的时间参差不一,所以各列光波频率虽然相同,均为V,各列光波之间没有固定的相位关系,各有不同的偏振方向,而且各个原子所发的光将向空间各个方向传播,即大量原子的自发辐射过程是杂乱无章的随机过程,所以自发辐射的光是非相干光。自发跃迁爱因斯坦系数: (2)受激吸收:处于低能态的一个原子,在频率为的辐射场作用(激励)下,吸收一个能量为的光子并向能态跃迁,这种过程称为受激吸收跃迁。 特征:a)只有外来光子能量时,才能引起受激辐射。 b)跃迁概率不仅与原子性质有关,还与辐射场的有关。受激吸收跃迁概率:(为受激吸收跃迁爱因斯坦系数,为辐射场) (3)受激辐射:处于上能级的原子在频率为的辐射场 作用下,跃迁至低能态并辐射一个能量为的光子。 受激辐射跃迁发出的光波称为受激辐射。特征:a) 只有外来光子能量时,才能引起受激辐射;b)受激 辐射所发出的光子与外来光子的频率、传播方向、 偏振方向、相位等性质完全相同。受激辐射跃迁概 率:(为受激辐射跃迁爱因斯坦系数,为辐射场) 6.激光器速率方程中的系数有哪些?它们之间的 关系是什么? 答:自发跃迁爱因斯坦系数,受激吸收跃迁爱因斯 坦系数,受激辐射跃迁爱因斯坦系数关系: 7.激光器主要由哪些部分组成?各部分的作用是 什么? 答:激光工作物质:用来实现粒子数反转和产生光的 受激发射作用的物质体系。接收来自泵浦源的能量, 对外发射光波并能够强烈发光的活跃状态,也称为 激活物质。泵浦源:提供能量,实现工作物质的粒子 数反转。光学谐振腔:a)提供轴向光波模的正反馈; b)模式选择,保证激光器单模振荡,从而提高激光 器的相干性。 8.什么是热平衡时能级粒子数的分布?什么是粒 子数反转?如何实现粒子数反转? 答:热平衡时能级粒子数的分布:在物质处于热平衡 状态时,各能级上的原子数(或集居数)服从玻尔 兹曼分布。粒子数反转:使高能级粒子数密度大于低 能级粒子数密度。 如何实现粒子数反转:外界向物质供给能量(称为激 励或泵浦过程),从而使物质处于非平衡状态。 9.如何定义激光增益?什么是小信号增益?大信 号增益?增益饱和? 答??激光增益定义:表示光通过单位长度激活物质 后光强增长的百分数。小信号增益:当光强很弱时, 集居数差值不随z变化,增益系数为一常数,称为 线性增益或小信号增益。大信号增益: 在放大器中 入射光强与(为饱和光强)相比拟时,,为大信号 增益。增益饱和:当光强足够强时,增益系数g也随 着光强的增加而减小,这一现象称为增益饱和效应。 10.什么是自激振荡?产生激光振荡的条件是什 么?答:自激振荡:不管初始光强多么微弱,只要放 大器足够长,就总是形成确定大小的光强,这就是 自激振荡的概念。 产生条件:满足腔的谐振条件,成为腔的梳状模之一; 频率落在工作物质的谱线范围内,即对应增益系数 大于等于阈值增益系数。 11.激光的基本特性是什么? 答:激光四性:单色性、相干性、方向性和高亮度。 这四性可归结为激光具有很高的光子简并度。 12.如何理解激光的空间相干性与方向性?如何 理解激光的时间相干性?如何理解激光的相干光 强? 答:(1)激光的方向性越好,它的空间相干性程度 越高。(2)激光的相干时间和单色性存在着简单关 系,即单色越好,相干时间越长。(3)激光具有很 高的亮度,激光的单色亮度,由于激光具有极好的 方向性和单色性,因而具有极高的光子简并度和单 色亮度。 13.什么是谐振腔的谐振条件?如何计算纵模的 频率、纵模间隔和纵模的数冃? 答:(1)谐振条件:谐振腔内的光要满足相长干涉 条件(也称为驻波条件)。波从某一点出发,经腔 内往返一周再回到原来位置时,应与初始出发波同 相(即相差为的整数倍)。如果以表示均匀平面波 在腔内往返一周时的相位滞后,则可以表示为。A 为光在真空中的波长,L为腔的光学长度,q为正 整数。 (2)如何计算纵模的频率、纵模间隔和纵模的数目、 纵模的频率、纵模间隔: 纵模的数目:对于满足谐振条件频率为的波,其纵 模数目,为小信号增益曲线中大于阈值增益系数的 那部分曲线所对应的频率范围(振荡带宽)。 14.在激光谐振腔中一般有哪些损耗因素,分别与 哪些因素有关? 答:损耗因素:a、几何偏折损耗:与腔的类型、腔 的几何尺寸、模式有关。b、衍射损耗:与腔的菲涅 尔数、腔的几何参数、横模阶次有关。c、腔镜反射 不完全引起的损耗:与腔镜的透射率、反射率有关。 d、材料中的非激活吸收、散射、腔内插入物所引起 的损耗:与介质材料的加工工艺有关。 15.哪些参数可以描述谐振腔的损耗?它们的关 系如何?(P29-31) 答:(1)描述参数:a)平均单程损耗因子:(为初始 光强,为往返一周后光强)b)腔内光子的平均寿命: c)品质因数:⑵去重:腔的损耗越小,平均单程损 耗因子越小,腔内光子的平均寿命越长,品质因数 越大。 16.如何理解激光谐振腔衍射理论的自再现模? 答:开腔镜面上,经过足够多次往返后,能形成这 样一种稳恒场,其分布不再受衍射的影响,在腔内 往返一次能够再现出发时的场分布。这种稳恒场经 一次往返后,唯一可能的变化是,镜面上各点的场 分布按同样的比例衰减,各点的相位发生同样大小 的滞后。把这种开腔镜面上的经一次往返能再现的 稳恒场分布称为开腔的自再现模。 17.求解菲涅尔-基尔霍夫衍射积分方程得到的本 征函数和本征值各代表什么? 答:本征函数:描述腔的一个自再现模式或横模。其 模描述镜面上场的振幅分布,幅角描述镜面上场的 相位分布。本征倌:表示自再现模在渡越一次时的幅 值衰减和相位滞后。其模值量度自再现模在腔内往 返一次的功率损耗,幅角量度自再现模的单程相移, 从而也决定模的谐振频率。

GBLM-04激光位移传感器1

GBLM-04 测距传感器 一、产品说明: 传感器数字输出接口:RS232/RS485/RS422(更换接口方式,只需更换通讯电缆即可) 传感器模拟输出接口(可选):4-20mA/0-2.5V/0-5V/0-10V(可反向输出,可以任意设置4和20MA对应的距离值,即上下限) 传感器开关量输出口(可选):最多四路,输出方式有5V电压(默认值)、12V电压、与供电电压一致、光耦输出四种方式,输出方式不能通过命令进行修改请提前说明。开关量输出可以能过命令来设置输出触发点、输出状态(大于触发点和小于触发点的的输出状态)。 传感器最大测量频率:10Hz(连续测量时,数据返回时间可以调整,最短100mS,最长 105,000mS) 传感器测量方式:连续测量和单次测量两种 传感器操作方式:命令操作和自动操作(上电后自动进入连续测量状态) 激光波长:635nm(620 -- 690nm) 测量精度:正负1mm 测量距离:0.05-- 40m 外形尺寸:133 * 65 * 35mm(安装尺寸可按客户要求做)

电源电压:6-30V 温度范围:-8℃到40℃(可加做恒温系统,其温度范围可以扩展到-40℃到50℃) 串口设置:9600,n,8,1 二、可通过命令设置的功能: 1、传感器地址(一条总线上挂多个传感器时使用) 2、连续测量返回数据时间间隔(100MS-105S) 3、量程上下限(只对模拟输出有效,量程上下限分别对应20MA或4MA) 4、模拟输出方式(只对模拟输出有效),可以使量程上下限分别对应最大电流值、最小电流值,或最小、最大电流值。 5、测距起始点,可以使返回数据由传感器头部开始,或由传感器尾部分开始算起 6、开关量输出点及输出方式 7、每个传感器有唯一的一个序列号,可以通过命令读取。 注:本机标准配置不带模拟输出接口,不带开关量输出接口,如有需要请在定货时说明。 三、产品特点: 1. 后端接口只用一个DB15(军工级)接口,前端为有机玻璃透明窗,壳体为完整一体。以上特点 保证了其密封性;

激光原理考试基本概念

第一章 1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。 2、激光主要是光的受激辐射,普通光源主要光的自发辐射。 3、光的一个基本性质就是具有波粒二象性。光波是一种电磁波,是一种横波。 4、常用电磁波在可见光或接近可见光的范围,波长为~30μm,其相应频率为10^15~10^13。 5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<

d、ΔS=0,即跃迁时S不能发生改变。 10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。 11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。 12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。 13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。 14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。 15、与外界无关的、自发进行的辐射称为自发辐射。自发辐射的光是非相干光。 16、能级平均寿命等于自发跃迁几率的倒数。 17、受激辐射的特点是: a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。 b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。 18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。 19、自发辐射跃迁几率就是自发辐射系数本身,而受激辐射的跃迁几

位移传感器的工作原理

位移传感器又称为线性传感器,它分为电感式位移传感器,电容式位移传感器,光电式位移传感器,超声波式位移传感器,霍尔式位移传感器. 该位移传感器是一种属于金属感应的线性器件,接通电源后,在开关的感应面将产生一个交变磁场,当金属物体接近此感应面时,金属中则产生涡流而吸取了振荡器的能量,使振荡器输出幅度线性衰减,然后根据衰减量的变化来完成无接触检测物体的目的。 该位移传感器具有无滑动触点,工作时不受灰尘等非金属因素的影响,并且低功耗,长寿命,可使用在各种恶劣条件下。位移传感器主要应用在自动化装备生产线对模拟量的智能控制。 磁致伸缩线性位移传感器的工作原理 磁致伸缩线性位移传感器的工作原理:当工作时,由电子仓内电子电路产生一起始脉冲,此起始脉冲在波导丝中传输时,同时产生了一沿波导丝方向前进的旋转磁场,当这个磁场与磁环或浮球中的永久磁场相遇时,产生磁致伸缩效应,使波导丝发生扭动,这一扭动被安装在电子仓内的拾能机构所感知并转换成相应的电流脉冲,通过电子电路计算出两个脉冲之间的时间差,即可精确测出被测的位移和液位。该产品主要应用于要求测量精度高、使用环境较恶劣的位移和液位测量系统中。具有精度高、重复性好、稳定可靠、非接触式测量、寿命长、安装方便、环境适应性强等特点。它的输出信号是一个真正的绝对位置输出,而不是比例的或需要再放大处理的信号,所以不存在信号漂移或变值的情况,因此不必像其它液位传感器一样需要定期重标和维护;正是因为它的输出信号为绝对值,所以即使电源中断重新接通也不会对数据接收构成问题,更无须重新归回零位。与其它液位变送器或液位计相比有明显的优势,它可广泛应用于石油、化工、制药、食品、饮料等行业,对各种液罐的液位进行计量和控制。作为位移传感器,它不但可以测量运动物体的直线位移,而且还可同时给出运动物体的速度模拟信号。 电涡流传感器是由DJ型前置放大器和电涡流探头组合构成,它是一种趋近式传感系统。由于其长期工作可靠性好,灵敏度高,抗干扰能力强,采用非接触测量,响应速度快,耐高温,能在油、汽、水等恶劣环境下长期连续工作,检测不受油污、蒸汽等介质的影响,已广泛应用于电力、石化、冶金、钢铁、航空航天等大中型企业,对各种旋转机械的轴位移、振动、转速、胀差、偏心、油膜厚度等进行在线监测和安全保护,为精密诊断系统提供了全息动态特性,有效地对设备进行保护。电涡流位移传感器系统主要包括探头、延伸电缆(可选)、前置器和附件。线性范围宽、动态响应好、抗干扰能力强。 电涡流传感器是以高频电涡流效应为原理的非接触式位移传感器。前置器内产生的高频电流从振荡器流入探头线圈中,线圈就产生了一个高频电磁场。当被测金属的表面靠近该线圈时,由于高频电磁场的作用,在金属表面产生感应电流,即电涡流。该电流产生一个交变磁场,方向与线圈磁场相反,这二个磁场相互迭加就改变了原线圈的阻抗。所以探头与被测金属表面距离的变化可通过探头线圈阻抗的变化来测量。前置器根据探头线圈阻抗的变化输出一个与距离成正比的直流电压。 此下为电阻式位移传感器:

激光原理考试基本概念

激光原理考试基本概念 https://www.360docs.net/doc/dc7916039.html,work Information Technology Company.2020YEAR

第一章 1、激光与普通光源相比有三个主要特点:方向性好,相干性好,亮度高。 2、激光主要是光的受激辐射,普通光源主要光的自发辐射。 3、光的一个基本性质就是具有波粒二象性。光波是一种电磁波,是一种横波。 4、常用电磁波在可见光或接近可见光的范围,波长为0.3~30μm,其相应频率为10^15~10^13。 5、具有单一频率的平面波叫作单色平面波,如果频率宽度Δν<

c、ΔL=0,±1(L=0→L=0除外); d、ΔS=0,即跃迁时S不能发生改变。 10、大量原子所组成的系统在热平衡状态下,原子数按能级分布服从玻耳兹曼定律。 11、处于高能态的粒子数总是小于处在低能态的粒子数,这是热平衡情况的一般规律。 12、因发射或吸收光子从而使原子造成能级间跃迁的现象叫作辐射跃迁,必须满足辐射跃迁选择定则。 13、光与物质的相互作用有三种不同的基本过程:自发辐射,受激辐射,和受激吸收。 14、普通光源中自发辐射起主要作用,激光工作过程中受激辐射起主要作用。 15、与外界无关的、自发进行的辐射称为自发辐射。自发辐射的光是非相干光。 16、能级平均寿命等于自发跃迁几率的倒数。 17、受激辐射的特点是: a、只有外来光子的能量hv=E2-E1时,才能引起受激辐射。 b、受激辐射所发出的的光子与外来光子的特性完全相同(频率相同,相位相同,偏振方向相同,传播方向相同)。 18、受激辐射光子与入射(激励)光子属于同一光子态;受激辐射与入辐射场具有相同的频率、相位、波矢(传播方向)和偏振,是相干的。

激光位移传感器

随着21 世纪的到来,人们开始进入了以知识经济为特征的信息时代, 微电子技术、计算机技术、通讯网络技术及自动化技术高速发展的同时, 作为工业自动化技术工具的自动化仪表及装置也向数字化、智能化、网络化发展。传感器技术、计算机技术和通讯技术一起构成了现代信息的三大基石。 而非接触检测可以克服接触式检测的不足,对于各种测量目标都可以 提供高灵敏度、高精度、高效率的数据采集,从而实现对被测物各种参 数的非接触测量。它不会造成被测表面的划伤和损坏,对各种材料制成 的工件皆可实现测量。非接触检测的最大优点是在被检测物体加工过程 中便可实现测量。非接触检测的最大优点是在被测物体加工过程中便可 对其进行测量,即在线实时检测,从而实现对加工过程的控制,降低废 品率,可大大节省检测时间,提高生产效率,这是接触式检测方式所无 法比拟的。 目前,非接触检测主要以激光检测和红外探测为为代表,而激光检 测技术是最先进应用最广泛的检测技术之一。可实现高精度、高效率、 非接触在线检测。对于解决国防及民用工业生产中的产品零件检测难题 起到了及其重要的作用。 传感器是利用某种转换原理, 将物理的、化学的、生物的等外界信号变成可以直接测量的电信号的装置。在实现生产自动化的过程中,采用适当的传感器(能满足系统要求的长期稳定性、可靠性、精确度 等性能指标) 是十分重要的。传感器是现代检测与控制系统中必不可少的组成部分,它的好坏直接关系到整个系统的成败。在传感器测量技术中, 越来越广泛地运用了超声、微波、激光等声、光、电技术来解决不同工业领域中遇到的特殊测量问题和提高性能的要求。激光器作为一种新型光源, 与普通光源有显著的不同。他利用受激发射原理和激光腔的滤波效应,使所发光波具有一系列新的特点。激光检测技

激光位移传感器及输出特性的研究讲解

激光位移传感器及输出特性的研究 英文题名 Study of Laser Displacement Sensor and Output Characteristics 关键词三角法; 激光位移传感器; CCD; 四象限; 英文关键词 Triangulation; Laser displacement sensor; CCD; four-quadrant; 中文摘要基于三角法的激光位移传感器的应用领域极为广泛,在质量检验、设备维护、流程和设备监控、机械和生产自动化以及研发等各个领域中,位移传感器都为优化产品和流程起到了决定性作用。但是目前国内市场仍然没有比较成熟的三角法激光位移传感器产品问世,市场都被国外产品占据,而国外产品的价格非常昂贵,因此找出激光位移传感器在输出特性上与国外产品的差距,提出改进方案是一项很有应用价值的工作。本论文以三角测量法为测量原理,采用半导体激光器作为光源,搭建了基于四象限探测器和基于线阵CCD探测器的两套测量系统,对测量系统中各个部件的选取做了详细分析,并从理论和实验上分析了引起系统测量误差的各种因素以及消除或者减弱这些影响因素的方法。本文的主要工作如下: 1.设计了基于四象限的激光位移传感器,并对该传感器进行了调试和标定。达到了预期的线性范围。适用于小量程、高精度的测量。 2.设计了基于线阵CCD的激光位移传感器,并对该传感器进行了调试、标定、测试。适用于大量程、中精度的测量。 3.比较了自行设计的基于线阵CCD的激光位移传感器和国外同类传感器的输出特性,针对各种不同被测面(色泽、材料、粗糙度、倾斜)进行测... 英文摘要 The application of Laser displacement sensor based on triangulation is extremely broad. Whether it is for quality assurance, for applications in maintenance and service, for process and machine monitoring, in automation or in research and development sensors make a vital contribution to the improvement of products and processes. Currently there is still no mature triangulation laser displacement sensor products come out in domestic market, the domestic market is totally occupied by foreign products 致谢 5-6 中文摘要 6-7 ABSTRACT 7 1 引言 10-14 1.1 研究意义 10 1.2 激光三角位移传感器国内外研究状况及发展动态 10-12 1.3 本论文的主要内容 12-14 2 基于四象限探测器的激光位移传感器研究 14-37 2.1 概述 14 2.2 三角法的基本原理 14-17 2.2.1 直射式14-16 2.2.2 斜射式 16-17 2.3 传感器设计 17- 30 2.3.1 光路设计 17-22 2.3.2 关键元件的参数 22-26 2.3.3 电路设计 26-29 2.3.4 机械设计 29-30 2.4 实验与分析 30-37 2.4.1 标定实验 30-33 2.4.2 振动测试实验 33- 35 2.4.3 误差分析 35-37 3 基于线阵CDD的激光位移传感器研究 37-43 3.1 概述 37 3.2 传感器设计 37- 39 3.2.1 光路设计 37 3.2.2 关键元件的参数 37-38 3.2.3 电路设计 38-39 3.3 实验与分析 39-43 3.3.1 实验方案 39-41 3.3.2 结果与分析 41-43 4 传感器的输出特性研究 43-54 4.1 概述 43 4.2 输出特性实验 43-50 4.2.1 实验方案 43- 46 4.2.2 实验结果 46-50 4.3 分析 50-54 5 总结与

激光位移传感器的工作原理.doc

ZLDS10X可定制激光位移传感器 量程: 2~1000mm(可定制) 精度: 最高0.1%(玻璃0.2%) 分辨率: 最高0.03% 频率响应: 2K.5K.8K.10K 基本原理是光学三角法: 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集 ,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光传感器原理与应用 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表 ,它的优点是能实现无接触远距离测量 ,速度快 ,精度高 ,量程大 ,抗光、电干扰能力强等。 激光和激光器——激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速 ,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同 ,需要用激光器产生。激光器的工作物质 ,在正常状态下 ,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下 ,处于低能级的原子吸收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数 ,v 为光子频率。反之 ,在频率为v的光的诱发下 ,处于能级 E2的原子会跃迁到低能级释放能量而发光 ,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布) ,就能使受激辐射过程占优势 ,从而使频率为v的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光 ,简称激光。激光具有3个重要特性: (1)高方向性(即高定向性 ,光速发散角小) ,激光束在几公里外的扩展范围不过几厘米; (2)高单色性 ,激光的频率宽度比普通光小10倍以上; (3)高亮度 ,利用激光束会聚最高可产生达几百万度的温度。

激光位移传感器的工作原理复习进程

激光位移传感器的工 作原理

ZLDS10X可定制激光位移传感器 量程: 2~1000mm(可定制) 精度: 最高0.1%(玻璃0.2%) 分辨率: 最高0.03% 频率响应: 2K.5K.8K.10K 基本原理是光学三角法: 半导体激光器1被镜片2聚焦到被测物体6。反射光被镜片3收集,投射到CCD 阵列4上;信号处理器5通过三角函数计算阵列4上的光点位置得到距物体的距离。 激光传感器原理与应用 激光传感器是利用激光技术进行测量的传感器。它由激光器、激光检测器和测量电路组成。激光传感器是新型测量仪表,它的优点是能实现无接触远距离测量,速度快,精度高,量程大,抗光、电干扰能力强等。 激光和激光器——激光是20世纪60年代出现的最重大的科学技术成就之一。它发展迅速,已广泛应用于国防、生产、医学和非电测量等各方面。激光与普通光不同,需要用激光器产生。激光器的工作物质,在正常状态下,多数原子处于稳定的低能级E1,在适当频率的外界光线的作用下,处于低能级的原子吸

收光子能量受激发而跃迁到高能级E2。光子能量E=E2-E1=hv,式中h为普朗克常数,v为光子频率。反之,在频率为v的光的诱发下,处于能级 E2的原子会跃迁到低能级释放能量而发光,称为受激辐射。激光器首先使工作物质的原子反常地多数处于高能级(即粒子数反转分布),就能使受激辐射过程占优势,从而使频率为v的诱发光得到增强,并可通过平行的反射镜形成雪崩式的放大作用而产生强大的受激辐射光,简称激光。激光具有3个重要特性: (1)高方向性(即高定向性,光速发散角小),激光束在几公里外的扩展范围不过几厘米; (2)高单色性,激光的频率宽度比普通光小10倍以上; (3)高亮度,利用激光束会聚最高可产生达几百万度的温度。 激光器按工作物质可分为4种: (1)固体激光器:它的工作物质是固体。常用的有红宝石激光器、掺钕的钇铝石榴石激光器 (即YAG激光器)和钕玻璃激光器等。它们的结构大致相同,特点是小而坚固、功率高,钕玻璃激光器是目前脉冲输出功率最高的器件,已达到数十兆瓦。 (2)气体激光器:它的工作物质为气体。现已有各种气体原子、离子、金属蒸气、气体分子激光器。常用的有二氧化碳激光器、氦氖激光器和一氧化碳激光器,其形状如普通放电管,特点是输出稳定,单色性好,寿命长,但功率较小,转换效率较低。 (3)液体激光器:它又可分为螯合物激光器、无机液体激光器和有机染料激光器,其中最重要的是有机染料激光器,它的最大特点是波长连续可调。 (4)半导体激光器:它是较年轻的一种激光器,其中较成熟的是砷化镓激光器。特点是效率高、体积小、重量轻、结构简单,适宜于在飞机、军舰、坦克上以及步兵随身携带。可制成测距仪和瞄准器。但输出功率较小、定向性较差、受环境温度影响较大。 应用——利用激光的高方向性、高单色性和高亮度等特点可实现无接触远距离测量。激光传感器常用于长度、距离、振动、速度、方位等物理量的测量,还可用于探伤和大气污染物的监测等。 激光测长—— 精密测量长度是精密机械制造工业和光学加工工业的关键技术之一。现代长度

相关文档
最新文档