变频调速基本原理及控制原理

变频调速基本原理及控制原理
变频调速基本原理及控制原理

变频调速基本原理及控制原理

1.基本原理:目前使用较多的是“交—直—交”变频,原理如图1所示,将50Hz交流整流为直流电Ud,再由三相逆变器将直流逆变为频率可调的三相交流供给鼠笼电机实现变频调速。

2.控制原理:变频调速装置主电路(见图2)由空气开关QF1,交流接触器KM1和变频器VF组成,由安装在配电柜面板上的转换开关SA,复位开关SB;或安装在现场防爆操作柱上启动按钮SB 和停止按钮SB2控制VF的运行:

(1)启动VF时必须先合上QF1和QF2,使SA置于启动位置,KM1便带动电触点闭合,来电显示灯HL2亮;此时按下SB,也可以按下现场SB1使KA1带电触点闭合,VF投入运行同时运行指示灯HL3亮。

(2)需要停止VF时,按下SB2使KA1失电,VF停止运行,此时HL3灭;置SA于停止位置,KM1断开同时HL1亮表示停机。

(3)如果在运行过程中VF有故障FLA、FLC端口将短接,KA2带电,KM带电其触点断开,同时故障指示灯HL3亮并报警。

由于工艺条件复杂,实际运行过程中有多方面不确定因素,为安全其见,每台变频器均加有一旁路接触器KM2;如果KM1或VF发生故障时保证电机仍能变频运行。变频调速实行闭环负反馈自动控制即由仪表装置供给变频器1V和CC端口4~20MA电信号,靠信号大小改变来控制VF频率高低变化达到调节电动机转速和输出功率的目的,使泵流量和实际工艺需求最佳匹配,实现仪表电气联合自动控制体系。

二、实际运用分析

1.变频调速实行工艺过程控制,由于生产流程和工艺条件的复杂性;不通过实践有些问题不被人们认识,只有通过实践才能找出解决这此问题方法和途径。

在闭环控制回路中,变频器作用类似风开式调节阀,对于实用风关式调节阀控制回路需在变频器上设定最低下降频率,当仪表装置故障时变频器输出最低频率,保证电机运转,维持工艺流程最低安全量,不至于生产中断。变频器下限频率设定必须通过实际测试,不能随意变动。就拿P6101A 脱丙烷塔进料泵来说,当时调试时当仪表信号4AM时,变频器输出频率10Hz,此时根本达不到工艺需要流量,通过仪表、电气专业人员多测试设定4MA信号输出23Hz能达到最低安全量,故23Hz 便没定为法定下限参数,这样既可保证工艺安全运行又有27Hz的频率调节范围。完全达到变频调节目的。

2.机泵有多条支路情况是变频调速闭环控制难点。这里考虑因素很多,情况也千差万别,选定控制方案要进行缜密分析和细致比较,否则会造成项目失败。一般情况下多条支路流量压力差别较大时,选择流量大或压力高的支路作为调节参数,控制变频器,其它支路采用调节阀,当量上的支路控制参数发生变化或扰动所需调节量很小,不致于对量的支路造成影响,而量大的支路,控制参数变化所需的调节量,能满足小支路的调节,最终达到平衡。

3.所有变频器均安装在配电柜机,安全起见,均加有旁路接触器KM2,当变频调速装置出现故障时,电机可以自动切换到旁路正常运行,这一点是很重要的,因为变频器的许多操作情况我们

不很熟悉一旦出故障便失去调节手段。在二联合刚投产时就出现过这种情况,丙烯精馏塔回流泵P6107A回路变频器试运行时有点问题,一时找不出原因,为不耽误工期,只有先打到旁路试运行。此外,调节阀也不能随意取消,装置开工或新装置投产时调节阀的作用是变频器取代不了的。

二. 变频器基本参数的调试

变频器功能参数很多,一般都有数十甚至上百个参数供用户选择。实际应用中,没必要对每一参数都进行设置和调试,多数只要采用出厂设定值即可。

一加减速时间

加速时间就是输出频率从0上升到最大频率所需时间,减速时间是指从最大频率下降到0所需时间。通常用频率设定信号上升、下降来确定加减速时间。在电动机加速时须限制频率设定的上升率以防止过电流,减速时则限制下降率以防止过电压。

加速时间设定要求:将加速电流限制在变频器过电流容量以下,不使过流失速而引起变频器跳闸;减速时间设定要点是:防止平滑电路电压过大,不使再生过压失速而使变频器跳闸。加减速时间可根据负载计算出来,但在调试中常采取按负载和经验先设定较长加减速时间,通过起、停电动机观察有无过电流、过电压报警;然后将加减速设定时间逐渐缩短,以运转中不发生报警为原则,重复操作几次,便可确定出最佳加减速时间。

二转矩提升

又叫转矩补偿,是为补偿因电动机定子绕组电阻所引起的低速时转矩降低,而把低频率范围f/V增大的方法。设定为自动时,可使加速时的电压自动提升以补偿起动转矩,使电动机加速顺利进行。如采用手动补偿时,根据负载特性,尤其是负载的起动特性,通过试验可选出较佳曲线。对于变转矩负载,如选择不当会出现低速时的输出电压过高,而浪费电能的现象,甚至还会出现电动机带负载起动时电流大,而转速上不去的现象。

三电子热过载保护

本功能为保护电动机过热而设置,它是变频器内CPU根据运转电流值和频率计算出电动机的温升,从而进行过热保护。本功能只适用于“一拖一”场合,而在“一拖多”时,则应在各台电动机上加装热继电器。

电子热保护设定值(%)=[电动机额定电流(A)/变频器额定输出电流(A)]×100%。

四频率限制

即变频器输出频率的上、下限幅值。频率限制是为防止误操作或外接频率设定信号源出故障,而引起输出频率的过高或过低,以防损坏设备的一种保护功能。在应用中按实际情况设定即可。此功能还可作限速使用,如有的皮带输送机,由于输送物料不太多,为减少机械和皮带的磨损,可采用变频器驱动,并将变频器上限频率设定为某一频率值,这样就可使皮带输送机运行在一个固定、较低的工作速度上。

五偏置频率

有的又叫偏差频率或频率偏差设定。其用途是当频率由外部模拟信号(电压或电流)进行设定时,可用此功能调整频率设定信号最低时输出频率的高低,如图1。有的变频器当频率设定信号为0%时,偏差值可作用在0~fmax范围内,有的变频器(如明电舍、三垦)还可对偏置极性进行设定。如在调试中当频率设定信号为0%时,变频器输出频率不为0Hz,而为xHz,则此时将偏置频率设定为负的xHz即可使变频器输出频率为0Hz。

六频率设定信号增益

此功能仅在用外部模拟信号设定频率时才有效。它是用来弥补外部设定信号电压与变频器内电压(+10v)的不一致问题;同时方便模拟设定信号电压的选择,设定时,当模拟输入信号为最大时(如10v、5v或20mA),求出可输出f/V图形的频率百分数并以此为参数进行设定即可;如外部设定信号为0~5v时,若变频器输出频率为0~50Hz,则将增益信号设定为200%即可。

七转矩限制

可分为驱动转矩限制和制动转矩限制两种。它是根据变频器输出电压和电流值,经CPU 进行转矩计算,其可对加减速和恒速运行时的冲击负载恢复特性有显著改善。转矩限制功能可实现自动加速和减速控制。假设加减速时间小于负载惯量时间时,也能保证电动机按照转矩设定值自动加速和减速。

驱动转矩功能提供了强大的起动转矩,在稳态运转时,转矩功能将控制电动机转差,而将电动机转矩限制在最大设定值内,当负载转矩突然增大时,甚至在加速时间设定过短时,也不会引起变频器跳闸。在加速时间设定过短时,电动机转矩也不会超过最大设定值。驱动转矩大对起动有利,以设置为80~100%较妥。

制动转矩设定数值越小,其制动力越大,适合急加减速的场合,如制动转矩设定数值设置过大会出现过压报警现象。如制动转矩设定为0%,可使加到主电容器的再生总量接近于0,从而使电动机在减速时,不使用制动电阻也能减速至停转而不会跳闸。但在有的负载上,如制动转矩设定为0%时,减速时会出现短暂空转现象,造成变频器反复起动,电流大幅度波动,严重时会使变频器跳闸,应引起注意。

八加减速模式选择

又叫加减速曲线选择。一般变频器有线性、非线性和S三种曲线,通常大多选择线性曲线;非线性曲线适用于变转矩负载,如风机等;S曲线适用于恒转矩负载,其加减速变化较为缓慢。设定时可根据负载转矩特性,选择相应曲线,但也有例外,笔者在调试一台锅炉引风机的变频器时,先将加减速曲线选择非线性曲线,一起动运转变频器就跳闸,调整改变许多参数无效果,后改为S 曲线后就正常了。究其原因是:起动前引风机由于烟道烟气流动而自行转动,且反转而成为负向负载,这样选取了S曲线,使刚起动时的频率上升速度较慢,从而避免了变频器跳闸的发生,当然这是针对没有起动直流制动功能的变频器所采用的方法。

九转矩矢量控制

矢量控制是基于理论上认为:异步电动机与直流电动机具有相同的转矩产生机理。矢量

控制方式就是将定子电流分解成规定的磁场电流和转矩电流,分别进行控制,同时将两者合成后的定子电流输出给电动机。因此,从原理上可得到与直流电动机相同的控制性能。采用转矩矢量控制功能,电动机在各种运行条件下都能输出最大转矩,尤其是电动机在低速运行区域。

现在的变频器几乎都采用无反馈矢量控制,由于变频器能根据负载电流大小和相位进行转差补偿,使电动机具有很硬的力学特性,对于多数场合已能满足要求,不需在变频器的外部设置速度反馈电路。这一功能的设定,可根据实际情况在有效和无效中选择一项即可。

与之有关的功能是转差补偿控制,其作用是为补偿由负载波动而引起的速度偏差,可加上对应于负载电流的转差频率。这一功能主要用于定位控制。

十节能控制

风机、水泵都属于减转矩负载,即随着转速的下降,负载转矩与转速的平方成比例减小,而具有节能控制功能的变频器设计有专用V/f模式,这种模式可改善电动机和变频器的效率,其可根据负载电流自动降低变频器输出电压,从而达到节能目的,可根据具体情况设置为有效或无效。

要说明的是,九、十这两个参数是很先进的,但有一些用户在设备改造中,根本无法启用这两个参数,即启用后变频器跳闸频繁,停用后一切正常。究其原因有:(1)原用电动机参数与变频器要求配用的电动机参数相差太大。(2)对设定参数功能了解不够,如节能控制功能只能用于V/f 控制方式中,不能用于矢量控制方式中。(3)启用了矢量控制方式,但没有进行电动机参数的手动设定和自动读取工作,或读取方法不当。

这是我前段时间的贴子<<西门子ECO变频器维修心得>>

故障现象

R 、S 、T 三相输入短路,无显示。

故障分析与维修

拆开机器就发现严重的短路现象,整流模块和IGBT 模块爆裂,短路造成的黑色积炭喷得到处都是,主回路两个继电器也爆开,主控板暂时没有发现问题,但驱动部分烧了好几处,另外储能大电容一部分都已发涨,电容板上的两颗大螺丝接触处全部烧焦,这就是西门子ECO变频器的通病,因为所有电量都是要经过这两颗铁螺丝,一旦铁螺丝生锈,很容易引起电容的充放电不良,这样电容发热,漏电,发涨到最后损坏重要器件就不在话了,为了防止再次接触不良打火,在上螺丝同时最好焊上几股粗铜线,维修触发板时不知道参数的,可以从控制板上完好的器件与损坏相同的对比,修复该板的电压分别为-4.7 伏,

-4.44 伏,更换损坏器件后,可以加电试验,试验步骤按主回路到控制空载,负载分别运行检查。

加电试验前为保证器件安全,防止再次损坏重要器件,大容量暂时不要装止,用两只小容量电容代替,为了保护IGBT ,电容到IGBT 的供电回路最好是串联白炽灯泡(也就是接个假负载),通电后如果显示正常,可以启动变频器,再测量 6 个触发脉冲,如果信号正常,可以去掉电容与IGBT 之间的灯泡,装上大电容进行空载运行,正常后再接负载运行,经调试机器后一般恢复正常

12:02 | 添加评论 | 阅读评论(1) | 发送消息 | 引用通告(0) | 写入博客 | 图书

评论

自控天空

变频调速的基本原理(一)

1.电机调速的类型

通常,家用电器用得最多的是单相异步电动机,靠电容或电阻来分相。电机在工作时常处于短时重复状态(

开/停),如空调、冰箱等。这样势必带来起动频繁、噪声大、电机寿命短、温度稳定性差以及能耗高等一系

列弊端。变频调速技术的应用不但给这些家电产品带来功能的增加、性能的改善,而且具有明显的节能效果和

降噪效果,同时使整机寿命较传统家电有明显提高。

异步电机调速有许多方法,如变极调速、变转差率调速和变频调速等。前两种转差损耗大,效率低,对电

机特性来说都有一定的局限性。变频调速是通过改变定子电源的频率来改变同步频率实现电机调速的。在调速

的整个过程中,从高速到低速可以保持有限的转差率,因而具有高效、调速范围宽(10~100%)和精度高等

性能,节电效果可达到20~30%。

变频调速有两种方法:一是交-直-交变频,适用于高速小容量电机;二是交-交变频。适用于低速大容量

拖动系统。

变频空调器按照其室内风扇电机、室外风机及压缩机的类型,可分为3A和3D变频空调器。对于室内、室外风

机和变频压缩机均为交流(AC)形式的变频空调器,一般称之为3A变频空调器;而对于室内、室外风机和变频

压缩机均为三相直流无刷电机(DCBLM)形式的变频空调器,一般称之为3D变频空调器。后者价位远高于前者,

仅物料成本就高于同功率的3A变频空调器近300元,而且开发难度较大,空调系统和控制器的配合复杂度较高。

2.变频调速的原理

异步电机的转速n可以表示为

公式中,n2为同步转速,Δn1为转差损失的转速,p为磁极对数,s为转差率,f为电源的频率。可见,改变

电源频率就可以改变同步转速和电机转速。频率的下降会导致磁通的增加,造成磁路饱和,励磁电流增加,

功率因数下降,铁心和线圈过热。显然这是不允许的。为此,要在降频的同时还要降压。这就要求频率与电压

协调控制。此外,在许多场合,为了保持在调速时,电动机产生最大转矩不变,亦需要维

持磁通不变,这亦由

频率和电压协调控制来实现,故称为可变频率可变电压调速(VVVF),简称变频调速实现变频调速的装置称为变频器。变频器一般由整流器、滤波器、驱动电路、保护电路以及控制器(MCU/

DSP)等部分组成。首先将单相或三相交流电源通过整流器并经电容滤波后,形成幅值基本固定的直流电压加在

逆变器上,利用逆变器功率元件的通断控制,使逆变器输出端获得一定形状的矩形脉冲波形。在这里,通过改

变矩形脉冲的宽度控制其电压幅值;通过改变调制周期控制其输出频率,从而在逆变器上同时进行输出电压和

频率的控制,而满足变频调速对U/f协调控制的要求。PWM的优点是能消除或抑制低次谐波,使负载电机在近似

正弦波的交变电压下运行,转矩脉冲小,调速范围宽。

3.变频技术的发展方向

(1)交流变频向直流变频方向转化

直流变频是以数字转换电路代替交流变频中的交流转换电路,使负载电机始终处于最佳运行状态。它摒弃

了交流变频技术的交流-直流-交流-变转速方式交流电机的循环工作方式,采用先进的交流-直流-变转速

方式数字电机的控制技术,无逆变环节,因而减少电流在工作中转变次数,使电能转化效率大大提高,能够实

现精确控制,平稳安静高效地运转。同时,避免了交流变频电机电磁噪声较大的缺点,噪声更加低。

(2)控制技术由PWM(脉宽调制)向PAM(脉幅调制)方向发展

采用PWM控制方式的电机转速受到上限转速的限制。如对压缩机来讲,一般不超过7000r/min。而采用PAM控

制方式的压缩机转速可提高1.5倍左右,这样大大提高了快速制冷和制热能力。同时,由于PAM在调整电压时具

有对电流波形的整形作用,因而可以获得比PWM更高的效率。此外,在抗干扰方面也有着PWM无法比拟的优越性

,可抑制高次谐波的生成,减小对电网的污染。

(3)功率器件向高集成智能功率模块发展

虽然单个功率器件的效率越来越高,控制简化,但电的复杂性给生产和测试带来不便。智能功率模块

(IPM)是将功率器件的配置、散热乃至驱动问题在模块中解决,因而易于使用,可靠性高。以变频空调为例,

我国的变频空调几乎100%采用IPM方式。

近年来带驱动和保护电路的智能功率模块(IPM)相继面市。IPM是将三相逆变IGBT、驱动电路以及保护电

路集成在一块芯片上。它的出现推动了变频家电市场的启动和发展。新型IPM模块甚至将开关电源也设计在模块

内,更加方便用户使用,用户只需要了解接口电路和定义,很快可以组成运行系统.

(完整版)控制图的基本原理

控制图的基本原理 质量特性数据具有波动性,在没有进行观察或测量时,一般是未知的,但其又具有规律性,它是在一定的范围内波动的,所以它是随机变量。 一、正态分布 如果随机变量受大量独立的偶然因素影响,而每一种因素的作用又均匀而微小,即没有一项因素起特别突出的影响,则随机变量将服从正态分布。 正态分布是连续型随机变量最常见的一种分布。它是由高斯从误差研究中得出的一种分布,所以也称高斯分布。随机变量服从正态分布的例子很多。一般来说,在生产条件不变的前提下,产品的许多量度,如零件的尺寸、材料的抗拉强度、疲劳强度、邮件的内部处理时长、随机测量误差等等都是如此。 定义若随机变量的概率密度函数为: 则称的分布为正态分布,记为。 正态分布的概率密度函数如图5—1所示。

图5-l正态分布概率密度曲线 从图中我们叫以看出正态分布有如下性质: (1)曲线是对称的,对称轴是x=μ; (2)曲线是单峰函数,当x=μ时取得最大值; (3)当曲时,曲线以x轴为渐近线; (4)在处,为正态分布曲线的拐点; (5)曲线与x轴围成的面积为1。 另外,正态分布的数字特征值为: 平均值 标准偏差 数字特征值的意义:平均值μ规定了图形所在的位置。根据正态分布的性质,在x=μ处,曲线左右对称且为其峰值点。 标准偏差,规定了图形的形状。图5-2给出了3个不同的值时正态分布密度曲线。当小时,各数据较多地集中于μ值附近,曲线就较“高”和“瘦”;当大时,数据向μ值附近集中的程度就差,曲线的形状就比较“矮”和“胖”。这说明正态分布的形状由的大小来决

定。在质量管理中,反映了质量的好坏,越小,质量的一致性越好。 图5-2大小不同时的正态分布 在正态分布概率密度函数曲线下,介于坐标 ,,,间的面积,分别占总面积的58.26%,95.45%,99.73%和99.99%。它们相应的几何意义如图5-3听示。 图5-3各种概率分布的几何意义 二、控制图的轮廓线

论交流变频调速与直流调速

论交流变频调速与直流调速 一:变频器的发展 直流电动机拖动和交流电动机拖动先后诞生与19世纪,距今已有100多年的历史,并已成为动力机械的主要驱动装置。但是,由于技术上的原因,在很长一段时期内,占整个电力拖动系统80%左右的不变速拖动系统中采用的是交流电动机(包括异步电动机和同步电动机),而在需要进行调速控制的拖动系统中则基本上采用的直流电动机。 但是,众所周知,由于结构上的原因,直流电动机存在以下缺点: (1)需要定期更换电刷和换向器,维护保养困难,寿命较短; (2)由于直流电动机存在换向火花,难以应用于存在易燃易爆气体的恶劣环境; (3)结构复杂,难以制造出大容量、高转速和高电压的直流电动机。 而与直流电动机相比,交流电动机则具有以下优点: (1)结构坚固,工作可靠,易于维修保养; (2)不存在换向火花,可以应用于存在易燃易爆气体的恶劣环境; (3) 容易制造出大容量、高转速和高电压的交流电动机。因此,很久以来,人们希望在许多场合下能够用可调速的交流电动机来代替直流电动机,并在交流电动机的调速控制方面进行了大量的研究开发工作。但是,直至20世纪70年代,交流调速系统的研究开发方面一直未能得到真正能够令人满意的成果,也因此限制了交流调速系统的推广应用。 也正是因为这个原因,在工业生产中大量使用的诸如风机、水泵等需要进行调速控制的电力拖动系统中不得不采用挡板和阀门来调节风速和流量。这种做法不但增加了系统的复杂性,也造成了能源的浪费。经历了20世纪70年代中期的第2次石油危机之后,人们充分认识到了节能工作的重要性,并进一步重视和加强了对交流调速技术的研究开发工作。 随着电力电子技术、微电子技术和控制理论的发展,电力半导体器件和微处理器的性能的不断提高,变频驱动技术也得到了显著的发展。随着各种复杂控制技术在变频器技术中的应用,变频器的性能不断提高,而且应用范围也越来越广。 目前变频器不但在传统的电力拖动系统中得到了广泛的应用,而且几乎已经扩展到了工业生产的所有领域,并且在空调、洗衣机、电冰箱等家电产品中也得到了广泛应用。变频器技术是一门综合性的技术,它建立在控制技术、电力电子技术、微电子技术和计算机技术的基础之上,并随着这些基础技术的发展而不断得到发展。

进度控制措施范本

二、进度控制措施 一、工程进度控制目标 在施工合同工期内完成所有工作。 二、进度控制的主要方法与措施 针对本工程的特点,结合我公司多年来丰富的现场监理工作经验,我们认为现场监理部要真正做好进度控制工作,首先得有组织上的保证,即应该在监理部内部设立专职的进度控制机构。本工程监理部将设置进度控制组,选用进度控制工作经验丰富的专业监理工程师专职负责进度控制各项具体事宜;总监理工程师对进度控制工作直接负责,亲自监督,及时发现和解决存在的问题,督促各方齐心协力, 共同做好进度控制工作。 在进度控制工作中,得有全局眼光,一定要抓好工程施工中的主要矛盾,得有动态控制观念,要随时掌握进度控制中各种情况的变化动,及时妥善应对。只有这样才能抓住抓好进度控制的根本,确保 工程进度目标的顺利实现。 我公司提出以下进度控制具体措施: 1、进度的事前控制 (1)、首先,必须要保证设计方案、施工组织设计、专项施工方案等技术可行、经济合理、成熟可靠等。为此,监理部将会同本监理 公司技术专家组,对有关设计文件、施工组织设计(方案)等进行认 真审查、分析和比选,提出合理化建议,以帮助优化设计方案、施工 组织设计和施工方案,从而创造有利于工程顺利施工的根本性条件。

(2)、分析进度控制方面存在的风险性因素,找出进度控制工作的重点和难点,提出防范性措施和要求,努力做到及时防范风险、解 决难点、确保重点,为如期实现工程进度目标夯实基础和铺平道路。 (3)、要求承包单位根据工程总进度目标和阶段性目标,认真编制并及时提交施工组织设计(方案)及总进度、阶段性进度计划等, 并对其进行认真审核、 分析,审定出正确的关键工作、关键线路、关键工作持续时间、 节点时间等,要求承包单位据此完善施工组织设计(方案)、工程进度控制总的思路是通过有效的进度控制工作和具体的进度控制措施, 在满足投资和质量要求的前提下,力求使工程实际进度不超过合同进度,确保建设工程计划按要求的时间启动使用。 控制网络计划等,及相应的作业人员、材料、构配件、设备、资 金等的供应计划。 总监理工程师最终审定、批准施工单位的施工组织设计(方案)、施工总进度计划,及季度、月度施工进度计划。 在此基础上,监理部编制并完善项目进度控制工作细则,分解施工进度控制目标,明确重点、难点,建立并完善进度控制具体工作流程、方法和措施。 (4)、认真审查施工总平面布置图和作业布局,提出优化建议; 协调各参建单位间的关系;检查各单位间工作安排与工序交接是否与 工期控制目标相符合; (5)、提醒建设单位督促设计单位及时提供后续设计文件,按规

交流变频调速技术复习考试总结综述

1、交流电动机的变频交流调速技术:用半导体电力电子器件构成的变频器,把50或60Hz 的交流电变成频率可调的交流电,供给交流电动机,用以改变交流电动机的运转速度的技术。 2、转差率:同步转速n0与定子转速n之差称为转速差,转速差与同步转速的比值称为转差率S。额定状态下运行时,异步电动机的转差率sn在0.01~0.06之间;空载时,sn在0.05以下。 3、三相异步电动机的调速方法:调频调速、改变磁极对数、改变转差率。 4、三相异步电动机的机械特性:三个主要特征点①理想空载点(N0):负载转矩T为零,异步电动机的转速n最大,达到同步转速n0。②启动点(S):异步电动机接通电源瞬间,电动机的转速n为零,此时的和转矩为启动转矩Ts,称为堵转转矩。③临界点(K):异步电动机的机械特性有一个拐点K,此时对应的转速为临界转速nk。 5、异步电动机负载的机械特性主要是指负载的阻转矩与转速的关系。常见的有恒转矩负载、恒功率负载和二次方率负载。恒转矩负载(负载功率与转速成正比)、恒功率负载(转速和转矩成反比)、二次方率负载(负载的阻转矩与转速的二次方成正比)。 6、变频器的分类:⑴按变换环节:①(间接变频)交-直-交变频器②(直接变频)交-交变频器 ⑵按电压的调制方式:①PAM(脉幅调制)②PWM(脉宽调制)⑶按滤波方式:①电压型变频器②电流型变频器⑷按输入电源的相数:①三进三出变频器②单进三出变频器⑸按控制方式:①v/f控制变频器②转差频率控制变频器③矢量控制变频器④直接转矩控制变频器⑹按用途:①通用变频器②高性能专用变频器③高频变频器⑺按变频器的供电电压的高低分类:①低压变频器②高压变频器 7、直流电动机的工作原理。为什么直流电动机有优越的调速特性! 答:直流电动机有两个独立的绕组:定子和转子。定子绕组通入直流电,产生稳定磁场;转子绕组通入直流电,产生稳恒电流;定子的稳恒磁场和转子的电流相互作用,产生机械转矩,

新版进度目标责任书

新版进度目标责任书 进度目标责任书 为加强各项目部对工程建设进度的实时控制,建立有 效的进度控制体系,落实进度保证措施,确保对进度控制具 有系统性、连贯性和预见性.保证施工计划工期目标的实现,并力争提前完成,实现优质高速完成工程,特制定本责任书,明确责任.一八九建工集团有限公司与一八九建工集 团第工程公司签订以下进度目标管理责 任书.(本责任书一式两份,双方签字各一份). 一、进度目标 通过编制合理与调整有效的施工进度计划,确定合理 的施工工序及制定阶段性目标,促使相关各部门协同,高效 的工作,通过对阶段性计划的实施执行与调整,在满足安全 及质量目标的基础上,最终实现项目承包合同约定的工期 进度目标,并力争提前完成生产任务. 二、主要措施 1、编制施工总进度计划并控制其执行,按期完成整个 施工项目的任务。 2、建立完善的计划保证体系,保证总进度控制计划和各阶段性计划目标的实现。 3、确保施工项目的既定目标工期的实现,在保证施工质

量和安全,并不因此而增加施工成本的前提下,适当缩短施工工期。 4、采取一切有利措施,保质量,抢进度,在总结以往施工经验的基础上,制定了一整套行之有效的进度保证措施。 5、按总体施工计划编制季、月、周进度计划,在编制项目各级进度计划时应树立项目整体计划的观念,安排任务时要注意各项任务的隶属关系和时序逻辑,要仔细研究合同的工作范围,避免漏项或多项,确保工期总进度目标的圆满完成。 6、项目部根据进度计划编制机械设备施工计划,确定分部分项工程施工所必须的生产、加工设备最迟进场时间,工程施工中各主要施工设备、机具必须按计划指定时间组织进场,防止因机械设备进场不及时影响工程施工进度。 7、工程部建立全面反映工程进度状况的工程日志、工程实际与计划进度网络对比图,深入施工现场进行调查,分析原因及时采取进度调整措施。 8、工程公司部定期组织各项目例会,研究分析影响进度的主要原因,制定相应措施,并监督相关责任方执行。 9、加强施工管理工作,将施工进度计划贯彻、落实至每一位管理者及施工班组管理人员,让每位管理人员及作业人员直观了解所需的项目进度相关信息,建立进度控制的组织系统;按着施工项目的进展阶段或合同结构等进行项

PID控制的基本原理

盛年不重来,一日难再晨。及时宜自勉,岁月不待人。 PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是:做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术飞速发展的今天,在工业过程控制中95%以上的控制回路都具有PID 结构,而且许多高级控制都是以PID 控制为基础的。 PID 控制器由比例单元(P)、积分单元(I)和微分单元(D)组成,它的基本原理比较简单,基本的PID 控制规律可描述为: G(S ) = K P + K1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数(K P ,K I和K D )即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1)原理简单,使用方便,PID 参数K P、K I和K D 可以根据过程动态特性变化,PID 参数就可以重新进行调整与设定。 (2)适应性强,按PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其基本控制功能也仍然是PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行PID 控制了。 (3)鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。但不可否认PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但PID 仍因其自身的优点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多,其中绝大部分都采用PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述PID 控制。 1.1.1 比例(P)控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中,K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band,PB),来取代比例系数K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号R0 1(t)的稳态误差与其开环增益K 近视成反比,即: t→∞

变频技术的发展趋势及其应用

变频技术的发展趋势及 其应用 公司内部编号:(GOOD-TMMT-MMUT-UUPTY-UUYY-DTTI-

变频技术的发展趋势及其应用 0引言 在工业生产及国计民生中电机的使用十分广泛,电机的传动方式一般分为直流电机传动及交流电机传动。过去由于交流电机实现调速较困难或某些调速方式低效不够理想,因而长期以来在调速领域大多采用直流电机,而交流电动机的优点在调速领域中未能得到发挥。交流电动机的调速方式一般有以下三种。 1)变极调速是通过改变电动机定子绕组的接线方式以改变电机极数实现调速,这种调速方法是有级调速,不能平滑调速,而且只适用于鼠笼电动机。 2)改变电机转差率调速其中有通过改变电机转子回路的电阻进行调速,此种调速方式效率不高,且不经济。其次是采用滑差调速电机进行调速,调速范围宽且能平滑调速,但这种调速装置结构复杂(一般由异步电机、滑差离合器和控制装置三部分组成),滑差调速电机是在主电机转速恒定不变的情况下调节励磁实现调速的,即便输出转速很低,而主电机仍运行在额定转速,因此耗电较多,另外励磁和滑差部分也有效率问题和消耗问题。较好的转差率调速方式是串级调速。3)变频调速通过改变电机定子的供电频率,以改变电机的同步转速达到调速的目的,其调速性能优越,调速范围宽,能实现无级调速。 目前我国生产现场所使用的交流电动机大多为非调速型,其耗能十分惊人。如采用变频调速,则可节约大量能源。这对提高经济效益具有十分重要的意义。 1变频调速技术的发展 上世纪50年代末,由于晶闸管(SCR)的研究成功,电力电子器件开始运用于工业生产,可控整流直流调速便成了调速系统中的主力军。但由于直流电机结构复

电动机正反转控制电路图及其原理分析

正反转控制电路图及其原理分析 要实现电动机的正反转,只要将接至电动机三相电源进线中的任意两相对调接线,即可达到反转的目的。下面是接触器联锁的正反转控制线路,如图所示

图中主回路采用两个接触器,即正转接触器KM1和反转接触器KM2。当接触器KM1的三对主触头接通时,三相电源的相序按U―V―W接入电动机。当接触器

KM1的三对主触头断开,接触器KM2的三对主触头接通时,三相电源的相序按W―V―U接入电动机,电动机就向相反方向转动。电路要求接触器KM1和接触器KM2不能同时接通电源,否则它们的主触头将同时闭合,造成U、W两相电源短路。为此在KM1和KM2线圈各自支路中相互串联对方的一对辅助常闭触头,以保证接触器KM1和KM2不会同时接通电源,KM1和KM2的这两对辅助常闭触头在线路中所起的作用称为联锁或互锁作用,这两对辅助常闭触头就叫联锁或互锁触头。 正向启动过程:按下起动按钮SB2,接触器KM1线圈通电,与SB2并联的KM1的辅助常开触点闭合,以保证KMl线圈持续通电,串联在电动机回路中的KM1的主触点持续闭合,电动机连续正向运转。 停止过程:按下停止按钮SB1,接触器KMl线圈断电,与SB2并联的KM1的辅助触点断开,以保证KMl线圈持续失电,串联在电动机回路中的KMl的主触点持续断开,切断电动机定子电源,电动机停转。 反向起动过程:按下起动按钮SB3,接触器KM2线圈通电,与SB3并联的KM2的辅助常开触点闭合,以保证KM2线圈持续通电,串联在电动机回路中的KM2的主触点持续闭合,电动机连续反向运转。 对于这种控制线路,当要改变电动机的转向时,就必须先按停止按钮SB1,再按反转按钮SB3,才能使电机反转。如果不先按SB1,而是直接按SB3,电动机是不会反转的。

交流变频调速技术发展的现状及趋势

交流变频调速技术发展的现状及趋势 概述 交流电动机变频调速技术是在近几十年来迅猛发展起来的电力拖动先进技术,其应用领域十分广泛。为了适应科技的发展,将先进技术推广到生产实践中去,交流变频调速技术已成为应用型本科、高职高专电类专业的必修或选修课程。 变频调速技术概述,常用电力电子器件原理及选择,变频调速原理,变频器的选择,变频调速拖动系统的构建,变频技术应用概述,变频器的安装、维护与调试和变频器的操作实验。 在理论上以必需、够用为原则;精心选材,努力贯彻少而精、启发式的教学思想; 变频调速技术是一种以改变交流电动机的供电频率来达到交流电动机调速目的的技术。大家知道,从大范围来分,电动机有直流电动机和交流电动机。由于直流电动机调速容易实现,性能好,因此,过去生产机械的调速多用直流电动机。但直流电动机固有的缺点是,由于采用直流电源,它的滑环和碳刷要经常拆换,故费时费工,成本高,给人们带来不少的麻烦。因此人们希望,让简单可靠价廉的笼式交流电动机也能像直流电动机那样调速。这样就出现了定子调速、变极调速、滑差调速、转子串电阻调速和串极调速等交流调速方式;由此出现了滑差电机、绕线式电机、同步式交流电机。但其调速性能都无法和直流电动机相比。直到20世纪80年代,由于电力电子技术、微电子技术和信息技术的发展,才出现了变频调速技术。它的出现就以其优异的性能逐步取代其他交流电动机调速方式,乃至直流电动机调速系统,而成为电气传动的中枢。 要学习交流电动机的变频调速技术,必须有电力拖动系统的知识。因此,先温习电力拖动系统的基础知识。电力拖动系统由电动机、负载和传动装置三部分组成。描写电力拖动系统的物理量主要是转速,n和转矩T(有时也用电流,因转矩和电动机的电枢电流成正比)。两者之间的关系式称为机械特性。 交流电动机是电力拖动系统中重要的能量转换装置,用来实现将电能转换为机械能。长期以来人们一直在寻求对电动机转速进行调节和控制的方法,起初由于直流调速系统的调速性能优于交流调速系统,直流调速系统在调速领域内长期占居主导地位。 变频调速是通过变频器来实现的,对于变频器的容量确定至关重要。合理的容量选择本身就是一种节能降耗措施。根据现有资料和经验,比较简便的方法有三 种 对于可调速的电力拖动系统,工程上往往根据电动机电流形式分为直流调速系统和交流调速系统两类。它们最大的不同之出主要在于交流电力拖动免除了改变直流电机电流流向变化的机械向器——整流子。 20世纪70年代后,大规模集成电路和计算机控制技术的发展,以及现代控制理论的应用,使得交流电力拖动系统逐步具备了宽的调速范围、高的稳速范围、高的稳速精度、快的动态响应以及在四象限作可逆运行等良好的技术性能,在调速性能方面可以与直流电力拖动媲美。在交流调速技术中,变频调速具有绝对优

进度控制组织体系

进度控制组织体系 一、工期目标 本工程总工期要求为600日历天,计划开工日期2011年10月7日,计划竣工日期2013年5月31日。 二、进度管理体系 为实现总体工期目标**工程项目经理部成立以项目经理**为第一责任人的工期保证体系负责项目的整体运行,项目总工**主要负责项目工程生产进度安排与协调,根据项目施工特点划分区段,本工程主要工序有围堰基槽开挖、围堰基槽换填砂(注:围堰基槽开挖和换填在某些断面没有)、压脚块石、护坡浆砌石、混合碎石倒滤层层、土工布、二片石、扭王块、回填开山石、现浇挡浪墙等,以及拆除码头、灯桩各一座。具体工程实施以工程部为主体,工期进度控制组织体系见图一 三、进度控制保证措施 选调优秀管理人员组成本工程现场项目经理部,对该工程施工实行计划、组织、协调、控制、监督和指挥职能。 保证充足的劳动力投入,本工程采用总承包制度,分包单位施工人员充足,满足施工的需要。 在施工中以总工期为目标,以阶段控制计划为保证,采取动态管理,使施工组织科学化,合理化,确保阶段计划按期或提前完成。 推行全面计划管理,认真编制切实可行的工程总进度计划,网络计划和相应的月、旬、周施工作业计划。对每个作业班组下达生产计划任务书,坚持日平衡、周调度,确保月计划的实施,从而保证该工程总工期的实现。 设立施工工期进度奖与工期保证金制度。层层分解到各个施工进度控制点,然后再分解到各个作业、工种、班组,以每日生产计划任务书为依据。根

据每周生产进度计划进行考核,完成生产计划班组给予奖励,完不成计划承担工期保证金,并且安排其它班组参加,确保当月生产施工进度计划完成周转材料、施工机械的配备确保施工需要。根据施工机械、周转材料一览表的要求,及时组织进场。 四、施工工艺 1制定详细的网络计划 根据设计图纸精心制定详细的施工网络计划;科学组织施工,充分做好开工前的准备工作,按照关键线路控制工期,制定年度计划、季度计划、月度计划;根据进度计划的要求制定详细的资源供应计划,单项工程施工组织设计的编制提前进行,以保证进度计划的实施。 2提前做好进场准备,严控质量,充分发挥机械作用,提高工效 按投标书要求,提前做好进场准备,接到开工令后立即投入正式生产。施工中严格控制质量,避免发生返工;充分利用机械设备,提高作业效率;要与监理工程师紧密配合,使工序间的检测报验时间尽量缩短。 3定期检查计划执行情况 定期检查计划执行情况,按周召开施工生产例会,分析进度偏差,制定解决方案,进行计划调整;每季度找出实际进度与计划进度的差距,及时制定调整计划和切实可行的补救措施,并贯彻实施。 4冬季、雨季施工安排 1)冬期、雨季施工安排及措施 向当地气象部门索取历年的气象资料并随时掌握施工年度及施工期的气象预报,提早安排,做到有备无患。主要利用冬季期间进行备料工作,合理配置资源,避免施工黄金季节时出现停工待料、劳力、机具不足的现象,确保单位工程进度和阶段工期目标。

PID控制的基本原理

S lim e (t ) = 1 +RK t →∞ PID 控制的基本原理 1.PID 控制概述 当今的自动控制技术绝大部分是基于反馈概念的。反馈理论包括三个基本要素:测量、比较和执行。测量关 心的是变量,并与期望值相比较,以此误差来纠正和控制系统的响应。反馈理论及其在自动控制中应用的关键是: 做出正确测量与比较后,如何用于系统的纠正与调节。 在过去的几十年里,PID 控制,也就是比例积分微分控制在工业控制中得到了广泛应用。在控制理论和技术 飞速发展的今天,在工业过程控制中 95%以上的控制回路都具有 PID 结构,而且许多高级控制都是以 PID 控制为 基础的。 PID 控制器由比例单元(P )、积分单元(I )和微分单元(D )组成,它的基本原理比较简单,基本的 PID 控 制规律可描述为: G (S ) = K P + K 1 + K D S (1-1) PID 控制用途广泛,使用灵活,已有系列化控制器产品,使用中只需设定三个参数( K P , K I 和 K D ) 即可。在很多情况下,并不一定需要三个单元,可以取其中的一到两个单元,不过比例控制单元是必不可少的。 PID 控制具有以下优点: (1) 原理简单,使用方便,PID 参数 K P 、K I 和 K D 可以根据过程动态特性变化,PID 参数就可以重 新进行调整与设定。 (2) 适应性强,按 PID 控制规律进行工作的控制器早已商品化,即使目前最新式的过程控制计算机,其 基本控制功能也仍然是 PID 控制。PID 应用范围广,虽然很多工业过程是非线性或时变的,但通过适当简化,也 可以将其变成基本线性和动态特性不随时间变化的系统,就可以进行 PID 控制了。 (3) 鲁棒性强,即其控制品质对被控对象特性的变化不太敏感。 但不可否 认 PID 也有其固有的缺点。PID 在控制非线性、时变、偶合及参数和结构不缺点的复杂过程时,效果不是太好; 最主要的是:如果 PID 控制器不能控制复杂过程,无论怎么调参数作用都不大。 在科学技术尤其是计算机技术迅速发展的今天,虽然涌现出了许多新的控制方法,但 PID 仍因其自身的优 点而得到了最广泛的应用,PID 控制规律仍是最普遍的控制规律。PID 控制器是最简单且许多时候最好的控制器。 在过程控制中,PID 控制也是应用最广泛的,一个大型现代化控制系统的控制回路可能达二三百个甚至更多, 其中绝大部分都采用 PID 控制。由此可见,在过程控制中,PID 控制的重要性是显然的,下面将结合实例讲述 PID 控制。 1.1.1 比例(P )控制 比例控制是一种最简单的控制方式,其控制器的输出与输入误差信号成比例关系。当仅有比例控制时系统输 出存在稳定误差。比例控制器的传递函数为: G C (S ) = K P (1- 2) 式中, K P 称为比例系数或增益(视情况可设置为正或负),一些传统的控制器又常用比例带(Proportional Band , PB ),来取代比例系数 K P ,比例带是比例系数的倒数,比例带也称为比例度。 对于单位反馈系统,0 型系统响应实际阶跃信号 R 0 1(t)的稳态误差与其开环增益 K 近视成反比,即: t →∞ 对于单位反馈系统,I 型系统响应匀速信号 (1- 3) R 1 (t)的稳态误差与其开环增益 K v 近视成反比, 即: lim e (t ) = R 1 K V (1- 4)

电机基本控制原理图简介

电机基本控制原理图简介 一、星三角启动原理图简介 L1/L2/L3分别表示三根相线; QS表示空气开关; Fu1表示主回路上的保险; Fu2表示控制回路上的保险; SP表示停止按钮; ST表示启动按钮; KT表示时间继电器的线圈,后缀的数字表示它不同的触点; KMy表示星接触器的线圈,后缀的数字表示它不同的触点; KM△表示三角接触器的线圈,后缀的数字表示它不同的触点; KM表示主接触器的线圈,后缀的数字表示它不同的触点; U1/V1/W1分别表示电动机绕组的三个同名端; U2/V2/W2分别表示电动机绕组的另三个同名端; 为了叙述方便,将图纸整理了一下,添加了触点的编号。整理后的图纸见附图。 合上QS,按下ST,KT、KMy得电动作。 KMY-1闭合,KM得电动作;KMY-2闭合,电动机线圈处于星形接法,KMY-3断开,避免KM△误动作; KM-1闭合,自保启动按钮;kM-2闭合为三角形工作做好准备;kM-3闭合,电动机得电运转,处于星形启动状态。 时间继电器延时到达以后,延时触点KT-1断开,KMy线圈断电,KMY-1断开,KM通过KM-2仍然得电吸合着;KMY-2断开,为电动机线圈处于三角形接法作准备;KMY-3闭合,使KM△得电吸合; KM△-1断开,停止为时间继电器线圈供电;KM△-2断开,确保KMY不能得电误动作:KM△-3闭合是电动机线圈处于三角形运转状态。 电动机的三角形运转状态,必须要按下SP,才能使全部接触器线圈失电跳开,才能停止运转。

接线图:

二、电机直接启动原理图 图l中,三相电源的火线(相线)Ll、L2和L3接在隔离刀开关QS上端。QS的作用是在检修时断开电源.使受检修电路与电源之间有一个明显的断开点,保证检修人员的安全。FU 是一次回路的保护用熔断器。准备启动电动机时,首先合上刀开关QS,之后如果交流接触器KM主触点闭合,则电动机得电运行:接触器主触点断开,电动机停止运行。接触器触点闭合与否.则受二次电路控制。 图2中.FUl和FU2是二次熔断器. SBl是停止按钮.SB2是启动按钮.FH是热继电器的保护输出触点。按下SB2。交流接触器KMl的线圈得电,其主触点闭合,电动机开始运行。同时,接触器的辅助触点KMl-1也闭合。它使接触器线圈获得持续的工作电源,接触器的吸合状态得以保持。习惯上将辅助触点KMl一1称做自保(持)触点。 电动机运行中.若因故出现过流或短路等异常情况,热继电器FH(见图1)内部的双金属片会因电流过大而热变形,在一定时限内使其保护触点FH(见图2)动作断开,致使接触器线圈失电,接触器主触点断开,电动机停止运行,保护电动机不被过电流烧坏。保护动作后,接触器的辅助触点KMl-1断开,电动机保持在停运状态。 电动机运行中如果按下SBl.电动机同样会停止运行,其动作过程与热保护的动作过程相同。 停止指示绿灯HG和运行指示红灯HR分别受接触器的常『利(动断)或常开(动合)辅助触点KMl-2、KMl一3控制,用作信号指示。电流互感器TA的二次线圈串接电流表PA,电压表PV则直接接在电源线上.

PWM控制的基本原理

PWM控制的基本原理 PWM(Pulse Width Modulation)控制——脉冲宽度调制技术,通过对一系列脉冲的宽度进行调制,来等效地获得所需要波形(含形状和幅值)。 PWM控制技术在逆变电路中应用最广,应用的逆变电路绝大部分是PWM型,PWM 控制技术正是有赖于在逆变电路中的应用,才确定了它在电力电子技术中的重要地位。理论基础: 冲量相等而形状不同的窄脉冲加在具有惯性的环节上时,其效果基本相同。冲量指窄脉冲的面积。效果基本相同,是指环节的输出响应波形基本相同。低频段非常接近,仅在高频段略有差异。 图1形状不同而冲量相同的各种窄脉冲 面积等效原理: 分别将如图1所示的电压窄脉冲加在一阶惯性环节(R-L电路)上,如图2a所示。其输出电流i(t)对不同窄脉冲时的响应波形如图2b所示。从波形可以看出,在i(t)的上升段,i(t)的形状也略有不同,但其下降段则几乎完全相同。脉冲越窄,各i(t)响应波形的差异也越小。如果周期性地施加上述脉冲,则响应i(t)也是周期性的。用傅里叶级数分解后将可看出,各i(t)在低频段的特性将非常接近,仅在高频段有所不同。 图2 冲量相同的各种窄脉冲的响应波形 用一系列等幅不等宽的脉冲来代替一个正弦半波,正弦半波N等分,看成N个相连的脉冲序列,宽度相等,但幅值不等;用矩形脉冲代替,等幅,不等宽,中点重合,面积(冲量)相等,宽度按正弦规律变化。 SPWM波形——脉冲宽度按正弦规律变化而和正弦波等效的PWM波形。 图3 用PWM波代替正弦半波 要改变等效输出正弦波幅值,按同一比例改变各脉冲宽度即可。 PWM电流波:电流型逆变电路进行PWM控制,得到的就是PWM电流波。 PWM波形可等效的各种波形: 直流斩波电路:等效直流波形 SPWM波:等效正弦波形,还可以等效成其他所需波形,如等效所需非正弦交流波形等,其基本原理和SPWM控制相同,也基于等效面积原理。 随着电子技术的发展,出现了多种PWM技术,其中包括:相电压控制PWM、脉宽PWM 法、随机PWM、SPWM法、线电压控制PWM等,而本文介绍的是在镍氢电池智能充电器中采用的脉宽PWM法。它是把每一脉冲宽度均相等的脉冲列作为PWM波形,通过改变脉冲列的周期可以调频,改变脉冲的宽度或占空比可以调压,采用适当控制方法即可使电压与频率协调变化。可以通过调整PWM的周期、PWM的占空比而达到控制充电电流的目的。 PWM技术的具体应用

施工进度控制体系范文

施工总进度计划 一、施工总进度计划及阶段目标 在全面保证工程质量和成本控制的前提下,以最快的速度满足业主的要求,是该工程的施工进度目标。 本工程于2010年2月20日开工,计划总工期280天,于2011年11月30日完成全部工程施工。 总进度计划见附图一:施工总进度计划 具体阶段目标如下: 2010年9月20日地下结构完工 2011年01月10日主体结构完工 2011年04月20日砌筑结构完工 2011年8月30日机电设备安装完毕 2011年11月30日装饰工程完工 2011年12月31日工程全部竣工 施工进度计划编制及控制方式 一级总体控制计划即总进度计划: 表述各专业工程的阶段目标,是提示业主、设计、监理及总包高层管理人员进行工程总体部署的表达方式.主要实现对各专业工程计划进行实时监控、动态关联。本次提交总进度计划。 二级进度控制计划: 以专业工程的阶段目标为指导,分解形成该专业工程的具体实施步骤,以达到满足一级总控计划的要求,便于业主、监理与总包管理人

员对该专业工程进度的总体控制。施工前我公司将提交如下二级进度控制计划: 基础及地下结构施工进度计划 地上结构工程施工计划 粗装修施工进度计划 外装修施工计划 机电安装工程分段施工计划 精装修工程施工计划 三级进度控制计划: 三级进度控制计划是指专业工程进行的流水施工计划,供总包与分包基层管理人员具体控制每一分项工程在各个流水段的工序工期,它是对二级控制计划的进一步分解,本公司将根据实际工程进度提前1 2个工作周提供该计划。 周、日作业计划: 是以文本格式表述的当周(当日)操作计划,本公司随工程例会发布并总结,采取日保周、周保月、月保阶段的控制手段,使计划阶段目标分解至每一周、每一日。 施工进度保证附属计划 为保证施工总体进度计划能够顺利实施,需要编制如下各项作为施工保障计划: 图纸发放计划 此计划要求的是分项工程所必须的图纸的最迟提供期限,这些图纸包

我国变频调速技术

我国变频调速技术 近10年来,随着电力电子技术、计算机技术、自动控制技术的迅速发展,电气传动技术面临着一场历 史革命,即交流调速取代直流调速和计算机数字控制技术取代模拟控制技术已成为发展趋势。电机交 流变频调速技术是当今节电、改善工艺流程以提高产品质量和改善环境、推动技术进步的一种主要手 段。变频调速以其优异的调速和起制动性能,高效率、高功率因数和节间效果,广泛的适用范围及其 它许多优点而被国内外公认为最有发展前途的调速方式。 我国变频调速技术的发展概况 电气传动控制系统通常由电动机、控制装置和信息装置3部分组成。电气传动关系到合理地使用电动机以节约电能和控制机械的运转状态(位置、速度、加速度等),实现电能-机械能的转换,达到优质、高产、低耗的目的。电气传动分成不调速和调速两大类,调速又分交流调速和直流调速两种方式。不调速电动机直接由电网供电,但随着电力电子技术的发展这类原本不调速的机械越来越多地改用调速传动以节约电能(节约15%~20%或更多),改善产品质量,提高产量。在我国60%的发电量是通过电动机消耗的,因此调速春传动是一个重要行业,一直得到国家重视,目前已有一定规模。 近年来交流调速中最活跃、发展最快的就是变频调速技术。变频调速是交流调速的基础和主干内容。上个世纪变压器的出现使改变电压变得很容易,从而造就了一个庞大的电力行业。长期以来,交流电的频率一直是固定的,变频调速技术的出现使频率变为可以充分利用的资源。 我国电气传动产业始建于1954年当时第一批该专业范围内的学生从各大专院校毕业,同时在机械工业部属下建立了我国第一个电气传动成套公司,这就是后来天津电气传动设计研究所的前身。我国电气传动与变频调速技术的发展简使见表1。现在我国已有200家左右的公司、工厂和研究所从事变频调速技术的工作。 我国是一个发展中国家,许多产品的科研开发能力仍落后于发达国家。至今自行开发生产的变频调速产品大体只相当于国际上80年代水平。随着改革开放,经济高速发展,形成了一个巨大的市场,它既对国内企业,也对外国公司敞开。很多最先进的产品从发达国家进口,在我国运行良好,满足了我国生产和生活需要。国内许多合资公司生产当今国际上先进的产品,国内的成套部分在自行设计制造的成套装置中采用外国进口公司和合资企业的先进设备,自己开发应用软件,能为国内外重大工程项目提供一流的电气传动控制系统。虽然取得很大成绩,但应看到由于国内自行开发、生产产品的能力弱,对国外公司的依赖性严重。 目前国内主要的产品状况如下:

建设工程进度控制的措施应包括组织

建设工程进度控制的措施应包拓组织措施、技术措施、经济措施及合同措施。 1.进度控制的组织措施主要包括 1)建立进度控制目标体系,明确建设工程现场监理组织机构中进度控制人员及其职责分工。 2)建立工程进度报告制度及进度信息沟通网络。 3)建立进度计划审核制度和进度计划实施中的检查分析制度。 4)建立进度协调会议制度,包括协调会议举行的时间、地点,协调会议的参加人员等。 5)建立图纸审查、工程变更和设计变更管理制度。 2.进度控制的技术措施主要包括。 1)审查承包商提交的进度计划,使承包商能在合理的状态下施工。 2)编制进度控制工作细则,指导监理人员实施进度控制。 3)采用网络计划技术及其他科学适用的计划方法,并结合计算机的应用,对建设工程进度实施动态控制。 3.进度控制的经济措施主要包括 1)及时办理工程预付款及工程进度款支付手续。 2)对应急赶工给予优厚的赶工费用。 3)对工期提前给予奖励。 4)对工程延误收取误期损失赔偿金。 4。合同措施。进度控制的合同措施主要包括以下几种。 1)推行CM承发包模式,对建设工程实行分段设计、分段发包和分段施工。

2)加强合同管理,协调合同工期与进度计划之间的关系,保证合同中进度目标的实现。 3)严格控制合同变更,对各方提出的工程变更和设计变更,监理工程师应严格审查后再补入合同文件之中。 4)加强风险管理,在合同中应充分考虑风险因素及其对进度的影响,以及相应的处理方法。转自项目管理者联盟 5)加强索赔管理,公正地处理索赔。 本回答由科学教育分类达人顾凤祥推荐评论3 0 工进度事中控制审核施工(各供货、配合等)单位进度计划、季度计划、月计划,并监督施工单位按照已制定的施工进度计划进行实施. 对工程进度的控制分为事前、事中、事后控制三个方面。 1、施工进度事前控制 编制本工程施工总进度计划,同时以总工期为依据,编制工程进度分阶段实施计划,包括施工准备计划、劳动力进场计划、施工材料、设备、机具进场计划、分包单位进场计划等。 对关键过程或特殊过程编制相应的施工进度计划,制定相应的节点,编制节点控制计划。 编制施工节点实施细则,明确搭接和流水的节拍。 2、施工进度事中控制 审核施工(各供货、配合等)单位进度计划、季度计划、月计划,并监督施工单位按照已制定的施工进度计划进行实施。 每周定期与分包单位召开一次协调会、协调生产过程中发生的矛盾和存在的问题,按总承包每周施工进度要求检查完成情况,并落实下周施工生产进度。

典型电动机控制原理图及解说

1、定时自动循环控制电路 说明: 1、题图中的三相异步电动机容量为1.5KW,要求电路能定时自动循环正反转控制;正转维持时间为20秒钟,反转维持时间为40秒钟。 2、按原理图在配电板上配线,要求线路明快、工艺合理、接点牢靠。 3、简述电路工作原理。 注:时间继电器的延时时间不得小于15秒,时间调整应从长向短调。 定时自动循环控制电路电路工作原理:合上电源开关QF,按保持按钮SB2,中间继电器K A吸合,KA的自保触点与按钮SB2、KT1、KT2断电延时闭合的动断触点组成的串联电路并 联,接通了起动控制电路。按起动按钮SB3,时间继电器KT1得电,其断电延时断开的动合 触点KT1闭合,接触器KM1线圈得电,主触点闭合,电动机正转(正转维持时间为20秒计时 开始)。同时KM1动合触点接通了时间继电器KT2,其串联在接触器KM2线圈回路中的断电 延时断开的动合触点KT2闭合,由于KM1的互锁触点此时已断开,接触器KM2线圈不能通电 。当正转维持时间结束后,断电延时断开的动合触点KT1断开,KM1释放,电动机正转停止 。KM1的动断触点闭合,接触器KM2线圈得电,主触点闭合,电动机开始反转.同时KM1动 合触点断开了时间继电器KT2线圈回路(反转维持时间为40秒计时开始)。这时KM2动合触 点又接通了KT1线圈,断电延时断开的动合触点KT1闭合,为下次电动机正转作准备。因此

时串联在接触器KM1线圈回路中的KM2互锁触点断开,接触器KM1线圈暂时不得电。与按钮 SB2串联的KT1、KT2断电延时闭合的动断触点是保证在电动机自动循环结束后,才能再次 起动控制电路。热继电器FR常闭触点,是在电动机过负载或缺相过热时将控制电路自动断 开,保护了电动机。 2、顺序控制电路(范例) 顺序控制电路(范例)工作原理: 图A:KM2线圈电路由KM1线圈电路起动、停止控制环节之后接出。按下起动按钮SB2, KM1线圈得电吸合并自锁,此时才能控制KM2线圈电路。停止按钮SB3只能控制M2电动机 的停转,停止按钮SB1为全停按钮。本电路只有满足M1电动机先起动的条件,才能起动M2 电动机。 图B:控制电路由KM1线圈电路和KM2线圈电路单独构成。KM1的动合触点作为一控制条件 ,串接在KM2线圈电路中,只有KM1线圈得电吸合,其辅组助动合触点闭合,此时才能控制 KM2线圈电路。停止按钮SB3只能控制M2电动机的停转,停止按钮SB1为全停按钮。本电路 只有满足M1电动机先起动的条件,才能起动M2电动机。 3、电动机顺序控制电路

振动控制的基本原理

B 图1-1 振动控制的基本原理 (1)电动台的工作原理及框图 载流导体载磁场中受电磁力的作用而运动,根据电磁学的基本原理,一段载流元dI 放在磁场中(见图1-1)所受的电磁力可用下式表示Df=BId ?sin (d ?^B )式中B 一载流导体所处磁场的磁通(Gs )I 一载流导体的电流有效值 (A )dI ^B 一电流元与V 的夹角载振动台的设计中d ?^B=90°则sin (d ?^B )=sin90°=1∴df=BId ?整个驱动动圈的线圈式由无数小电流元组成的因此动圈所受的力F 为 F=∫? 0BId ?=IB ?………(1-1) ?…………动圈的有效长度 显然,在上式中,当振动台与定型时B ?为定值则F αI 因此,当动圈上通过的电流I 以正弦规律变化,即产生所谓振动。 由(1-1)式可知 振动台的激振力大小取决于I 、B 、?三个参数的打小,气隙磁通B 的大小式不能无限制地增加的,当采取恒磁场时,B 一般为6000Gs 一7000Gs ,当采用单磁场励磁时,B 一般在13000Gs 左右,采用双

图1-2 动台体体积大小限制。如果要增加激振力,则要增加动圈驱动电流I 的大小,而I是由功率放大器提供的,也就要增大功率放大器输出的大小。 为了表明由功率化为激振力的能力,人们常用数来表达,它定义为每产生一公斤的激振力所需功率放大器的瓦数,称为该振动台的力常数。 在振动台的应用中常用下列量纲 I…………安培(A) ?…………厘米(cm) B…………高斯(Gs) F…………公斤力(kgf) 则(1-1)改写成 F=2x10-7IB ?……………………1—2 (2)电动台的框图及各部件作用 电动台的框图如图1-2所示

相关文档
最新文档