多普勒效应实验报告

多普勒效应实验报告
多普勒效应实验报告

附件:实验项目名称:多普勒效应实验

学号:____________姓名:_________班级:___________实验序号___

第_____周星期______第________节课联系方式:__________________

[实验目的]

(1)了解多普勒效应的原理

(2)学会利用多普勒效应测量速度等运动参数的方法

[实验仪器]

多普勒效应实验仪

[实验原理及预习问题]

1.若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度大小v靠近声源运动,接收器接收到的频率比声源的频率大还是小?为什么?对于远离声源情况再次讨论上述问题。

2.多普勒效应有哪些应用?

[实验内容与原始数据记录]

实验1:多普勒效应验证及声速的测量

谐振频率f0=_________Hz温度t=________℃

表1多普勒效应的验证与声速的测量

测量数据

直线斜率k(1/m)声速测量值

u=f0/k(m/s)

声速理论值

273

1

330

t

u+

=

百分误差

(u-u0)/u0

次数i12345

V i(m/s)

f i(Hz)

注:表中斜率计算见下页公式

画出f-V 关系曲线:斜率的计算:

=i V ___________=i f __________

=?i i f V _________=?i i f V _________=2i V __________

=2

i V __________

=-?-?=

2

2

i

i i

i i i V V f V f V k _____________

实验2:变速运动(简谐振动)的研究

表2

简谐振动的研究

N 1max

N 5max T=0.02(N 5max -N 1max )(s)

ω=2π/T (1/s)

ω平均值ω标准差

12345

三、思考题

1.试分析实验1中误差产生的主要原因。

2.在实验二中,每次需要使小车偏离平衡位置一定距离再放手,如果每次实验偏离平衡位置的距离不一样(仍然在弹簧弹性限度内),是否会对实验结果有明显影响?为什么?

评分:批改教师签名:

大学物理仿真实验-光电效应

实验名称:光电效应实验 专业班级:核工程实验日期: 2012 年 5 月 25 日 姓名:学号: 光电效应实验简介: 当光照在物体上时,光的能量仅部分的以热的形式为物体吸收,而另一部分则转换为物体中某些电子的能量,使电子溢出物体表面,这种效应称为光电效应,溢出的电子称为光电子。根据爱因斯坦理论,每个光子的能量为其中h为普朗克常数,是近代量子物理中的重要常数。而本实验就是利用光电效应法来测得普朗克常数。 一.实验目的: 1.了解光电效应的基本规律。 2. 验证爱因斯坦光电方程。 3.熟悉普朗克常数测定仪的操作比并用光电效应方法测量普朗克常数。 二.实验仪器: 包括GD-5光电管、单色仪、水银灯、检流计、直流电源、直流电压表、滑线变阻器、临界电阻箱。 三.实验步骤: 1.连接电路 根据测量光电管正向特性的电路图将实验电路接好;根据测量光电管反向特性的电路图将实验电路接好。 线路连接好后,鼠标右键单击,弹出主菜单,选中接线检查。若连线正确,就可以正式开始实验,否则需要继续连线。 2.调整仪器 通过接线检查后,双击各仪器弹出其放大窗口,调整该仪器。 (1)检流计的调零。 (2)临界电阻箱的调节。 (3)调节单色仪,得到合适波长的单色光,实验中将用到5770埃、5461埃、4358埃、4047埃四种波长的单色光。

四.测量内容及数据处理: (1)分别对四种波长的光进行实验,得到光电管在各种波长的单色光照射下的正向、反向电压特性,一共八组数据,记录在表格中。 5770埃正向伏安特性: 5770埃反向伏安特性: 5461埃正向伏安特性:

5461埃反向伏安特性: 4358埃正向伏安特性: 4358埃反向伏安特性:

多普勒效应综合实验

多普勒效应综合实验 摘要: 关键词: 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0 – 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号

多普勒综合试验仪

ZKY-DPL-2 多普勒效应综合实验仪实验指导说明书

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

激光多普勒测速实验报告

.\ 研究生专业实验报告 实验项目名称: LDV激光多普勒测速实验 学号: 20141002042 姓名:张薇 指导教师:唐经文 动力工程学院

.\ LDV激光多普勒测速实验 一、实验目的 应用激光测量流体的流速,是六十年代迅速发展起来的一种新的测速方法。它和过去应用的传统的测速仪器,如皮托管、旋浆式流速仪、热线式风速仪等相比,有如下几个主要优点:无接触测量,不干扰流场;测速范围广(4秒 米 10 104 5- ?-);空间分辨率高;动态响应快。特别是对高速流体、恶性(如:酸性、碱性、高温等)流体、狭窄流场、湍流、紊流边界层等的测量方面,显示出传统方法无法比拟的优点。 本实验要求在熟悉激光测速光学系统和信号处理基本原理的基础上,应用实验室的频移型二维激光测速仪测量一个具有分离、再附、旋涡和高湍流度的复杂流场,了解这种流场中平均速度、速度直方图、湍流度和雷诺应力等湍流参数在主流区、回流区、剪切层和边界层等区域的不同特征,以及激光测速在测量复杂湍流流动方面的功能和优点有着重要的实验意义。 二、实验设备 图1:激光多普勒测速仪 图2:实验模型结构尺寸

图3:实验系统图 三、实验原理和方法 激光多普勒测速仪,英文缩写是流体流速测量的光学方法之一,是利用光学多普勒效应。即当激光照射运动着的流体时,激光被跟随流体运动的粒子所散射,散射光的频率将发生变化,它和入射激光的频率之差称为多普勒频差或多普勒拍频。这个频差正比于流速,所以测出多普勒频差,就测得了流体的速度。 实际接收到的多普勒信号,是包含有各种各样噪声的信号。例如光电倍增管带来的信号散粒噪声,暗电流散粒噪声,背景光噪声,热噪声,以及其他测量仪器带来的噪声等。同时,多普勒信号还是一个调制信号,由于各种原因,使多普勒频带加宽。例如,振幅调制,散射粒子受布朗运动影响,散射粒子通过探测体积所需要的渡越时间,多粒子进入探测体积初位相的不同,激光束的角扩散及速度梯度等原因,都会引起多普勒频带的加宽。为了尽量减小噪声和带宽,以及从具有一定的噪声和带宽的信号中,取出反映流速的“有用”信号,必须选择合适的信号处理装置,对多普勒信号进行处理。 一种信号处理装置,是利用高分辨率的法布里-珀罗干涉仪,直接跟踪光学信号。此种干涉仪调整比较简单,在大散射角工作时空间分辨率较高,但在测低速 厘米。另一种信号处理装置是频谱分析时受到限制,一般能测的下限速度为25秒 仪,它实际上是通过调谐窄带滤波器,把信号用示波器器显示出来,其中心频率在频谱范围内缓慢地扫描。由于使用滤波器,在任一瞬间时只能观察到全部信号的很少一部分,浪费了有用的信息和时间。进来信号处理装置都采用能跟踪可变频率的振荡器,称为自动跟踪可变频率跟踪器,简称频率跟踪器。 四、实验内容 在熟悉激光测速光学系统和信号处理基本原理的基础上,应用频移型二维激光测速仪测量复杂流场的速度。

多普勒效应综合实验

多普勒效应综合实验 【引言】 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f -V 关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V -t 关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: (1)自由落体运动,并由V -t 关系直线的斜率求重力加速度。 (2)简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 (3)匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 (4)其它变速直线运动。 【实验原理】 1、超声的多普勒效应 图1 超声的多普勒效应示意图 源 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f 为: 22110cos -cos ααV u V u f f +?= (1) 式中f 0为声源发射频率,u 为声速,V 1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V 2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角(如图1)。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向(α=0)以速度V 运动,则从(1)式可得接收器接收到的频率应为: ??? ??+?=u V f f 10 (2) 当接收器向着声源运动时,V 取正,反之取负。 若f 0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f -V 关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为 k =f 0/u ,由此可计算出声速 u =f 0/k 。 由(2)式可解出: ???? ???=1-0f f u V (3) 若已知声速u 及声源频率f 0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V -t 关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。

激光多普勒测速

南京理工大学 课程考核论文 课程名称:图像传感与测量 论文题目:激光多普勒测速技术 姓名:陈静 学号: 314101002268 成绩: 任课教师评语: 签名: 年月日

激光多普勒测速技术 一、引言 激光多普勒测速技术即LDV(Laser Doppler Velocimetry)是伴随着激光器的诞生而产生的一种新的测量技术,它是利用激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事、航空航天、机械、能源、冶金、水利、钢铁、计量、医学、环保等领域[1]。 激光测速技术的发展大体上可分为三个阶段。 第一个阶段是1964至1972年,这是激光测速发展的初期。在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便[2]。 第二个阶段是1973至1980年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。 第三个阶段是1981年至今。在此期间,应用研究得到快速发展[3]。 在发表的论文中,有关流动研究的论文急剧增加。多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。 二、主要内容 激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的

大小与运动物体的速度,入射光和速度方向的夹角都有关系。 由于其有许多潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具[4]。 1.激光多普勒测速原理 激光测速的原理大致是这样:激光束射向流动着的粒子,粒子发出的散射光的频率改变了,通过光电装置测出频率的变化,就测得了粒子的速度,也就是流动的速度 [5]。 设一束散射光与另一束参考光的频率分别为12,s s f f ,它们到达光探测器阴极 表面的电场强度分别为: 1210112022cos(2) cos(2)s s E E f t E E f t π?π?=+=+ 式中,0102,E E 分别为两束光在光阴极表面处的振幅,12,??分别为两束光的初始相位。两束光在光阴极表面混频,其合成的电场强度为: 1212011022cos(2)cos(2)s s E E E E f t E f t π?π?=+=+++ 光强度与光的电场强度的平方成正比: 1222212010201021(t)()()cos[2()]2 s s I k E E k E E kE E f f t π?=+=++-+ 式中为k 常数,?为两束光初始相位差,12???=-。其中第一项为直流分量,可用电容器隔去,第二项为交流分量,其中12s s f f -是得到的多普勒频移。 多普勒频移与物体运动速度V 的关系为: 12[cos(,)cos(,)]s s i s V f f K K υυλ -=- 式中:i K 是激光的传播矢量,s K 为散射光传播矢量,υ是物理运动速度方

多普勒效应综合实验

多普勒效应综合实验 【摘要】:多普勒效应是一基本的物理现象,当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【关键词】:超声波多普勒效应匀加速简谐振动 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f 0(u+V 1 cosα 1 )/(u–V 2 cosα 2 )(1) 式中f 0为声源发射频率,u为声速,V 1 为接收器运动速率,α 1 为声源与接收器连线与接 收器运动方向之间的夹角,V 2为声源运动速率,α 2 为声源与接收器连线与声源运动方向之 间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f (1+V/u)(2)当接收器向着声源运动时,V取正,反之取负。 若f 保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应 为 k=f 0/u ,由此可计算出声速 u=f /k 。 由(2)式可解出: V = u(f/f – 1)(3) 若已知声速u及声源频率f ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装

大学物理实验多普勒效应

多普勒效应实验报告 学院化学与生物工程学院班级化学1701 学号姓名 一、实验目的与实验仪器 实验目的 1、了解多普勒效应原理,并研究相对运动的速度与接收到的频率之间的关系。 2、利用多普勒效应,研究做变速运动的物体其运动速度随时间的变化关系,以及机械 能转化的规律。 实验仪器 ZKY-DPL-3多普勒效应综合实验仪、电子天平、钩码等。 二、实验原理 (要求与提示:限400字以内,实验原理图须用手绘后贴图的方式) 1、声波的多普勒效应 当声源相对介质静止不动时,声波的频率f0,波长λ0以及波速U0表示为 f0=U0/λ0 则观测频率f、观测波长λ和观测波速U的关系 f=U/λ 当接收器以一定的速率向声源移动时U=U0+V0,则 f=(U0+V0)/λ0 联立,得f=(U0+V0)/λ0=(f0λ0)/λ0=(1+V/U0)f0 当声源以一定的速率向接收器移动时V =U0-V0,则 f’=U’/λ’=U0/( U0-V0)/T= U0/( U0-V0) f 当声源与接收器运动如图时 f=(U0+V1COSθ1)/( U0-V2 COSθ2) 2、马赫锥 a=arcsin(U0/V0)=arcsin(1/M) U0为波速,V为飞行器速率,a为马赫角,M为V/U0马赫数

3、天文学中的多普勒效应 观察两波面的时间 t=(λc/(C+Vc))/(1/(1-V2c/C2c)1/2) =(1-V2c/C2c)1/2/((1+Vc/Cc)fc) 三、实验步骤 (要求与提示:限400字以内) 1、超声波的多普勒效应 (1)、组装仪器 (2)、打开实验控制箱,调至室温,记录共振频率f0 (3)、选择多普勒效应验证实验 (4)、修改测试总数 (5)、为仪器充电,确定失锁指示灯处于灯灭状态 (6)、选定滑车速率,开始测试 (7)、选择存入或者重测 (8)、重新选择速度,重复(6)、(7) (9)、记录实验数据 2、用多普勒效应研究恒力下物体的运动规律 (1)、测量钩码质量和滑车质量 (2)、连接仪器 (3)、选中变速运动测量 (4)、修改测量总次数 (5)、选中开始测试,立即松开钩码 (6)、记录测量数据 (7)、改变砝码质量,重复(1)到(6) 四、数据处理 (要求与提示:对于必要的数据处理过程要贴手算照片) 表4.12-1 多普勒效应的验证与声速的测量 t c = 24 ℃f0 = 40001 Hz 次数i 1 2 3 4 5 v/(m/s) 0.41 0.59 0.75 0.87 0.98 Fi/Hz 40049 40070 40089 40103 40116

多普勒测速仪工作原理

浏览次数:110次悬赏分:0|解决时间:2011-8-24 19:30|提问者:匿名 最佳答案 从开过来的机车所听到的声波间的距离被压缩了,就好像一个人正在关手风琴。这个动作的结果产生一个明显的较高的音调。当火车离去时,声波传播开来,就出现了较低的声音--这种现象被称为“多普勒”效应。 检查机动车速度的雷达测速仪也是利用这种多普勒效应。从测速仪里射出一束射线,射到汽车上再返回测速仪。测速仪里面的微型信息处理机把返回的波长与原波长进行比较。返回波长越紧密,前进的汽车速度也越快--那就证明驾驶员超速驾驶的可能性也越大。 多普勒测速仪仪器介绍 TSI的LDV/PDPA系统 LDV/PDPA的主要装置和原理 激光多普勒测速仪是测量通过激光探头的示踪粒子的多普勒信号,再根据速度与多普勒频率的关系得到速度。由于是激光测量,对于流场没有干扰,测速范围宽,而且由于多普勒频率与速度是线性关系,和该点的温度,压力没有关系,是目前世界上速度测量精度最高的仪器。 LDV/PDPA测速工作原理可以用干涉条纹来说明。当聚焦透镜把两束入射光以?角会聚后,由干激光束良好的相干性,在会聚点上形成明暗相间的干涉条纹,条纹间隔正比干光波波长,而反比干半交角的正弦值。当流体中的粒子从条纹区的方向经过时,会依次散射出光强随时间变化的一列散射光波,称为多普勒信号。这列光波强度变化的频率称为多普勒频移。经过条纹区粒子的速度愈高,多普勒频移就愈高。将垂直于条纹方向上的粒子速度,除以条纹间隔,考虑到流体的折射率就能得到多普勒频移与流体速度之间线性关系。LDV/PDPA系统就是利用速度与多谱勒频移的线性关系来确定速度的。各个方向上的多普勒频率的相位差和粒子的直径成正比,利用监测到的相位差可以来确定粒径。 LDV/PDPA系统从功能上分为:光路部分、信号处理部分。光路部分:采用He-Ni激光器或Ar离子激光器,是因为它们能够提供高功率的514.5nm,488nm,476.5nm三种波长的激光。带有频移装置的分光器将激光分成等强度的两束,经过单模保偏光纤和光纤耦合器,将激光送到激光发射探头,调整激光在光腰部分聚焦在同一点,以保证最小的测量体积,这一点就是测量体即光学探头。接受探头将接受到的多普勒信号送到光电倍增管转化为电信号以及处理并发大,再至多普勒信号分析仪分析处理后至计算机记录,配套系统软件可以进行数据处理工作。在流场中存在适当示踪粒子的倩况下,可同时测出流动的三个方向速度及粒子直径。 TSI公司在国际上第一个生产商业化的LDV/PDPA系统,现在的TSI公司的LDV/PDPA系统已经拥有4项专利设计,并且在流场、湍流、传质、传热、流型、燃烧研究上有广泛的使

大学物理练习题 光电效应 康普顿效应

练习二十一光电效应康普顿效应 一、选择题 1. 已知一单色光照射在钠表面上,测得光电子的最大动能是1.2eV,而钠的红限波长是540nm,那么入射光的波长是 (A) 535nm。 (B) 500nm。 (C) 435nm。 (D) 355nm。 2. 光子能量为0.5MeV的X射线,入射到某种物质上而发生康普顿散射。若反冲电子的动能为0.1MeV,则散射光波长的改变量?λ与入射光波长λ0之比值为 (A) 0.20。 (B) 0.25。 (C) 0.30。 (D) 0.35。 3. 用频率为ν的单色光照射某种金属时,逸出光电子的最大动能为E k,若改用频率为2ν的单色光照射此种金属,则逸出光电子的最大动能为 (A)hν+E k。 (B) 2hν?E k。 (C)hν?E k。 (D)2E k。 4. 下面这此材料的逸出功为:铍,3.9eV;钯, 5.0eV;铯,1.9eV;钨,4.5eV。要制造能在可见光(频率范围为3.9×1014Hz-7.5×1014Hz)下工作的光电管,在这此材料中应选: (A)钨。 (B)钯。 (C)铯。 (D)铍。 5. 光电效应和康普顿效应都包含有电子与光子的相互作用过程。对此过程,在以下几种理解中,正确的是: (A) 光电效应是电子吸收光子的过程,而康普顿效应则是光子和电子的弹性碰撞过程。 (B) 两种效应都相当于电子与光子的弹性碰撞过程。 (C) 两种效应都属于电子吸收光子的过程。 (D) 两种效应都是电子与光子的碰撞,都服从动量守恒定律和能量守恒定律。 6. 一般认为光子有以下性质 (1) 不论在真空中或介质中的光速都是c; (2) 它的静止质量为零; (3) 它的动量为hν/c2; (4) 它的动能就是它的总能量; (5) 它有动量和能量,但没有质量。 以上结论正确的是 (A)(2)(4)。 (B)(3)(4)(5)。 (C)(2)(4)(5)。 (D)(1)(2)(3)。 7. 某种金属在光的照射下产生光电效应,要想使饱和光电流增大以及增大光电子的初动能,应分别增大照射光的

多普勒效应综合实验报告及数据处理图

多普勒效应综合实验 (附数据处理图) (注:由于上传后文库中数据图看不清楚,须下载后才能看清楚) 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f 采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽

多普勒声速实验--实验报告

DH-DPL系列多普勒效应及声速综合实验 实验报告 一:实验目的 多普勒效应是一种与波动紧密相关的物理现象.利用多普勒效应可以测量运动物体的速度,但目前许多高校使用的多普勒效应实验仪集成化和智能化程度太高,实验时需要学生动手操作的环节太少;信号的转换、传输和处理过程不透明,不利于学生在实验过程中细致观察各种物理现象,分析测量误差的来源等,难以满足深入培养学生自主动手能力和观察分析能力的需要.本实验以商用超声多普勒实验系统(杭州大华DH -DPL1)的导轨模块作为开发平台,以模拟乘法器作为测量系统的核心单元;实验过程中学生需自行搭建信号拾取和处理电路,并利用示波器观察各个环节的信号波形,有助于培养学生得动手能力,并加深对多普勒效应及对模拟电子实验的理解。 二:实验原理 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器收到的信号频率f为: f = f0 (u + v1 cosα1 ) / (u - v2 cosα2 ) (1) 式中f0为声源发射频率, u为声速, v1 为接收器运动速率, v2 为声源运动速率,α1 是声源与接收器连线与接收器运动方向之间的夹角,α2 是声源与接收器连线与声源运动方向之间的夹角. 在实验过程中,声源保持不动,接收换能器在导轨上沿声源与接收换能器连线方向上运动,则从式(1)可以得到接收换能器上得到的信号频率为: f = f0 (1 + v/u) (2) 式中v为接收换能器的运动速度,当向着声源运动时, v取正,反之取负.利用式(2)可以得到接收换能器的运动速度为:

v = u(f - f0 ) /f0 = uΔf/f0 ………..(3) 式中Δf = f - f0为多普勒频移. 在本研究中,采用的信号处理电路如图1所示, 其中模拟乘法器采用了AD633,其信号的输入输出 关系为: W =(x1 - x2 ) (y1 - y2 )/10+ z (4) 若输入到AD633的信号为x1 = E1 cos(2πf0 t +φ1 ) , y1 = E2 cos(2πft +φ2 ) , x2、y2 以及z均接地,则AD633的输出为: W =E1 E2{cos[2π(f + f0 ) t +φ2 +φ1 ] /20+cos[2π(f - f0 ) t +φ2 -φ1 ]} (5) 其中包含了两路信号的和频分量与差频分量. 利用低通滤波器可以提取出其中的差频分量,即多普勒频移,从而计算出接收换能器的运动速度. 在实际测量过程中,由于接收换能器与声源(发射换能器)的距离在不断变化过程中,因此接收换能器输出信号的幅度不是恒定值. 为了保证乘法器的输出信号幅度稳定,本研究中采用OA1组成的限幅放大电路,使输入到乘法器的信号幅度保持恒定值,以便于观察.因为本实验中只关心输出信号的频率,因此对接收换能器输出信号幅度的处理不会影响到实验结果.利用OA2构建的有源低通滤波器,可以有效提取出多普勒频移信号.

大学物理实验 光电效应测量普朗克常量

实验题目:光电效应测普朗克常量 实验目的: 了解光电效应的基本规律。并用光电效应方法测量普朗克常量和测定光电管的光电特性曲线。 实验原理: 当光照在物体上时,光的能量仅部分地以热的形式被物体吸收,而另一部分 则转换为物体中某些电子的能量,使电子逸出物体表面,这种现象称为光电 效应,逸出的电子称为光电子。 光电效应实验原理如图1所示。 1. 光电流与入射光强度的关系 光电流随加速电位差U 的增加而增加,加速电位差增加到一定量值后, 光电流达到饱和值和值I H ,饱和电流与光强成正比,而与入射光的频率无关。 当U= U A -U K 变成负值时,光电流迅速减小。实验指出,有一个遏止电位差U a 存在,当电位差达到这个值时,光电流为零。 2. 光电子的初动能与入射频率之间的关系 光电子从阴极逸出时,具有初动能,在减速电压下,光电子逆着电场力方向由K 极向A 极运动。当U=U a 时,光电子不再能达到A 极,光电流为零。所以电子的初动能等于它克服电场力作用的功。即 a eU mv 2 2 1 (1) 每一光子的能量为hv ,光电子吸收了光子的能量hν之后,一部分消耗于克服电子的逸出功A,另一部分转换为电子动能。由能量守恒定律可知:A mv hv 2 2 1 (2) 由此可见,光电子的初动能与入射光频率ν呈线性关系,而与入射光的强度无关。 3. 光电效应有光电存在 实验指出,当光的频率0v v 时,不论用多强的光照射到物质都不会产生光电效应,根据式(2), h A v 0,ν0称为红限。 由式(1)和(2)可得:A U e hv 0,当用不同频率(ν1,ν2,ν3,…,νn )的单色光分 别做光源时,就有:A U e hv 11,A U e hv 22,…………,A U e hv n n ,

多普勒综合实验报告

四川理工学院实验报告 成绩 学号:11101030233 班级:网络工程一班 实验班编号: 姓名:赵鸿平 实验名称: 多普勒效应综合实验 实验目的: 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关 系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或 调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ②自由落体运动,并由V-t关系直线的斜率求重力加速度。 ③简谐振动,可测量简谐振动的周期等参数,并与理论值比较 实验仪器: 多普勒效应综合实验仪由实验仪 实验原理: 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。

若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 数据记录:(要求在实验前画出实验表格) 实验步骤 1. 自由落体运动验证牛顿第二定律:

激光多普勒测速

激光多普勒测速 1.引言 激光多普勒测速技术是伴随着激光器的诞生而产生的一种新的测量技术,它是利用 激光的多普勒效应来对流体或固体速度进行测量的一种技术,广泛应用于军事,航空,航天,机械,能源,冶金,水利,钢铁,计量,医学,环保等领域[1-2]。 激光多普勒测速仪是利用激光多普勒效应来测量流体或固体运动速度的一种仪器,通常由五个部分组成:激光器,入射光学单元,接收或收集光学单元,多普勒信号处理器和数据处理系统或数据处理器,主要优点在于非接触测量,线性特性,较高的空间分辨率和快速动态响应,采用近代光-电子学和微处理机技术的LDV系统,可以比较容易地实现二维,三维等流动的测量,并获得各种复杂流动结构的定量信息。由于上述潜在的独特功能,激光多普勒技术吸引了大量的实验流体力学和其他学科的研究工作者去研究和解决这些问题,使激光测速技术得到飞速发展,成为流动测量实验的有力工具。 激光测速技术的发展大体上可分为三个阶段[1-3]。 第一个阶段是1964 – 1972 年,这是激光测速发展的初期。在此期间,大多数的光学装置都比较简单,用各种元件拼搭而成,光学性能和效率不高,使用调准也不方便; 第二个阶段是1973 – 1980 年,在此期间,激光测速在光学系统和信号处理器方面有了很大的发展。光束扩展,空间滤波,偏振分离,频率分离,光学频移等近代光学技术相继应用到激光测速仪中。 从1980年到现在,激光测速进入了第三个阶段。在此期间,应用研究得到快速发展。在发表的论文中,有关流动研究的论文急剧增加。多维系统,光纤传输技术以及数字信号处理和微机数据处理技术等的出现把激光多普勒技术推向更高水平,使用调整更加方便。此外,半导体激光器的应用是其小型化成为可能,推动激光多普勒测速走出实验室,迈向工业和现场应用。 激光的多普勒效应是激光多普勒测速技术的重要理论基础,当光源和运动物体发生相对运动时,从运动物体散射回来的光会产生多普勒频移,这个频移量的大小与运动物体的速度,入射光和速度方向的夹角都有关系[1]。下文中将详细介绍。 2.激光多普勒测速原理 在激光多普勒测速仪中,依靠运动微粒散射光与照射光之间光波的频差(或称频移)来获得速度信息。这里存在着光波从(静止)光源(运动)微粒(静止)光检测器三者之间的传播关系。

大物实验报告光电效应测量普朗克常量和金属逸出功

大连理工大学 大学物理实验报告 院(系)材料学院专业材料物理班级0705 姓名童凌炜学号200767025 实验台号 实验时间2009 年04 月24 日,第九周,星期五第5-6 节 实验名称光电效应测量普朗克常量和金属逸出功 教师评语 实验目的与要求: 1.通过测量不同频率光照下光电效应的截止电压来计算普朗克常量 2.获得阴极材料的红限频率和逸出功 主要仪器设备: 1.光电效应实验仪(GGQ-50 高压汞灯,GDh-I型光电管电流测量仪) 2.滤光片组(通光中心波长分别为365.0nm, 404.7nm, 435.8nm, 546.1nm, 577.0nm) 3.圆孔光阑Φ=5mm, Φ’=10mm 4.微电流仪 实验原理和内容: 1.理想光电效应 光电效应实验装置如右上图所示,阴极K收到频率为v的单 色光照射时,将有光电子由K逸出到达阳极A,形成回路 电流I,可以由检流计G所检测到。通过V来监控KA两 端的电压变化,结合G所得到的电流值,可以得到U与光电 流I之间的关系,如右下图所示。 根据爱因斯坦的解释,单色光光子的能量为E=hv,金属中的电 子吸收了光子而获得了能量,其中除去与晶格的相互作用和克

服金属表面的束缚(金属的逸出功A )外, 剩余的便是逸出光电子的动能, 显然仅仅损失了逸出功的光电子具有最大动能: A hv mv M -=2 2 1。 实验中所加的光电管电压U 起到协助光电流I 形成的作用, 当不加电压U 时, 到达阳极的光电子很少, 光电流十分微弱; 当加上正向电压时, 便有更多的光电子到达阳极, 使得I 增大, 而所有的光电子都被吸引到阳极形成电流时, I 到达最大值, 此时再增大U 也不会改变I , 成为饱 和光电流I M , 饱和光电流在光频率一定时, 与光照强度成正比。 如果在光电管两极加反向电压便可以组织光电子到达阳极形成光电流, 当反向电压增大到光电流等于零时, 可知光电子的动能在电场的反向作用下消耗殆尽, 有以下关系式:a M eU mv =2 2 1 , 其中U a 成为截止电压。 结合以上最大动能的表达式可知, e A v e h U a -=, 如左图做出其对应的图像, 可知直线的斜率为 e h k =, 截距为e A U =0。 图中斜线与x 轴的交点对应的频率v0 称为阴极材料的红限频率, 照射光小于这个频率时, 无法产生光电效应(入射光光子能量小于电子的逸出功)。 显然, 通过测量多组v 和Ua , 便可以通过计算函数表达式而得到A 、h 、v0。 2. 实验中相关影响因素的修正 1, 暗电流修正 暗电流指没有光照时, 由于金属表面的隧道效应、 光电管漏电、 热噪声等原因造成的由K 向A 逸出电子形成的电流。 由于暗电流对截止电压的影响不大, 实验中可以使用无光照测量电流的方法测出暗电流值, 在后期处理中将其剔除。 2, 阳极电流修正 由于KA 两级距离很近, 光照时阳极的材料同样可以发生一定程度的光电效应而发射光电子, 当光电管加的是反向电压时, 就会使阳极光电子到达阴极形成阳极电流。 在U-I 曲线上阳极电流的影响就是使在负向电压区的阴极电流出现负值下沉, 由于阳极光电子数目有限且相比阴 极较少, 故阳极电流很快达到饱和, 可见实验中截止电压对应的实际情况是总体电流趋于反向稳定时的电压值。

多普勒效应综合实验预习材料

ZKY-DPL-3 多普勒效应综合实验仪 (电机拖动型) 实验指导及操作说明书

多普勒效应综合实验 当波源和接收器之间有相对运动时,接收器接收到的波的频率与波源发出的频率不同的现象称为多普勒效应。多普勒效应在科学研究,工程技术,交通管理,医疗诊断等各方面都有十分广泛的应用。例如:原子,分子和离子由于热运动使其发射和吸收的光谱线变宽,称为多普勒增宽,在天体物理和受控热核聚变实验装置中,光谱线的多普勒增宽已成为一种分析恒星大气及等离子体物理状态的重要测量和诊断手段。基于多普勒效应原理的雷达系统已广泛应用于导弹,卫星,车辆等运动目标速度的监测。在医学上利用超声波的多普勒效应来检查人体内脏的活动情况,血液的流速等。电磁波(光波)与声波(超声波)的多普勒效应原理是一致的。本实验既可研究超声波的多普勒效应,又可利用多普勒效应将超声探头作为运动传感器,研究物体的运动状态。 【实验目的】 1、测量超声接收器运动速度与接收频率之间的关系,验证多普勒效应,并由f-V关系直线的斜率求声速。 2、利用多普勒效应测量物体运动过程中多个时间点的速度,查看V-t关系曲线,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,可研究: ①自由落体运动,并由V-t关系直线的斜率求重力加速度。 ②简谐振动,可测量简谐振动的周期等参数,并与理论值比较。 ③匀加速直线运动,测量力、质量与加速度之间的关系,验证牛顿第二定律。 ④其它变速直线运动。 【实验原理】 1、超声的多普勒效应 根据声波的多普勒效应公式,当声源与接收器之间有相对运动时,接收器接收到的频率f为: f = f0(u+V1cosα1)/(u–V2cosα2)(1) 式中f0为声源发射频率,u为声速,V1为接收器运动速率,α1为声源与接收器连线与接收器运动方向之间的夹角,V2为声源运动速率,α2为声源与接收器连线与声源运动方向之间的夹角。 若声源保持不动,运动物体上的接收器沿声源与接收器连线方向以速度V运动,则从(1)式可得接收器接收到的频率应为: f = f0(1+V/u)(2) 当接收器向着声源运动时,V取正,反之取负。 若f0保持不变,以光电门测量物体的运动速度,并由仪器对接收器接收到的频率自动计数,根据(2)式,作f —V关系图可直观验证多普勒效应,且由实验点作直线,其斜率应为k=f0/u,由此可计算出声速u=f0/k 。 由(2)式可解出: V = u(f/f0– 1)(3)若已知声速u及声源频率f0 ,通过设置使仪器以某种时间间隔对接收器接收到的频率f采样计数,由微处理器按(3)式计算出接收器运动速度,由显示屏显示V-t关系图,或调阅有关测量数据,即可得出物体在运动过程中的速度变化情况,进而对物体运动状况及规律进行研究。 2、超声的红外调制与接收 早期产品中,接收器接收的超声信号由导线接入实验仪进行处理。由于超声接收器安装在运动体上,导线的存在对运动状态有一定影响,导线的折断也给使用带来麻烦。新仪器对接收到的超声信号采用了无线的红外调制-发射-接收方式。即用超声接收器信号对红外波进行调制后发射,固定在运动导轨一端的红外接收端接收红外信号后,再将超声信号解调出来。由于红外发射/接收的过程中信号的传输是光速,远远大于声速,它引起的多谱勒效应可忽略不计。采用此技术将实验中运动部分的导线去掉,使得测量更准确,操作更方便。信号的调制-发射-接收-解调,在信号的无线传输过程中是一种常用的技术。

相关文档
最新文档