拓扑规则说明

拓扑规则说明
拓扑规则说明

1.拓扑规则简介

在实际应用时,有时需要在要素之间保持某种特定的关系,比如,行政管理的范围不能相互重叠,线状道路之间不能有重叠线段,某些汽车站必须在公共交通线路上等,这些特定的空间关系可用拓扑学来描述、定义。借助Geodatabase,可规定一系列拓扑规则,在要素之间建立起空间关系,还可以对这些规则(即关系)进行调整。

拓扑规则有若干专用术语。

相交(Intersect):线和线交叉,并且只有一点重合,该点不是结点(端点),称之相交。

接触(Touch):某线段的端点和自身或其他线段有重合,称为接触。

悬结点(Dangle Node,Dangle):线段的端点悬空,没有和其他结点连接,这个结点(端点)称为悬结点。

伪结点(Pseudo Node):两个结点相互接触,连接成一个结点,称为伪结点。

拓扑规则的种类可以按点、线、面(多边形)来分。以下介绍Geodatabase的拓扑规则,共25条,每条规则有一幅图对应,图的左半部分是符合规则的例子,右半部分例子中有不符合规则的地方。

2.点拓扑规则举例

点拓扑规则一:Must be covered by boundary of,点必须在多边形边界上。例如,有一个点要素类代表公共汽车站,另有一个多边形要素类代表地块,按本规则,公共汽车站必须位于地块的边界上。另一个例子是行政界碑必须落在行政区多边形的边界上。不满足该规则的点要素被标记为错误(附图1)。

点拓扑规则二:Must be covered by endpoint of,点要素必须位于线要素的端点上。例如,阀门为点要素,必须位于线要素类输水管的尽端。不满足该规则的点要素被标记为错误(附图2)。

点拓扑规则三:Point must be covered by line,点要素必须在线要素之上。例如,点要素代表河流上的航标灯,线要素代表河流,航标灯必须位于河流上。另一个例子是:汽车站(点要素类)必须在道路(线要素类)上。不满足该规则的点要素被标记为错误(附图3)。

点拓扑规则四:Must be properly inside polygons,点要素必须在多边形要素内(在边界上不酸)。比如,省行政区为多边形,省会城市为点,省会一定要在该省内。另一个例子是代表住宅地址的点必须在住宅用地多边形内。不满足该规则的点要素被标记为错误(附图4)。可以看出,点要素本身不能建立拓扑规则,必须和线要素或多边形要素一起才能建立拓扑规则。修正错误的常用方法是删除或移动错误点(移动也可以理解为删除后立即添加)。

3.多边形拓扑规则举例

规则一:Must not overlap,同一多边形要素类中多边形之间不能重叠(几个多边形边界共享一个点或共享一条边不算重叠)(附图5)。例如,宗地之间不能有重叠,行政区不能有重叠。重叠的部分将产生多边形错误,修正错误的方法有三种:一是删除重叠部分,留出空白;二是将重叠的部分并到某个多边形;三是在重叠部分新增多边形,并删除原来的重叠部分。规则二:Must not have gaps,多边形之间不能有空隙。比如,规定表示土壤类型的多边形之间不能有空隙(附图6)。不满足规则的地方将产生线错误,表示空隙多边形,修正的方法是调整原来的边界,或添加新的多边形。

规则三:Contain point,多边形内必须包含点要素(边界上的点不算)(附图7)。例如,规定宗地内至少有一个地址点。不包含点的多边形被视为错误,修正的方法是在错误多边形内补一个点,或者将多余的多边形删除。

规则四:Boundary must be covered by,多边形的边界必须和线要素的线段重合(附图8)。例如,交通调查小区的边界必须和道路线要素类重合。违反规则的地方产生线错误,修正的方法可以是调整线段,也可调整多边形。

规则五:Must be covered by feature class of,多边形要素中的每一个多边形都被另一个要素类中的多边形覆盖(附图9)。例如,城市规划区必须在若干行政区划内,工业建筑多边形必须在工业用地内。违反规则的地方产生多边形错误,修正的方法是在重叠的部分增加新的多边形或调整错误多边形。

规则六:Must be covered by,每个多边形要素都要被另一个要素类中的单个多边形覆盖。例如,建筑物多边形必须在宗地多边形内,不能出现跨越(规则五可以跨越)(附图10)。不满足规则的地方产生多边形错误,修正的方法是调整第一类多边形,使它们不要和第二类有交叉,或者扩大第二个要素类中的某些多边形,使它们能覆盖第一类中的错误多边形。

规则七:Must not overlap with,一个要素类中的多边形不能与另一个要素类中的多边形重叠。虽然和规则一相似,都是说不能重叠,但这里是指两个多边形要素类(Feature Class)之间的关系。比如,一个要素类表示湖泊,另一个要素类表示陆地,它们是相互独立的类,显然它们应该满足该规则(附图11)。重叠的部分产生多边形错误,修正方法同规则一。

规则八:Must cover each other,两个要素类中的多边形要相互覆盖,外边界要一致(附图12)。例如,土壤层范围和地质层范围应一致。违反规则的地方将产生多边形错误,修正错误的方法是在重叠不到的地方增加多边形,或者调整、删除不重叠的部分。

规则九:Area boundary must be covered by boundary of,某个多边形要素类的边界线在另一个多边形要素类的边界上(附图13)。例如,县、市边界上必须有乡、镇边界,而且前者的边界必须被后者所重合。违反规则的地方将产生线错误,修正的方法是手工编辑边界。

多边形不仅可以定义自身的规则,而且可以和点要素、线要素、其他多边形要素之间建立起拓扑关系。

4.线拓扑规则举例

规则一:Must not have dangles,不允许线要素有悬结点,即每一条线段的端点都不能孤立,必须和本要素中其他要素或和自身相接触(附图14)。例如,宗地边界线段不能有悬结点。违反规则的地方将产生点错误,修正的方法是将有悬点的线段延伸到其他要素上,或者将长出的部分截断后删除。

规则二:Must not have pseudo node,不能有伪结点,即线段的端点不能仅仅是两个端点的接触点(自身首位接触是例外),例如河流(附图15)。违反规则的地方将产生点错误,修正的方法是将伪结点两边的线段合并为一个条线,伪结点自然消除。

规则三:Must not overlap,在同一要素类中,线与线不能相互重叠,例如,街道、河流(附图16)。违反规则的地方产生线错误,修正的办法是将不需要的线段截断,再删除。

规则四:Must not self overlap,线要素不能和自己重叠,例如,街道(附图17)。违反规则的地方产生线错误,修正的方法是截断、删除重叠部分。

规则五:Must not intersect,同一要素中,线与线不能相交,例如,河流、宗地边界(这里不是多边形边界,是线要素)(附图18)。违反规则的地方产生线错误,修正的方法是重合处合并,相交处打断。

规则六:Must not self intersect,同一要素类中,线要素不能自相交(附图19)。违反规则的地方将产生线错误和点错误,修正的方法是在自相交处适当缩短或外移。

规则七:Must not intersect or touch interior,线和线不能交叉,端点不能和非端点接触(非接触点部分相互重叠是允许的)(附图20)。例如,铁路和铁路可以重合,但不能交叉。某铁路端点不能和其他铁路的非端点部分接触。违反规则的地方产生线错误和点错误,根据实际需要编辑、修正。

规则八:Must be single part,线要素必须单独,不能相互接触、重叠(附图21)。违反规则的地方产生线错误,修正的方法是将接触的地方合并,成为一个要素,或移动后分离。

规则九:Must not overlap with,两个线要素类中的线段不能重叠(附图22)。例如,道路和

铁路不能相互重叠。违反规则的地方产生线错误,根据实际需要编辑、修正。

规则十:Must be covered by feature class of,某个要素类中的线段必须被另一要素类中的线段覆盖(附图23)。例如,公交线路必须在道路上行驶。违反规则的地方将产生线错误,修正的方法是将错误线段删除,再重新输入正确的。

规则十一:End point must be covered by,线要素的端点被点要素覆盖。例如,每一条公交线路的尽端都有终点站(附图24)。违反规则的地方将产生错误,修正的方法是增补新的点要素或调整不应该出现的线段。

规则十二:Must be covered by boundary of,线要素必须被多边形要素的边界覆盖(附图25)。例如,城市的内部道路至少一侧有地块多边形边界。违反规则的地方产生线错误,修正的方法是删除错误的线,或编辑多边形。

一个要素类允许设置多个拓扑规则,但是这些规则必须定义在一个拓扑类中。

网络拓扑结构图怎么画

网络拓扑结构图怎么画 导语: 网络拓扑图是指用传输媒体互连各种设备的物理布局,就是用什么方式把网络中的计算机等设备连接起来。根据结构,可以分为分布式结构、树型结构、网状结构等。本文将为你介绍讲解具体的绘制方法。 免费获取网络拓扑图软件:https://www.360docs.net/doc/dd4447435.html,/network/ 网络拓扑图绘制软件有哪些? 亿图图示是一款适合新手的入门级拓扑图绘制软件,软件界面简单,包含丰富的图表符号,中文界面,以及各类图表模板。软件智能排版布局,拖曳式操作,极易上手。与MS Visio等兼容,方便绘制各种网络拓扑图、电子电路图,系统图,工业控制图,布线图等,并且与他人分享您的文件。软件支持图文混排和所见即所得的图形打印,并且能一键导出PDF, Word, Visio, PNG, SVG 等17种格式。目前软件有Mac, Windows和Linux三个版本,满足各种系统需要。

亿图图示绘制“思科网络图”的特点 1.专业的教程:亿图图示的软件为用户制作了使用教程的pdf以及视频。 2.可导出多种格式:导出的文件Html,PDF,SVG,Microsoft Word, PowerPoint, Excel等多种格式。 3.支持多系统:支持Windows,Mac 和Linux的电脑系统,版本同步更新。 4.软件特色:智能排版布局,拖曳式操作,兼容Office。 5.云存储技术:可以保存在云端,不用担心重要的数据图表丢失。 6.丰富的图形符号库助你轻松设计思科网络图

网络拓扑图怎么画? 步骤一:打开绘制网络拓扑图的新页面 双击打开网络拓扑图制作软件 点击‘可用模板’下标题类别里的‘网络图’。 双击打开一个绘制网络拓扑图的新页面,进入编辑状态。 步骤二:从库里拖放添加 从界面左边的符号库里拖动网络符号到画布。

ArcGis拓扑错误检查及修改

arcgis常见拓扑错误修改步骤 1,首先打开catalog 在一目录文件夹下新建一个 geodatabase 2,在gepdatabase下新建dataset,然后导入要进行拓扑关系检查的数据3,新建topology 加入拓扑规则,全部的拓扑规则在下面附1 4,在arcmap中打开建立的拓扑,对常见的几种进行如下附图修改 拓扑修改之前先打开editor 然后打开editor下面的more editing tools 选择topology 一、面不能相互重叠(must not overlap) 修改方法有以下几种: 1、可以直接修改要素节点去除重叠部分。 2、在错误上右键选择merge,将重叠部分合并到其中一个面里。

二、面不能有缝隙(must not have gaps) 1、可以直接修改要素节点去除重叠部分。

2、在错误上右键选择create feature,将缝隙部分生成一个新的要素,然后利用editor 下的merge把生成的面合并到相邻的一个面里。 3、task里选择auto-complete polygon,用草图工具自动完成多边形,会在缝隙区域自动生成两个多边形,然后用merge合并到相邻面里。

附1 not overlay:单要素类,多边形要素相互不能重叠 not have gaps:单要素类,连续连接的多边形区域中间不能有空白区(非数据区) point:多边形+点,多边形要素类的每个要素的边界以内必须包含点层中至少一个点 must be covered by:多边形+线,多边形层的边界与线层重叠(线层可以有非重叠的更多要素) be covered by feature class of:多边形+多边形,第一个多边形层必须被第二个完全覆盖(省与全国的关系) be covered by:多边形+多边形,第一个多边形层必须把第二个完全覆盖(全国与省的关系) not overlay with:多边形+多边形,两个多边形层的多边形不能存在一对相互覆盖的要素 cover each other:多边形+多边形,两个多边形的要素必须完全重叠 boundary must be covered by boundary of:多边形+多边形,第一个多边形的各要素必须为第二个的一个或几个多边形完全覆盖 be properly inside polygons:点+多边形,点层的要素必须全部在多边形内 be covered by boundary of:点+多边形,点必须在多边形的边界上 线topology not have dangle:线,不能有悬挂节点 not have pseudo-node:线,不能有伪节点

网络系统拓扑结构图

网络拓扑结构 网络拓扑结构是指用传输媒体互联各种设备的物理布局。将参与LAN工作的各种设备用媒体互联在一起有多种方法,实际上只有几种方式能适合LAN的工作。 如果一个网络只连接几台设备,最简单的方法是将它们都直接相连在一起,这种连接称为点对点连接。用这种方式形成的网络称为全互联网络,如下图所示。 图中有6个设备,在全互联情况下,需要15条传输线路。如果要连的设备有n个,所需线路将达到n(n-1)/2条!显而易见,这种方式只有在涉及地理范围不大,设备数很少的条件下才有使用的可能。即使属于这种环境,在LAN技术中也不使用。我们所说的拓扑结构,是因为当需要通过互联设备(如路由器)互联多个LAN时,将有可能遇到这种广域网(WAN)的互联技术。目前大多数网络使用的拓扑结构有3种: ①星行拓扑结构; ②环行拓扑结构; ③总线型拓扑结; 1.星型拓扑结构 星型结构是最古老的一种连接方式,大家每天都使用的电话都属于这种结构,如下图所示。其中,图(a)为电话网的星型结构,图(b)为目前使用最普遍的以太网(Ethernet)星型结构,处于中心位置的网络设备称为集线器,英文名为Hub。

(a)电话网的星行结构(b)以Hub为中心的结构 这种结构便于集中控制,因为端用户之间的通信必须经过中心站。由于这一特点,也带来了易于维护和安全等优点。端用户设备因为故障而停机时也不会影响其它端用户间的通信但这种结构非常不利的一点是,中心系统必须具有极高的可靠性,因为中心系统一旦损坏,整个系统便趋于瘫痪。对此中心系统通常采用双机热备份,以提高系统的可靠性。 这种网络拓扑结构的一种扩充便是星行树,如下图所示。每个Hub与端用户的连接仍为星型,Hub的级连而形成树。然而,应当指出,Hub级连的个数是有限制的,并随厂商的不同而有变化。 还应指出,以Hub构成的网络结构,虽然呈星型布局,但它使用的访问媒体的机制却仍是共享媒体的总线方式。 2.环型网络拓扑结构 环型结构在LAN中使用较多。这种结构中的传输媒体从一个端用户到另一个端用户,直到将所有端用户连成环型,如图5所示。这种结构显而易见消除了端用户通信时对中心系统的依赖性。 环行结构的特点是,每个端用户都与两个相临的端用户相连,因而存在着点到点链路,但总是以单向方式操作。于是,便有上游端用户和下游端用户之称。例如图5中,用户N是用户N+1的上游端用户,N+1是N的下游端用户。如果N+1端需将数据发送到N端,则几乎要绕环一周才能到达N端。 环上传输的任何报文都必须穿过所有端点,因此,如果环的某一点断开,环上所有端间的通信便会终止。

Arcgis拓扑规则及应用

Arcgis拓扑规则及应用 [第一部分_拓扑规则介绍] 拓扑规则有若干专用术语 相交(Intersect):线和线交叉,并且只有一点重合,该点不是结点(端点),称之相交。 接触(Touch):某线段的端点和自身或其他线段有重合,称为接触。 悬结点(Dangle Node,Dangle):线段的端点悬空,没有和其他结点连接,这个结点(端点)称为悬结点。 伪结点(Pseudo Node):两个结点相互接触,连接成一个结点,称为伪结点。拓扑规则的种类可以按点、线、面(多边形)来分。以下介绍Geodatabase的拓扑规则, 点拓扑规则举例 点拓扑规则一:Must be covered by boundary of,点必须在多边形边界上。例如,有一个点要素类代表公共汽车站,另有一个多边形要素类代表地块,按本规则,公共汽车站必须位于地块的边界上。另一个例子是行政界碑必须落在行政区多边形的边界上。不满足该规则的点要素被标记为错误。 点拓扑规则二:Must be covered by endpoint of,点要素必须位于线要素的端点上。例如,阀门为点要素,必须位于线要素类输水管的尽端。不满足该规则的点要素被标记为错误。 点拓扑规则三:Point must be covered by line,点要素必须在线要素之上。例如,点要素代表河流上的航标灯,线要素代表河流,航标灯必须位于河流上。另一个例子是:汽车站(点要素类)必须在道路(线要素类)上。不满足该规则的点要素被标记为错误。 点拓扑规则四:Must be properly inside polygons,点要素必须在多边形要素内(在边界上不算)。比如,省行政区为多边形,省会城市为点,省会一定要在该省内。另一个例子是代表住宅地址的点必须在住宅用地多边形内。不满足该规则的点要素被标记为错误。 可以看出,点要素本身不能建立拓扑规则,必须和线要素或多边形要素一起才能建立拓扑规则。修正错误的常用方法是删除或移动错误点(移动也可以理解为删除后立即添加)。 多边形拓扑规则举例 规则一:Must not overlap,同一多边形要素类中多边形之间不能重叠(几个多边形边界共享一个点或共享一条边不算重叠)。例如,宗地之间不能有重叠,行政区不能有重叠。重叠的部分将产生多边形错误,修正错误的方法有三种:一是删除重叠部分,留出空白;二是将重叠的部分并到某个多边形;三是在重叠部分新增多边形,并删除原来的重叠部分。 规则二:Must not have gaps,多边形之间不能有空隙。比如,规定表示土壤类型的多边形之间不能有空隙。不满足规则的地方将产生线错误,表示空隙多边形,修正的方法是调整原来的边界,或添加新的多边形。 规则三:Contain point,多边形内必须包含点要素(边界上的点不算)。例如,规定宗地内至少有一个地址点。不包含点的多边形被视为错误,修正的方法是在错误多边形内补一个点,或者将多余的多边形删除。

arcgis拓扑处理

ArcMap中的Topology工具条主要功能有对先拓扑(删除重复线,相交线断点等,Topology中的planarize lizes),根据先拓扑生成面(Topology中的construct features)、拓扑编辑(如共享边编辑等)、拓扑错误显示(用于 显示在ArcCatalog中创建的拓扑规则错误,Topology中的error inspector)、拓扑错误重新验证(也即刷新错误记录)。 先简单的说一下ArcGIS中拓扑检查的步骤: 1.启动ArcCatalog;任意选择一个本地目录,“右键”–>“新建”–>“创建personal Geodatabase ”; 2.选择刚才创建的GeoDatabase,“右键” –>“新建”–>“数据集datasets”;设置数据集的坐标系统,如果不能确定则你可以import要进行分析的数据的坐标系统; 3.选择刚才新建的数据集,“右键”–>“导入要素类import — feature class single”,导入你要进行拓扑分析的数据; 4.选择刚才新建的数据集,“右键”–>“新建”–>“拓扑”,创建拓扑,根 据提示创建拓扑,添加拓扑规则; 5.进行拓扑分析,在ArcMap中打开由拓扑规则产生的文件,利用Topology工 具条中错误记录信息进行修改,将数据导入ArcMap中,点击Edit进行编辑。6.打开Edit下拉菜单,选择more editing tools — topology出现拓扑编辑 工具栏。在Error inspector对话框中点击search now,找出所有拓扑的错误。对线状错误进行Mark as Exception。对Polygon错误逐个检查,首先选择错 误的小班,点击右键选择Zoom to,然后点击Merge,选择合适的图版进行merge处理,这样不会丢失小版块的信息。 要在ArcCatalog中创建拓扑规则,必须保证数据为GeoDatabase格式,且满足要进行拓扑规则检查的要素类在同一要素下。有关GeoDatabase的Topology规则: 多边形topology 1.must not overlay:单要素类,多边形要素相互不能重叠 2.must not have gaps:单要素类,连续连接的多边形区域中间不能有空白区(非数据区) 3.contains point:多边形+点,多边形要素类的每个要素的边界以内必须包 含点层中至少一个点 4.boundary must be covered by:多边形+线,多边形层的边界与线层重叠(线层可以有非重叠的更多要素) 5.must be covered by feature class of:多边形+多边形,第一个多边形层必须被第二个完全覆盖(省与全国的关系) 6.must be covered by:多边形+多边形,第一个多边形层必须把第二个完全 覆盖(全国与省的关系) 7.must not overlay with:多边形+多边形,两个多边形层的多边形不能存在

电力系统网络拓扑结构识别

学院 毕业设计(论文)题目:电力系统网络拓扑结构识别 学生姓名:学号: 学部(系):机械与电气工程学部 专业年级:电气工程及其自动化 指导教师:职称或学位:教授

目录 摘要 (3) ABSTRACT (4) 一绪论 (6) 1.1课题背景及意义 (6) 1.2研究现状 (6) 1.3本论文研究的主要工作 (7) 二电力系统网络拓扑结构 (7) 2.1电网拓扑模型 (7) 2.2拓扑模型的表达 (9) 2.3广义乘法与广义加法 (10) 2.4拓扑的传递性质 (11) 三矩阵方法在电力系统网络拓扑的应用 (13) 3.1网络拓扑的基本概念 (13) 3.1.1规定 (13) 3.1.2定义 (14) 3.1.3连通域的分离 (14) 3.2电网元件的等值方法 (15) 3.2.1厂站级两络拓扑 (15) 3.2.2元件级网络拓扑 (16) 3.3矩阵方法与传统方法的比较 (16) 四基于关联矩阵的网络拓扑结构识别方法研究 (17) 4.1关联矩阵 (17) 4.1.1算法 (17) 4.1.2定义 (17) 4.1.3算法基础 (18)

4.2拓扑识别 (19) 4.3主接线拓扑辨识原理 (20) 4.4算法的简化与加速 (24) 4.5流程图 (25) 4.5.1算法流程图 (25) 4.5.2节点编号的优化 (26) 4.5.3消去中间节点和开关支路 (26) 4.5.4算法的实现 (27) 4.6分布式拓扑辨识法 (27) 4.7举例和扩展 (28) 五全文总结 (29) 参考文献 (30) 致 (31) 摘要 电力系统拓扑分析是电力能量流(生产、传输、使用)流动过程中,对用于转换、保护、控制这一过程的元件(在电力系统分析中认为阻抗近似为0的元件)状态的分析,目的是形成便于电网分析与计算的模型,它界于EMS底层和高层之间。就调度自动化而言,底层信息(如SCADA)是拓扑分析的基础,高层应用(如状态估计、安全调度等[1])是拓扑分析的目的。可见,电力系统在实时运行中,这些元件的状态变化决定了运行方式的变化。如何依据厂站实时信息,快速、准确地跟踪这些变化,是实现电力系统调度自动化过程中基础而关键的工作[2]。拓扑分析在电力系统调度自动化中如此重要的地位,至少应该作到如下几点。 (1)拓扑分析的正确性:对任何情形下的运行方式,由元件状态的状况,针对各种电气接线关系,如单、双母线接线及旁路母线、3/2接线、角型接线等,均能

ArcGIS拓扑检查教程

ArcGIS拓扑检查、按位置选择、空间连接教程 第一部分:拓扑检查,确保数据没有重叠或交叉 1、dwg数据导入arcmap,此处以“顶层结构层.dwg”为例。 若是出现“位置的空间参考”不用管他,确定就好。 2、将导入的dwg数据转为CAD要素数据集:选中dwg中的“顶 层结构层.dwg Polygon”右键--用转换CAD要素数据集功能, 输出数据库可以自己建一个文件地理数据库专门存放相关文件。

这里输入CAD数据集不用填因为系统已经输入好了。只需要改文件 路径和名称就好了。 这是成果图展示。 3、在你存放的数据库里找到输出的CAD要素集,右键-新建-拓扑, 对照下图。

图中红色部分就是输出的CAD要素集,选中它右键—新建—拓扑。 这里拓扑名称不用改,在选择要参与到拓扑中的要素中选择polygon1.

等级数不用填,下一步到添加规则,如图确定再下一步。 新建拓扑完成后验证拓扑,这时候是不会显示拓扑错误的,需要将新建的拓扑添加到arcmap中才会显示出来。如下图:

可以直接在目录中选中拓扑,然后拉到中间。 如果是要在arcmap中找错误然后在CAD中改图层的话,对照这个在CAD中找到对应的图层改即可。若是想要在arcmap中改正这个错误,可以放大有错的部分如图。编辑器—开始编辑 双击错误处delete或者调整边界。

4、若是出现以下错误: 在拓扑引擎内检测到故障[error id:255]时,只需 要打开编辑器—开始编辑。然后放大图层,验证当前范围内的拓扑,如果还是拓扑验证失败就再放大图层,直到成功验证拓扑。

ARCGIS中拓扑的介绍及应用

摘要:本文介绍了拓扑的概念、实现方法以及在arcgis中拓扑的建立、错误处理过程,阐述了拓扑在数据处理中的重要作用。 关键词:拓扑、geodatabase、拓扑规则、验证 一、引言 拓扑是地理要素间的空间关系,它是确保数据质量的基础。拓扑能提高空间分析能力,并且在确保gis 数据库质量方面扮演了一个重要角色。在arcinfo coverage 数据模型中,广大的gis 用户通过build和clean操作认识到拓扑的好处。在arcgis中,esri提供了一组新的编辑工具来构造和维护用户定义的拓扑关系。在arcgis 中,validate topology 的功能将确保数据的完整性,依赖一系列拓扑规则使得geodatabase中的要素有效。 从arcgis8.3开始,为geodatabase增加了全面的拓扑。在arcgis8.3以前,拓扑一直是arcinfo coverage数据模型的一个特性。对于新的geodatabase的介绍提供了这样的一个机会来阐述拓扑对于gis 用户的意义,以及在空间数据建模中使用它的可能性。这篇文章介绍了geodatabase的拓扑,并且描述了一个简化的地块数据模型。 二、geodatabase 中数据的存储和建模 对于在数据库管理系统(dbms)中存储和管理gis 相关数据而言,geodatabase是一个开放的存储结构。geodatabase符合基本的关系数据模型,每一个对象和它的属性都存储为表中的一行。对象反映了一个要素或gis 所要模拟的现实世界中的一个实体。存储在dbms 表中的一组相似要素(对象),比如地块、建筑或河流,被称为一个要素类。一组相关的要素类,它们拥有相同的空间参考,能组织在一个更大的集合中,被称为要素集。 geodatabase中的每一个要素(比如地块)都有自己的形状(几何信息),并且能独立存在。这与coverage 数据模型是不同的,coverage 中的多边形(polygon)是由一组弧(arcs)和标注点(labelpoints)组成的。将完整几何信息存储在简单要素中的能力正是geodatabase的一个优点,因为要素总能够用来显示和分析。 三、arcgis是如何实现拓扑的 拓扑的实现依赖于一组完整性规则,它定义了空间相关的地理要素和要素类的行为。当拓扑规则应用于geodatabase中的要素或要素类时,它就使得gis 用户能够建立连通(connectivity)和邻接(adjacency)这样的空间关系。拓扑同样能够管理不同要素类间几何重叠的完整性(比如,海岸线和国界是否重叠)。 arcgis也包括了一组空间操作工具,以此来编辑共享几何形体(geometry),并且基于用户应用的规则来发现空间关系中的错误。 四、为什么需要拓扑 拓扑将gis行为应用到空建数据上。拓扑使得gis 软件能够回答这样的问题,比如邻接、连通、邻近和重叠。在arcgis 中拓扑为用户提供了一个有力的、灵活的方式,来确立和维护空建数据的质量和完整性。举个例子,你想知道所有的地块多边形都完全由封闭的环(rings)形成,它们互相不重叠并且地块间没有缝隙。你同样能用拓扑来验证要素类间的空间关系。比如在地块数据模型中的lot lines 必须和地块边界共享相同的几何形体。 拓扑关系可以看成空间约束,你把它们应用到空间数据上。arcgis 应用了这些关系,并且在任何一个约束被打破时会通知你。为了做到这一点,gis 软件中包含的工具必须要能够识别空间约束,并且提供用来查找和修复违规要素的工具。 五、在geodatabase 中如何建立拓扑 对arcgis而言,能为包含在要素集中的一个或多个要素类定义拓扑。它可以为多点、线和多边形要素类定义拓扑。拓扑是一系列用于空间关系的完整性规则,有一些重要的属性:一个群组容限(cluster tolerance),要素类等级(对坐标精度而言),错误(违规)和你所

网络拓扑结构图设计及其方案说明

[设备清单] Cisco 2600路由器一台 Cisco 2900XL交换机若干台 Cisco PIX防火墙一台 网线:若干箱 制线嵌:若干个 正版软件:Microsoft ISA [方案设计] 一.使用一台路由器实现内网与外网的连接 其功能实现: 1、实现内网与外网的连接 2、实现内网中不同VLAN的通信 3、实现NAT代理内网计算机连接Internet 4、实现ACL提供内外网的通信的安全 二. 使用多台交换机实现VLAN的规划 1、按部门或场所划分vlan

1)vlan1:经理; 2) vlan2:人事部; 3)vlan3:销售部; 4)vlan4:策划部; 5)vlan5:技术部 2、vlan之间的通信 1)实现有通信需要的vlan之间的通信,如vlan2与vlan3,vlan5等; 2)使用上述路由器实现vlan之间的通信; 3)使用ACL提供valn间通信的安全; 一、IP地址规划: 1、考虑内网中机器较多,并考虑到公司规模日益庞大故使用10.0.0.0/8私有 地址并将其进行子网划为/24; 2、不同vlan给予不同子网ip,如vlan2可为10.31.0.0/24子网; 3、通过DHCP服务器动态分配所有ip; 二、win2003域规划: 为方便管理和提高网络安全性,将内网中部分计算机实现win2003域结构网络: 1、创建一个win2003域,如:https://www.360docs.net/doc/dd4447435.html,; 2、将经理办公用机,各部门用机,等所有员工用机加入所建域; 3、创建额外域DC提供AD容错功能和相互减轻负担功能; 三、服务器规划 1、文件打印服务器(win2003系统):用于连接多台打印设备,并将这些 打印机发布到活动目录 1)实现域中所有计算机都可方便查找和使用打印机; 2)实现打印优先级,使得重要用户,如部门领导可优先使用打印机; 3)实现打印池功能,使得用户可优先自动使用当前空闲打印机; 4)实现重定向功能,使得当一打印设备故障,如缺墨缺纸,可自动被重定向到其它打印设备打印; 5)实现打印机使用时间限制:如管理人员可24小时使用,普通员工只可上班时间使用; 2、DHCP服务器(linux AS4.0系统):用于为内网客户机分配ip,考虑到 效率和可靠性 1)根据所需使用子网,实现多个作用域,并将这些作用域加入进一个超级作用域,为不同子网内的客户机分配相应; 2)实现为客户机分配除ip之外的其它设置,如网关IP,DNS IP,等等; 3)实现地址排除:将各服务器所使用地址在作用域内排除; 4)实现保留:为需要的用户,如网络系做网络相关实验的老师,保留特定的IP,使其可长期使用该IP而不与其他人冲突; 5)实现DDNS的支持,能够自动更新DNS数据库。 3、DNS服务器(linux AS4.0系统):提供域名解析 1)实现主要名称服务器,并创建AD集成区域,如https://www.360docs.net/doc/dd4447435.html,; 2)实现允许安全动态更新的DDNS,使得与DHCP服务器合作,动

Arcgis拓扑规则及应用

[第一部分_拓扑规则介绍] 拓扑规则有若干专用术语 相交(Intersect):线和线交叉,并且只有一点重合,该点不是结点(端点),称之相交。 接触(Touch):某线段的端点和自身或其他线段有重合,称为接触。 悬结点(Dangle Node,Dangle):线段的端点悬空,没有和其他结点连接,这个结点(端点)称为悬结点。 伪结点(Pseudo Node):两个结点相互接触,连接成一个结点,称为伪结点。 拓扑规则的种类可以按点、线、面(多边形)来分。以下介绍Geodatabase的拓扑规则,点拓扑规则举例 点拓扑规则一:Must be covered by boundary of,点必须在多边形边界上。例如,有一个点要素类代表公共汽车站,另有一个多边形要素类代表地块,按本规则,公共汽车站必须位于地块的边界上。另一个例子是行政界碑必须落在行政区多边形的边界上。不满足该规则的点要素被标记为错误。 点拓扑规则二:Must be covered by endpoint of,点要素必须位于线要素的端点上。例如,阀门为点要素,必须位于线要素类输水管的尽端。不满足该规则的点要素被标记为错误。 点拓扑规则三:Point must be covered by line,点要素必须在线要素之上。例如,点要素代表河流上的航标灯,线要素代表河流,航标灯必须位于河流上。另一个例子是:汽车站(点要素类)必须在道路(线要素类)上。不满足该规则的点要素被标记为错误。 点拓扑规则四:Must be properly inside polygons,点要素必须在多边形要素内(在边界上不算)。比如,省行政区为多边形,省会城市为点,省会一定要在该省内。另一个例子是代表住宅地址的点必须在住宅用地多边形内。不满足该规则的点要素被标记为错误。 可以看出,点要素本身不能建立拓扑规则,必须和线要素或多边形要素一起才能建立拓扑规则。修正错误的常用方法是删除或移动错误点(移动也可以理解为删除后立即添加)。 多边形拓扑规则举例 规则一:Must not overlap,同一多边形要素类中多边形之间不能重叠(几个多边形边界共享一个点或共享一条边不算重叠)。例如,宗地之间不能有重叠,行政区不能有重叠。重叠的部分将产生多边形错误,修正错误的方法有三种:一是删除重叠部分,留出空白;二是将

Arcgis拓扑规则及应用

[ 第一部分_拓扑规则介绍] 拓扑规则有若干专用术语 相交(Intersect ):线和线交叉,并且只有一点重合,该点不是结点(端点),称之相交。 接触(Touch):某线段的端点和自身或其他线段有重合,称为接触。 悬结点(Dangle Node,Dangle ):线段的端点悬空,没有和其他结点连接,这个结点(端点)称为悬结点。 伪结点(Pseudo Node ):两个结点相互接触,连接成一个结点,称为伪结点。 拓扑规则的种类可以按点、线、面(多边形)来分。以下介绍Geodatabase 的拓扑规则, 点拓扑规则举例 点拓扑规则一:Must be covered by boundary of ,点必须在多边形边界上。例如,有一个点要素类代表公共汽车站,另有一个多边形要素类代表地块,按本规则,公共汽车站必须位于地块的边界上。另一个例子是行政界碑必须落在行政区多边形的边界上。不满足该规则的点要素被标记为错误。 点拓扑规则二:Must be covered by endpoint of ,点要素必须位于线要素的端点上。例如,阀门为点要素,必须位于线要素类输水管的尽端。不满足该规则的点要素被标记为错误。 点拓扑规则三:Point must be covered by line ,点要素必须在线要素之上。例如,点要 素代表河流上的航标灯,线要素代表河流,航标灯必须位于河流上。另一个例子是:汽车站(点要素类)必须在道路(线要素类)上。不满足该规则的点要素被标记为错误。 点拓扑规则四:Must be properly inside polygons ,点要素必须在多边形要素内(在边界上不算)。比如,省行政区为多边形,省会城市为点,省会一定要在该省内。另一个例子是代表住宅地址的点必须在住宅用地多边形内。不满足该规则的点要素被标记为错误。 可以看出,点要素本身不能建立拓扑规则,必须和线要素或多边形要素一起才能建立拓扑规则。修正错误的常用方法是删除或移动错误点(移动也可以理解为删除后立即添加)。 多边形拓扑规则举例 规则一:Must not overlap ,同一多边形要素类中多边形之间不能重叠(几个多边形边界共享一个点或共享一条边不算重叠)。例如,宗地之间不能有重叠,行政区不能有重叠。重叠的部分将产生多边形错误,修正错误的方法有三种:一是删除重叠部分,留出空白;二是将 重叠的部分并到某个多边形;三是在重叠部分新增多边形,并删除原来的重叠部分。

网络的拓扑结构分类

网络的拓扑结构分类 网络的拓扑结构是指网络中通信线路和站点(计算机或设备)的几何排列形式。 1.星型网络:各站点通过点到点的链路与中心站相连。特点是很容易在网络中增加新的站点,数据的安全性和优先级容易控制,易实现网络监控,但中心节点的故障会引起整个网络瘫痪。 每个结点都由一条单独的通信线路与中心结点连结。优点:结构简单、容易实现、便于管理,连接点的故障容易监测和排除。缺点:中心结点是全网络的可靠瓶颈,中心结点出现故障会导致网络的瘫痪。 2.环形网络:各站点通过通信介质连成一个封闭

的环形。环形网容易安装和监控,但容量有限,网络建成后,难以增加新的站点。 各结点通过通信线路组成闭合回路,环中数据只能单向传输。 优点:结构简单、容易实现,适合使用光纤,传输距离远,传输延迟确定。 缺点: 环网中的每个结点均成为网络可靠性的瓶颈,任意结点出现故障都会造成网络瘫痪,另外故障诊断也较困难。最著名的环形拓扑结构网络是令牌环网(Token Ring) 3.总线型网络:网络中所有的站点共享一条数据通道。总线型网络安装简单方便,需要铺设的电缆最短,成本低,某个站点的故障一般不会影响整个网络。但介质的故障会导致网络瘫痪,总线网安全性低,监控比较困难,增加新站点也不如星型网容易。

是将网络中的所有设备通过相应的硬件接口直接连 接到公共总线上,结点之间按广播方式通信,一个结 点发出的信息,总线上的其它结点均可“收听”到。 优点:结构简单、布线容易、可靠性较高,易于扩充, 是局域网常采用的拓扑结构。 缺点:所有的数据都需经过总线传送,总线成为整个 网络的瓶颈;出现故障诊断较为困难。最著名的总线 拓扑结构是以太网(Ethernet)。 树型网、簇星型网、网状网等其他类型拓扑结构 的网络都是以上述三种拓扑结构为基础的。 ④树型拓扑结构 是一种层次结构,结点按层次连结,信息交换主要在上下结点之间进行,相邻结点或同层结点之间一般不进行数据交换。优点:连结简单,维护方便,适用于汇集信息的应用要

网络拓扑图说明

网络拓扑图说明 网络拓扑图的要求: 1、标识清楚 拓扑图:要有标题(如***学院网络拓扑图) 网段:要标出子网地址、接入网络职能单位、使用设备(名称型号) 网络连接:给出连接带宽(网络长度,如1C 地址的长度为/24,具体见说明1)、连接设备 原有信息点填写格式:IP 地址段 接入网络职能单位 网络长度(见说明1) 使用设备 如:210.37.32.0 Office Building/24 D-link/1024r 新申请ip 地址填写格式:接入网络职能单位 网络长度(见说明1) 使用设备 如:学生宿舍1#/24 vdsltan-cu600 2、描绘详细 全网的拓扑云图,用来表示全网的连接情况。 主要汇聚连接点展开的拓扑图 连接情况及使用设备必须与IP 地址申请表格里的网络拓扑图说明一致 3、文档格式 使用OFFICE 的VISIO 制作拓扑图,然后再存储为jpg 图形格式 网络拓扑图图标出的地址用途和计划,须和old-network,network-plan 一一对应,与拓扑图保持一致,并且清晰可辩。 拓扑图使用的图例: 以太网交换机 核心交换机 路由器

网络拓扑图范例: 学生宿舍J -14A#/24Quidway 5624 图书馆/23公共教学楼政务学院/24信息科学院法学院/24Quidway 5624 Quidway 5624 教师宿舍A1#/23Quidway 5624 教师宿舍A2#/23Quidway 5624学生宿舍J -13A#/23Quidway 5624J -13B#23J -13C#/2313D#/23 学生宿舍J -13F#/23Quidway 5624 学生宿舍J -13G#/23Quidway 5624学生宿舍J -13H#/23Quidway 5624

ARCGIS10拓扑规则介绍

ARCGIS10拓扑规则介绍 1.面 1.1 不能有叠加(overlap):一个面图层里各要素间不能有叠加,实际应用中:一块地既属于河南又属于河北 1.2不能有缝隙(gaps): 一个面图层里各要素之间不能有个缝隙,实际应用:河南和河北之间不能有一个缝隙。 1.3 节点距离必须大于聚合阈值(cluster tolerance):节点距离大于聚合阈值时,两个节点自动连接在一起,避免多边形之间有缝隙出现。类似于1.2,可用于线面叠加分析。 1.5 包含点 在点图层和面图层叠加时,需要面图层里的每个要素都要含有点,应用:省界面图层和全国城市点图层叠加时,必须保证每个省里都要有城市点。 1.6 包含一个点 在点图层和面图层叠加时,需要面图层里的每个要素都要含有一个点,应用:省界面图层和全国省会点图层叠加时,必须保证每个省里都要有一个点。

1.7 必须被一种要素类型覆盖(covered) 当一个面图层和两外一个图层叠加时,该面图层要覆盖另外一个图层。比如国界面图层必须覆盖省界面图层。 1.8边界必须被覆盖:两个图层叠加时,一个图层的边界要覆盖另外一个图层。比如城市点数据必须被国界图层的范围所覆盖。 1.9不能有叠加 当两个面图层叠加时,不能出现有相互覆盖的地方。比如水系图层和绿地图层叠加时,不能有重叠部分。该部分土地利用类型既属于水系也属于绿地。 1.10 必须被完全覆盖 两个面叠加时,某个面必须完全落入另一个面图层的一个要素中。应用:县界面和省界面叠加时,每个县要素必须落入一个省要素中。而不能落在2个省内,使得一个县同属于2个省。 1.11边界一致性 当两个多边形图层叠加时,必须区域界线一致。比如县区界和省界叠加时,在省界处两个面的边界应重合。而不能不一致。 1.12 必须叠加在一起

网络拓扑结构大全和图片

网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 网络拓扑结构总汇 星型结构 星型拓扑结构是用一个节点作为中心节点,其他节点直接与中心节点相连构成的网络。中心节点可以是文件服务器,也可以是连接设备。常见的中心节点为集线器。 星型拓扑结构的网络属于集中控制型网络,整个网络由中心节点执行集中式通行控制管理,各节点间的通信都要通过中心节点。每一个要发送数据的节点都将要发送的数据发送中心节点,再由中心节点负责将数据送到目地节点。因此,中心节点相当复杂,而各个节点的通信处理负担都很小,只需要满足链路的简单通信要求。 优点: (1)控制简单。任何一站点只和中央节点相连接,因而介质访问控制方法简单,致使访问协议也十分简单。易于网络监控和管理。 (2)故障诊断和隔离容易。中央节点对连接线路可以逐一隔离进行故障检测和定位,单个连接点的故障只影响一个设备,不会影响全网。 (3)方便服务。中央节点可以方便地对各个站点提供服务和网络重新配置。 缺点: (1)需要耗费大量的电缆,安装、维护的工作量也骤增。 (2)中央节点负担重,形成“瓶颈”,一旦发生故障,则全网受影响。 (3)各站点的分布处理能力较低。 总的来说星型拓扑结构相对简单,便于管理,建网容易,是目前局域网普采用的一种拓扑结构。采用星型拓扑结构的局域网,一般使用双绞线或光纤作为传输介质,符合综合布线标准,能够满足多种宽带需求。 尽管物理星型拓扑的实施费用高于物理总线拓扑,然而星型拓扑的优势却使其物超所值。每台设备通过各自的线缆连接到中心设备,因此某根电缆出现问题时只会影响到那一台设备,而网络的其他组件依然可正常运行。这个优点极其重要,这也正是所有新设计的以太网都采用的物理星型拓扑的原因所在。 扩展星型拓扑: 如果星型网络扩展到包含与主网络设备相连的其它网络设备,这种拓扑就称为扩展星型拓扑。 纯扩展星型拓扑的问题是:如果中心点出现故障,网络的大部分组件就会被断开。

几种网络拓扑结构及对比

局域网的实验一 内容:几种网络拓扑结构及对比 1星型 2树型 3总线型 4环型 计算机网络的最主要的拓扑结构有总线型拓扑、星型拓扑、环型拓扑以及它们的混合型。计算机网络的拓扑结构是把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构:分为逻辑拓扑和物理拓扑结构这里讲物理拓扑结构。总线型拓扑:是一种基于多点连接的拓扑结构,所有的设备连接在共同的传输介质上。总线拓扑结构使用一条所有PC都可访问的公共通道,每台PC只要连一条线缆即可但是它的缺点是所有的PC不得不共享线缆,优点是不会因为一条线路发生故障而使整个网络瘫痪。环行拓扑:把每台PC连接起来,数据沿着环依次通过每台PC直接到达目的地,在环行结构中每台PC都与另两台PC相连每台PC的接口适配器必须接收数据再传往另一台一台出错,整个网络会崩溃因为两台PC之间都有电缆,所以能获得好的性能。树型拓扑结构:把整个电缆连接成树型,树枝分层每个分至点都有一台计算机,数据依次往下传优点是布局灵活但是故障检测较为复杂,PC环不会影响全局。星型拓扑结构:在中心放一台中心计算机,每个臂的端点放置一台PC,所有的数据包及报文通过中心计算机来通讯,除了中心机外每台PC仅有一条连接,这种结构需要大量的电缆,星型拓扑可以看成一层的树型结构不需要多层PC的访问权争用。星型拓扑结构在网络布线中较为常见。 编辑本段计算机网络拓扑 计算机网络的拓扑结构是引用拓扑学中研究与大小,形状无关的点,线关系的方法。把网络中的计算机和通信设备抽象为一个点,把传输介质抽象为一条线,由点和线组成的几何图形就是计算机网络的拓扑结构。网络的拓扑结构反映出网中个实体的结构关系,是建设计算机网络的第一步,是实现各种网络协议的基础,它对网络的性能,系统的可靠性与通信费用都有重大影响。最基本的网络拓扑结构有:环形拓扑、星形拓扑、总线拓扑三个。 1. 总线拓扑结构 是将网络中的所有设备通过相应的硬件接口直接连接到公共总线上,结点之间按广播方式通信,一个结点发出的信息,总线上的其它结点均可“收听”到。拓扑结构 优点:结构简单、布线容易、可靠性较高,易于扩充,节点的故障不会殃及系统,是局域网常采用的拓扑结构。缺点:所有的数据都需经过总线传送,总线成为整个网络的瓶颈;出现故障诊断较为困难。另外,由于信道共享,连接的节点

arcgis拓扑检查步骤与修正拓扑错误技巧

ARCGIS 拓扑检查步骤与修正拓扑错误技巧 将数据装载如个人地理数据库,用拓扑功能自动检查数据错误 启动ArcCatlalog; 任意选择一个本地目录,"右键"->"新建"->"创建个人personal GeoDatabase";选择刚才创建的GeoDatabase,"右键"->"新建"->"数据集dataset";设置数据集的坐标系统,如果不能确定就选择你要进行分析的数据的坐标系统; 选择刚才创建的数据集,"右键"->"导入要素类inport --feature class single",导入你要进行拓扑分析的数据; 选择刚才创建的数据集,"右键"->"新建"->"拓扑",创建拓扑,根据提示创建拓扑,添加拓扑处理规则;进行拓扑分析。 最后在arcmap中打开由拓扑规则产生的文件,利用topolopy工具条中错误记录信息进行修改将数据集导入ARCMAP中,点击edit按钮进行编辑。 打开eidt下拉菜单,选择more editing tools--topology出现拓扑编辑工具栏。 选择要拓扑的数据,点击打开error inspector按钮。 在error inspector对话框中点击search now,找出所有拓扑的错误。 对线状错误进行Mark as Exception。 对polygon错误逐个检查,首先选择错误的小班,点击右键选择zoom to,然后点击merge,选择合适的图班进行merge处理,这样不会丢失小班信息。 另一个说法: 用catalog建一个个人地理数据库,new一个featuredataset

把要修改错误的shp文件导入到featuredataset下面 然后右键点featuredataset,new一个topoloy数据层,点击下一步,勾选刚才导入的shp层,下一步,添加拓扑检查规则,这一步很重要,你要显示断线,没接上的线,出头线等,都要选相应的拓扑规则!选完之后,点下一步完成catalog生成一个拓扑检查层文件,用arcmap打开该文件就可以看见你需要显示的错误,这样再用编辑工具修改起来就方便好多。 [第一部分] 在arcgis中有关topolopy操作,,有两个地方,一个是在arccatalog中,一个是在arcmap中。通常我们将在arccatalog中建立拓扑称为建立拓扑规则,而在arcmap中建立拓扑称为拓扑处理。 arccatalog中所提供的创建拓扑规则,主要是用于进行拓扑错误的检查,其中部分规则可以在溶限内对数据进行一些修改调整。建立好拓扑规则后,就可以在arcmap中打开些拓扑规则,根据错误提示进行修改。 arcmap中的topolopy工具条主要功能有对线拓扑(删除重复线、相交线断点等,topolopy中的planarize lines)、根据线拓扑生成面(topolopy中的construct features)、拓扑编辑(如共享边编辑等)、拓扑错误显示(用于显示在arccatalog 中创建的拓扑规则错误,topolopy中的error inspector),拓扑错误重新验证(也即刷新错误记录)。 [第二部分] 在arccatalog中创建拓扑规则的具体步骤? 要在arccatalog中创建拓扑规则,必须保证数据为geodatabase格式,且满足

收集最完整的arcgis拓扑处理

收集最完整的arcgis拓扑处理 (2011-10-16 20:07:00) 分类:3S 标签: 杂谈 ArcGIS中的拓扑 [第一部分] Arcgis中topolopy说明: 在arcgis中有关topolopy操作,,有两个地方,一个是在arccatalog中,一个是在arcmap中。通常我们将在arccatalog中建立拓扑称为建立拓扑规则,而在arcmap中建立拓扑称为拓扑处理。 arccatalog中所提供的创建拓扑规则,主要是用于进行拓扑错误的检查,其中部分规则可以在容限内对数据进行一些修改调整。建立好拓扑规则后,就可以在arcmap中打开些拓扑规则,根据错误提示进行修改。 arcmap中的topolopy工具条主要功能有对线拓扑(删除重复线、相交线断点等,topolopy中的planarize lines)、根据线拓扑生成面(topolopy中的construct features)、拓扑编辑(如共享边编辑等)、拓扑错误显示(用于显示在arccatalog中创建的拓扑规则错误,topolopy中的error inspector),拓扑错误重新验证(也即刷新错误记录)。 [第二部分] 在arccatalog中创建拓扑规则的具体步骤? 要在arccatalog中创建拓扑规则,必须保证数据为geodatabase格式,且满足要进行拓扑规则检查的要素类在同一要素集下。 因此,首先创建一个新的geodatabase,然后在其下创建一个要素集,然后要创建要素类或将其它数据作为要素类导入到该要素集下。 进入到该要素集下,在窗口右边空白处单击右键,在弹出的右键菜单中有new->topolopy,然后按提示操作,添加一些规则,就完成拓扑规则的检查。 最后在arcmap中打开由拓扑规则产生的文件,利用topolopy工具条中错误记录信息进行修改。 [第三部分] 有关geodatabase的topology规则 多边形topology 1.must not overlay:单要素类,多边形要素相互不能重叠 2.must not have gaps:单要素类,连续连接的多边形区域中间不能有空白区(非数据区) 3.contains point:多边形+点,多边形要素类的每个要素的边界以内必须包含点层中至少一个点 4.boundary must be covered by:多边形+线,多边形层的边界与线层重叠(线层可以有非重叠的更多要素) 5.must be covered by feature class of:多边形+多边形,第一个多边形层必须被第二个完全覆盖(省与全国的关系)

相关文档
最新文档