喜利得技术手册(化学锚栓-HIT-RE 500注入式锚固胶配合钢筋)

喜利得技术手册(化学锚栓-HIT-RE 500注入式锚固胶配合钢筋)
喜利得技术手册(化学锚栓-HIT-RE 500注入式锚固胶配合钢筋)

化学锚栓拉拔力

学锚栓, 一、基本参数 工程所在地:青岛市 幕墙计算标高:15.33 m 玻璃设计分格:B×H=1549×2000 mm B:玻璃宽度 H:玻璃高度 设计地震烈度:7度 地面粗糙度类别:A类 二、荷载计算 1、风荷载标准值 W K:作用在幕墙上的风荷载标准值(KN/m2) βgz:瞬时风压的阵风系数,取1.60 μs:风荷载体型系数,取1.2 μz:风荷载高度变化系数,取1.527 青岛市地区风压W0=0.6 KN/m (按50年一遇) W k=βgzμsμz W0 =1.60×1.2×1.527×0.60 =1.76 KN/m2>1.0 KN/m2 取W K=1.76 KN/m2

2、风荷载设计值 W :风荷载设计值 (KN/m 2) r w :风荷载作用效应的分项系数,取1.4 W=r w ×W k =1.4×1.76 =2.46 KN/m 2 3、玻璃幕墙构件重量荷载 G AK :玻璃幕墙构件自重标准值,取0.50 KN/m 2 G A :玻璃幕墙构件自重设计值 G A =1.2×G AK =1.2×0.50=0.60 KN/m 2 4、地震作用 q EK :垂直于幕墙平面的分布水平地震作用标准值 (KN/m 2) q E :垂直于幕墙平面的分布水平地震作用设计值 (KN/m 2) βE :动力放大系数,取5.0 αmax :水平地震影响系数最大值,取0.08 G AK :幕墙构件(包括玻璃和接头)的重量标准值,取0.50 KN/m 2 q EK =AK max E G ?α?β =5.0×0.08×0.50 =0.20KN/m 2 q E =γE ×q EK =1.3×0.20 =0.26 KN/m 2 5、荷载组合 风荷载和地震荷载的水平分布作用标准值 q K =ψW ·q WK +ψE ·q EK =1.0×1.76+0.5×0.20 =1.86 KN/m 2 风荷载和地震荷载的水平分布作用设计值 q=ψW ·γW ·q WK +ψE ·γE ·q EK =1.0×1.4×1.76+0.5×1.3×0.20 =2.59 KN/m 2 第二章、化学锚栓强度计算 一、部位要素 该处最大计算标高按15.33 m 计,受到由水平风荷载和地震荷载作用效应的组合荷载

埋件计算

埋件计算 建筑埋件系统 设计计算书 设计: 校对: 审核: 批准: 二〇一四年三月二十二日

目录 1 计算引用的规范、标准及资料 (1) 2 幕墙埋件计算(粘结型化学锚栓) (1) 2.1 埋件受力基本参数 (1) 2.2 锚栓群中承受拉力最大锚栓的拉力计算 (1) 2.3 群锚受剪内力计算 (2) 2.4 锚栓或植筋钢材破坏时的受拉承载力计算 (2) 2.5 锚栓或植筋钢材受剪破坏承载力计算 (3) 2.6 拉剪复合受力承载力计算 (3) 3 附录常用材料的力学及其它物理性能 (4)

幕墙后锚固计算 1 计算引用的规范、标准及资料 《玻璃幕墙工程技术规范》 JGJ102-2003 《金属与石材幕墙工程技术规范》 JGJ133-2001 《混凝土结构后锚固技术规程》 JGJ145-2004 《混凝土结构加固设计规范》 GB50367-2006 《混凝土结构设计规范》 GB50010-2010 《混凝土用膨胀型、扩孔型建筑锚栓》 JG160-2004 2 幕墙埋件计算(粘结型化学锚栓) 2.1埋件受力基本参数 V=4000N N=5000N M=200000N·mm 选用锚栓:慧鱼-化学锚栓,FHB-A 12×80/100; 2.2锚栓群中承受拉力最大锚栓的拉力计算 按5.2.2[JGJ145-2004]规定,在轴心拉力和弯矩共同作用下(下图所示),进行弹性分析时,受力最大锚栓的拉力设计值应按下列规定计算: 1:当N/n-My 1/Σy i 2≥0时: N sd h=N/n+My 1 /Σy i 2 2:当N/n-My 1/Σy i 2<0时: N sd h=(NL+M)y 1 //Σy i /2 在上面公式中: M:弯矩设计值; N sd h:群锚中受拉力最大锚栓的拉力设计值; y 1,y i :锚栓1及i至群锚形心轴的垂直距离; y 1/,y i /:锚栓1及i至受压一侧最外排锚栓的垂直距离; L:轴力N作用点至受压一侧最外排锚栓的垂直距离;

雨蓬施工方案

上海迪赛诺艾滋病治疗药物建设项目 (一期) 固体制剂车间 玻 璃 雨 篷 施 工 方 案 南通四建集团有限公司

2011年11月21日 施工方案 一、安装前准备及人员安排 安装现场的准备工作:根据项目部施工计划要求,在钢结构安装前,必须对现场进行测量、勘探。主要掌握以下情况: ①现场道路及车间安装场地是否具备车辆进出条件。 ②现场环境是否具备构件堆放要求。 ③复核安装定位使用的轴线控制点和测量标高的基准点。 ④检查混凝土柱的强度是否达到设计要求。 ⑤预埋铁件、锚杆螺栓几何尺寸是否满足图纸要求。偏差是否符合GB50205-2001规定。 ⑥与其它工种配合是否存在障碍。 ⑦安装中所需电源是否到位。 ⑧施工人员的现场辅助设备是否符合标准。 ⑨施工人员组成 项目经理:秦茂成 施工员:郭鲁费 施工人员:赵胜标庄祥马祝平 辅工2人

二、种植化学锚栓 慧鱼化学锚栓紧固系列优点 1、施工前准备 (1)固定化学锚栓前将所植锚栓范围的结构表面的粉刷层凿除至结构层,然后画出植化学锚栓的位置,钻植锚栓的安装孔,如遇到钢筋可根据原构件的钢筋尺寸位移位置。 (2)钢结构端头安装铁件的孔待化学锚栓植好,根据现场实际位置进行开孔,如先开孔锚栓在植筋构件中遇到钢筋要移位置,所以端头铁伸孔不标准,而减少了板中的实际接触面积。

2、施工工艺流程 种植化学锚栓工艺流程: 3、施工准备及定位放线 ⑴施工准备 ①施工人员应熟悉施工图纸,明确图纸所要求的化锚具体位置和型号、数量。 ②根据图纸要求种植的型号和产品技术参数选取相配套的施工钻头、清孔毛刷、电锤、清孔吹气设备型号,并根据施工工期要求确定人员和设备的数量。 ③施工技术人员进入现场后,查看现场实际情况,核实现场所需种植部位的混凝土标号,种植化锚的实际位置。 ④现场搭设符合施工高度和操作要求的脚手架。 ⑤放线前应先清理干净施工化锚现场的石块、粉尘等,确保放线能保留至完毕。 ⑥施工现场技术负责人与总包方现场技术负责人共同确定要求施工的平面,并放出截面边线和所需种植化锚的位置,并用有颜色的线点标记出来,并确定化锚种植时的最大偏移范围。 ⑵质量控制(事前控制) ①所选取的钻头应符合产品技术参数要求的长度、孔径、毛刷应以其外径略大于所刷孔径为准。 ②电锤和吹灰机要符合使用功率要求(冲击力及吹灰能力)和安全施工要求。 ③放射线误差符合现行规范要求;同时,化锚间距也应符合现行设计、施工规范要求。 4、钻孔 ⑴施工要求 ①根据所需化锚的型号和产品动手术参数中和规定,选取钻头。 ②在指定的施工点及偏移范围内钻出成品孔。 ③钻孔过程中,所钻孔易与旧结构钢筋相交,在不能打断原结构钢筋的条件下,应首先采取向钢筋外侧偏向构件中心位置钻孔的原则,后采取在偏移范围内选取新点重新开孔的方法。

化学锚栓计算

化学锚栓计算: 采用四个级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef =110mm ,A S =58mm 2 , f u =500N/mm 2 ,f y =300N/mm 2 。 荷载大小: N= KN V= KN M=×= KN ·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值 因为36122 1 5.544100.166105042250 My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值:

,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: 锚栓钢材破坏时受拉承载力设计值: ,,,29000145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值: = N 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界间距: 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界边距: 基材混凝土劈裂破坏的临界边距: 则,c 1=150 mm >,90cr N c =mm ,取c 1=90 mm 边距c 对受拉承载力降低影响系数: ,,90 0.70.3 0.70.390 s N cr N c c ψ=+=+?= 表层混凝土因密集配筋的剥离作用对受拉承载力降低影响系数: ,9030 0.50.5200200ef re N h ψ-=+=+ =

HILTI化学锚栓-HVU承载力计算(喜利得CC法)

附录. HILTI化学锚栓-HVU承载力计算(喜利得CC法) 1 化学锚栓抗拉性能计算 单根锚栓抗拉承载力设计值取下列两者中的最小值: N Rd,c :混凝土边缘破坏承载力 N Rd,s :钢材破坏承载力 1.1 N Rd,c —— 混凝土锥体破坏抗拉承载力设计值计算 计算公式:N Rd,c =N Rd,c0×f B,N×f T×f A,N×f R,N 公式中:N Rd,c0 —— 混凝土锥体破坏的抗拉承载力设计值,通过标准值N Rk,c0由公式N Rk,c0 /γMc,N,得到,其中分项安全系数γMc,N 取 1.8, N Rd,c0按表L.1.1.1确定。 表L.1.1.1 混凝土锥体破坏的抗拉承载力设计值及标准埋置深度 锚栓规格 M8 M10 M12 M16 M20 N Rd,c0 (kN) 12.4 16.6 23.8 34.7 62.9 h nom (mm)1)80 90 110 125 170 注:1)h nom 为标准埋置深度 公式中:f B,N ——混凝土强度影响系数,不同标号混凝土系数按表L.1.1.2确定。 表L.1.1.2混凝土强度影响系数 混凝土强度等级立方体抗压强度 f B,N f ck,cube(N/mm2) C20 20 0.94 C25 25 1.0 C30 30 1.05

C40 40 1.12 C45 45 1.20 C50 50 1.25 C55 55 1.30 C60 60 1.35 注:f B,N 也可按公式计算: f B,N =1+(f ck,cube -25 ) / 80 限制条件: 20 N/mm2≤f ck,cube ≤ 60 N/mm2 公式中:f T ——埋置深度影响系数,可按公式计算: f T = h act / h nom 实际埋深限制h act: h nom≤h act≤2.0×h nom 公式中:f A,N ——锚栓间距影响系数,按表L.1.1.3确定。 表L.1.1.3锚栓间距影响系数 锚栓间距 锚栓规格 s(mm) M8 M10 M12 M16 M20 40 0.63 45 0.64 0.63 50 0.66 0.64 55 0.67 0.65 0.63 60 0.69 0.67 0.64 65 0.70 0.68 0.65 0.63 70 0.72 0.69 0.66 0.64 80 0.75 0.72 0.68 0.66 90 0.78 0.75 0.70 0.68 0.63 100 0.81 0.78 0.73 0.70 0.65 120 0.88 0.83 0.77 0.74 0.68 140 0.94 0.89 0.82 0.78 0.71 160 1.00 0.94 0.86 0.82 0.74 180 1.00 0.91 0.86 0.76 200 0.95 0.90 0.79 220 1.00 0.94 0.82 250 1.00 0.87 280 0.91 310 0.96 340 1.00 注:f A,N 也可按公式计算: f A,N =0.5 + s / 4 h nom 化学锚栓间距限制条件: s min ≤ s ≤ s cr,N s min = 0.5 h nom s cr,N = 2.0 h nom

后置埋件计算

幕墙埋件计算 基本参数: 1:计算点标高:26.2m; 3:幕墙立柱跨度:L=4500mm,短跨L1=550mm,长跨L2=3950mm; 3:立柱计算间距:B=1300mm; 4:立柱力学模型:双跨梁,侧埋; 5:板块配置:中空玻璃; 6:选用锚栓:化学锚栓 M12*160;锚板采用Q235B的300×200×8 mm钢板。荷载标准值计算 (1)垂直于幕墙平面的分布水平地震作用: qEk=βEαmaxGk/A =5.0×0.08×0.0005 =0.0002MPa (2)连接处水平总力计算: 对双跨梁,中支座反力R1,即为立柱连接处最大水平总力。 qw:风荷载线荷载设计值(N/mm); qw=1.4wkB =1.4×0.001551×1300 =2.823N/mm qE:地震作用线荷载设计值(N/mm); qE=1.3qEkB =1.3×0.0002×1300 =0.338N/mm 采用Sw+0.5SE组合:……5.4.1[JGJ133-2001] q=qw+0.5qE =2.823+0.5×0.338 =2.992N/mm N:连接处水平总力(N); R1:中支座反力(N); N=R1 =qL(L12+3L1L2+L22)/8L1L2 =2.992×4500×(5502+3×550×3950+39502)/8/550/3950 =17370.342N (3)立柱单元自重荷载标准值: Gk=0.0005×BL =0.0005×1300×4500 =2925N (4)校核处埋件受力分析: V:剪力(N);

N :轴向拉力(N),等于中支座反力R1; e0:剪力作用点到埋件距离,即立柱螺栓连接处到埋件面距离(mm); V=1.2Gk =1.2×2925 =3510N N=R1 =17370.342N M=e0×V =106×3510 =372060N ·mm 二、埋件计算 锚板面积 A=60000.0 mm2 0.5fcA=429000.0 N N=11547.3N < 0.5fcA 锚板尺寸可以满足要求! 锚筋采用后植锚固的形式,锚筋采用2-M12化学螺栓的埋设方式,锚板采用Q235B 的300×200×8 mm 钢板。 N 拔=n z M N 1)2(?+?β<5 .1拉拔N =21)100416000210738( 25.1?+? =7969 N M12化学螺栓单个设计值为16200 N ; 可知均大于N 拔=7969 N 所以满足要求 根据以上计算,整个幕墙埋件设计满足设计要求,达到使用功能,可以正常使用。

化学锚栓计算

化学锚栓计算: 采用四个5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef =110mm ,A S =58mm 2 , f u =500N/mm 2 ,f y =300N/mm 2 。 荷载大小: N=5.544 KN V=2.074 KN M=2.074×0.08=0.166 KN ·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值 因为36122 1 5.544100.166105042250 My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值:

,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: 锚栓钢材破坏时受拉承载力设计值: ,,,29000145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值: =8248.64 N 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界间距: 混凝土锥体破坏情况下,确保每根锚栓受拉承载力标准值的临界边距: 基材混凝土劈裂破坏的临界边距: 则,c 1=150 mm >,90cr N c =mm ,取c 1=90 mm 边距c 对受拉承载力降低影响系数: ,,90 0.70.3 0.70.390 s N cr N c c ψ=+=+?=1.0 表层混凝土因密集配筋的剥离作用对受拉承载力降低影响系数:

后置埋件锚栓适用范围规范解析

混凝土结构后锚固用锚栓的选用分析 作者:黄潇校对:庞卫锋 随着幕墙行业的不断发展,幕墙的安全重要性已经被提上日程,开发商越来越关注幕墙的安全性,特别是幕墙主受力龙骨与主体结构之间的连接。从国家到地方,近几年新发布的规范对幕墙后锚固用锚栓的选择使用都进行了规定,比如《混凝土结构后锚固技术规程》、《混凝土结构加固设计规范》、《上海市建筑幕墙工程技术规范》、《浙建〔2013〕2号》文(关于印发《建筑幕墙安全技术要求》的通知)等。现针对各规范条文的规定来解读幕墙后锚固用锚栓的选用。 一、相关规范中对后锚固的规定原文摘录 (一)《混凝土结构后锚固技术规程》JGJ145-2013技术规程原文摘录 表4.1.1-1 锚栓用于结构构件连接时的使用范围 表4.1.1-2 锚栓用于非结构构件连接时的使用范围

《混凝土结构后锚固技术规程》中相关名词解析——概念及规范解析: 1. 扭矩控制式膨胀螺栓与位移控制式膨胀螺栓:两者的区别在于安装方式,扭矩控制式特指 螺栓的安装是借助力矩扳手达到设定的力矩值,促使螺杆入孔,进而端头膨胀片挤压混凝土的膨胀螺栓,位移控控制式特指需要使用敲击的方式促使螺杆入孔,进而端头膨胀片挤压混凝土的产生抵抗混凝土破坏时的膨胀螺栓; 2. 特殊倒锥形化学锚栓:我们比较熟悉的另一种称呼叫做定型化学锚栓,常见的锚杆呈一节 一节倒锥状或球状凸起的锚栓就是定型化学锚栓了。这种锚栓结合了普通化学锚栓和扩底锚栓的优点,一方面通过化学粘结剂保证锚栓与混凝土体的粘结强度,另一方面又通过倒锥体与混凝土机械锁键保证螺栓与混凝土体的连接强度,是一种具备较好抗震性能的化学锚栓。 3. 生命线工程:主要是指维持城市生存功能系统和对国计民生有重大影响的工程。主要包括 供水,排水系统工程;电力、燃气,石油输送管线等能源供给系统工程;电话和广播电视等情报通信系统工程;大型医疗系统工程和公路、铁路等交通系统的工程。所以针对大多数幕墙项目来说,基本均属于非生命线工程。 4. 开裂混凝土和非开裂混凝土:这两个概念其实并不是文字描述的那样以混凝土自身实际开 裂与否来区分,而是工程本身对混凝土构件在施工和使用中的不同要求。对于一般混凝土构件,允许其在内部产生一定宽度的裂缝的状态下工作,而对于一些大跨度混凝土预应力,大体积水工混凝土等重要混凝土结构,则不允许结构内部带裂缝工作,所以一般民用建筑幕墙我们推荐使用适用于开裂混凝土的锚栓。 5. 非结构构件:主要指建筑非结构构件(如维护外墙、隔墙、幕墙、吊顶、广告牌、储物柜 架等)及建筑附属机电设备支架(如电梯,照明和应急电源,通信设备,管道系统,采暖和空调系统,烟火监测和消防系统,公用天线)等。 针对幕墙行业,虽相对主体结构来说,幕墙被划入建筑非结构构件,但是作为一种持久性使用的外围护结构,它的安全性和适用性应满足住宅建筑设计要求,并应符合国家现行有关标准的规定。对其耐久性问题,由于材料性质、功能要求及更换的难易程度不同在具体设计上应予以重视。根据其重要性、破坏后果的严重性及其对建筑结构的影响程度,采取不同的设计要求和构造措施。对抗震设计要求的,尚应对非结构构件采取抗震措施或进行必要的抗震计算。对不同功能的非结构构件,应满足相应的承载能力、变形能力(刚度和延性)要求,并应具有适应主体结构变形的能力;与主体结构的连接、锚固应牢固、可靠,要求锚固承载力大于连接件的承载力。所以幕墙工程涉及到幕墙结构主受力位置的锚固,关系到工程整体的耐久性,适用性,安全性问题时,还是要严格对待对锚栓的选用的。

预埋件计算示例

预埋件计算书 ==================================================================== 计算软件:MTS钢结构设计系列软件MTSTool v2.0.1.6 计算时间:2013年03月27日10:32:08 ==================================================================== 一. 预埋件基本资料 采用化学锚栓:单螺母扩孔型锚栓库_6.8级-M20 排列为(环形布置):2行;行间距200mm;2列;列间距80mm; 锚板选用:SB12_Q235 锚板尺寸:L*B= 200mm×300mm,T=12 基材混凝土:C35 基材厚度:400mm 锚筋布置平面图如下: 二. 预埋件验算: 1 化学锚栓群抗拉承载力计算 轴向拉力为:N=10kN X向弯矩值为:Mx=9.5kN·m 锚栓总个数:n=2×2=4个 按轴向拉力与X单向弯矩共同作用下计算: 由N/n-M x*y1/Σy i2

=10×103/4-9.5×106×100/60000 =-13333.333 < 0 故最大化学锚栓拉力值为: N h=(M x+N*l)*y1'/Σy i')2 =(9.5×106+10×103×100)×200/60000 =28750=28750×10-3=28.75kN 所选化学锚栓抗拉承载力为(锚栓库默认值):Nc=90.574kN 故有: 28.75 < 90.574kN,满足 2 化学锚栓群抗剪承载力计算 X方向剪力:Vx=8.2kN X方向受剪锚栓个数:n x=4个 Y方向受剪锚栓个数:n y=4个 剪切荷载通过受剪化学锚栓群形心时,受剪化学锚栓的受力应按下式确定: V ix V=V x/n x=8200/4=2050×10-3=2.05kN V iy V=V y/n y=0/4=0×10-3=0kN 化学锚栓群在扭矩T作用下,各受剪化学锚栓的受力应按下列公式确定: V ix T=T*y i/(Σx i2+Σy i2) V iy T=T*x i/(Σx i2+Σy i2) 化学锚栓群在剪力和扭矩的共同作用下,各受剪化学锚栓的受力应按下式确定: V iδ=[(V ix V+V ix T)2+(V iy V+V iy T)2]0.5 结合上面已经求出的剪力作用下的单个化学锚栓剪力值及上面在扭矩作用下的单个锚栓剪力值公式 分别对化学锚栓群中(边角)锚栓进行合成后的剪力进行计算(边角锚栓存在最大合成剪力): 取4个边角化学锚栓中合剪力最大者为: V iδ=[(2050+0)2+(0+0)2]0.5=2.05kN 所选化学锚栓抗剪承载力为(锚栓库默认值):Vc=53.855kN 故有: V iδ=2.05kN < 53.855kN,满足 3 化学锚栓群在拉剪共同作用下计算 当化学锚栓连接承受拉力和剪力复合作用时,混凝土承载力应符合下列公式: (βN)2+(βV)2≤1 式中: βN=N h/Nc=28.75/90.574=0.3174 βV=V iδ/Vc=2.05/53.855=0.03807 故有: (βN)2+(βV)2=0.31742+0.038072=0.1022 ≤1 ,满足 三. 预埋件构造验算: 锚固长度限值计算: 锚固长度为160,最小限值为160,满足! 锚板厚度限值计算: 按《混凝土结构设计规范2002版》10.9.6规定,锚板厚度宜大于锚筋直径的0.6倍,故取 锚板厚度限值:T=0.6×d=0.6×20=12mm 锚筋间距b取为列间距,b=80 mm 锚筋的间距:b=80mm,按规范且有受拉和受弯预埋件的锚板厚度尚宜大于b/8=10mm,

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中定稿版

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中 HUA system office room 【HUA16H-TTMS2A-HUAS8Q8-HUAH1688】

后埋件设计中化学螺栓与膨胀螺栓混用问题目前幕墙后埋件的设计中,很多采用化学螺栓与膨胀螺栓混用的个案(如立柱预埋件分别为一对角线两枚化学螺栓,另一对角线两枚膨胀螺栓),例如我们本论坛中的一份贴中上传的图幕墙防雷节点也是混用了两种螺栓,但此类埋件计算如何取参数、公式?请大家讨论,化学螺栓与膨螺栓混用合理吗?两种螺栓混用幕墙的安全度有没有保证?应该如何精确计算? 1、膨胀锚栓和化学锚栓的特点及混用的合理性。 膨胀锚栓通过端部的扩张部分压入钻孔壁内,通过摩擦力承受荷载;膨胀锚栓的优点是抗剪能力好,价格便宜,施工方便。有些人说膨胀锚栓不好,主要认为膨胀锚栓会由于风载的循环反复拉压而产生松动,抗拉能力较差,但膨胀锚栓用于幕墙也快20来年了,并未有工程事故及相关资料来支持这种说法,我认为只要我们选用正规厂家的合格产品,留有合适的安全储备,膨胀锚栓用于一般的幕墙是没有问题的。 化学锚栓通过砂浆或合成树脂将锚栓与锚固基础结合成一个整体;化学锚栓的力学性能比同等规格的膨胀锚栓好很多;缺点是价格高,对施工要求高,如果现场钻孔,清孔达不到要求,还不如直接用膨胀锚栓。现在有个说法是化学锚栓不宜焊接,这个说法也不全对,国内一般的化学锚栓药剂采用的环氧树脂,这种材料优点是收缩率低、粘结力高,它能产生很高的强度,对清孔方法和效果敏感性小,但它主要的缺点是耐高温稳定性差,所以不宜焊接。还有一种化学药剂是乙烯基酯树脂,其粘结剂采用乙烯基酯/水泥,反应剂采用甲基丙烯酸脂和水,这种化学药剂除了环氧树脂的优点外,还有耐高温、化学稳定性高、耐久性高等优点;像慧鱼的化学锚栓就有采用的这种树脂,喜利得销售人员上次来我们公司讲课,也有谈到他们的化学锚栓采用的化学药剂并非环氧树

螺栓、高强螺栓、膨胀螺栓、化学锚栓

螺栓、高强螺栓、膨胀螺栓、化学锚栓 螺栓:普通螺栓分A、B、C三种。前两种是精制螺栓,较少用。一般说的普通螺栓,均指C级普通螺栓。在一些临时连接及需拆卸的连接中,常用到C级普通螺栓。建筑结构常用的普通螺栓有M16、M20、M24。某些机械工业粗制螺栓直径可能比较大,用途特殊。 高强螺栓:高强螺栓的材料与普通螺栓不同。高强螺栓一般用于永久连接。常用的有M16~M30。超大规格的高强螺栓性能不稳定,应慎重使用。建筑结构的主构件的螺栓连接,一般均采用高强螺栓连接。工厂出厂的高强螺栓并不分承压型还是摩擦型。(我们老大认为这种说法有待商榷,因为这两种高强度螺栓的制造标准不一样,有待核实。) 究竟是摩擦型高强螺栓与承压型高强螺栓?实际上是设计计算方法上有区别:(1)摩擦型高强螺栓以板层间出现滑动作为承载能力极限状态。 (2)承压型高强螺栓以板层间出现滑动作为正常使用极限状态,而以连接破坏作为承载能力极限状态。 摩擦型高强螺栓并不能充分发挥螺栓的潜能。在实际应用中,对十分重要的结构或承受动力荷载的结构,尤其是荷载引起反向应力时,应该用摩擦型高强螺拴,此时可把未发挥的螺栓潜能作为安全储备。除此以外的地方应采用承压型高强螺栓连接以降低造价。 普通螺栓与高强螺栓区别 普通螺栓可重复使用,高强螺栓不可重复使用。 高强螺栓一般由高强钢材制成(45号钢(8.8s),20MmTiB(10.9S),是预应力螺栓,摩擦型用扭矩扳手施加规定预应力,承压型拧掉梅花头。普通螺栓一般由普通钢材(Q235)制成,只需拧紧即可。 普通螺栓一般为4.4级、4.8级、5.6级和8.8级。高强螺栓一般为8.8级和10.9级,其中10.9级居多。 普通螺栓的螺孔不一定比高强螺栓大。实际上,普通螺栓螺孔比较小。 普通螺栓A、B级螺孔一般只比螺栓大0.3~。C级螺孔一般比螺栓大1.0~。 摩擦型高强螺栓靠摩擦力传递荷载,所以螺杆与螺孔之差可达1.5~。 承压型高强螺栓传力特性是保证在正常使用情况下,剪力不超过摩擦力,与摩擦型高强螺栓相同。当荷载再增大时,连接板间将发生相对滑移,连接依靠螺杆抗剪和孔壁承压来传力,与普通螺栓相同,所以螺杆与螺孔之差略小些,为1.0~。

锚栓拉拔力计算

化学锚栓拉拔力值计算 混凝土位置M12X160化学锚栓拉拔力为Nmax=3160.8N; 锚栓计算: 计算说明:层高3600位置石材幕墙后置埋件化学锚栓强度计算计算层间高度3600mm,分格最大宽度1000mm 石材幕墙自重1100N/平方米,地震荷载880 N/平方米风荷载标准值1000 N/平方米 埋件受力计算: 1、N1:埋件处风荷载总值(N): N1wk=Wk x B x Hsjcgx 1000 = 1.000X 1.000X 3.600X 1000 =3600.000N 连接处风荷载设计值(N): N1w=1.4X N1wk =1.4 X 3600.000 =5040.000N N1Ek:连接处地震作用(N): N1Ek=qEAk x B x Hsjcg x 1000 =0.880X 1.000X 3.600X 1000 =3168.000N N1E:连接处地震作用设计值(N): N1E=1.3X N1Ek =1.3X 3168.000 =4118.400N N1:连接处水平■总力(N): N1=N1w+0.5 X N1E =5040.000+0.5X 4118.400 =7099.200N 2、N2:埋件处自重总值设计值(N): N2k=1100X B x Hsjcg =1100X 1.000X 3.600 =3960.000N N2:连接处自重总值设计值(N): N2=1.2X N2k =1.2X 3960.000 =4752.000N 3、M:弯矩设计值(N - mm): e2:立柱中心与锚板平■面距离:70mm M:弯矩设计值(N - mm):

M= N2X e2 =4752X 70 =332640N - mm 4、埋件强度计算 螺栓布置示意图如下 d:锚栓直径12mm de:锚栓有效直径为10.36mm d0:锚栓孔直径16mm 一个锚栓的抗剪承载力设计值为 Nvb= nv X - x fvb 4 =1X " :122x 140 4 =15833.6N t:锚板厚度,为10mm 一个锚栓的承压承载力设计值为 Ncb= dx t x fcb (GB50017-2003 7.2.1-2) =12X 10X 305 =36600N 一个拉力锚栓的承载力设计值为 Ntb=顼:"2乂 ftb 4 =11801.5N 在轴力和弯矩共同作用下,锚栓群受力形式。 假定锚栓群绕自身的中心进行转动,经过分析得到锚栓群形心坐标为 [150,100],各锚栓到锚栓形心点的 Y 向距离平方之和为 TT X 10.362 4 X140 (GB50017-2003 7.2.1-1) (GB50017-2003 7.2.1-6)

化学锚栓计算

化学锚栓计算: 采用四个 5.6级斯泰NG-M12×110粘接型(化学)锚栓后锚固,h ef=110mm,A S=58mm2,f u=500N/mm2 ,f y=300N/mm2。 荷载大小: N=5.544 KN V=2.074 KN M=2.074×0.08=0.166 KN·m 一、锚栓内力分析 1、受力最大锚栓的拉力设计值

因为36 122 1 5.544100.166105042250My N n y ???-=-??∑=556 N >0 故,群锚中受力最大锚栓的拉力设计值: 12 i h Sd My N N n y = + ∑ 362 5.544100.166105042250 ???=+?? =2216 N 2、承受剪力最大锚栓的剪力设计值 化学锚栓有效锚固深度:ef h '=ef h -30=60 mm 锚栓与混凝土基材边缘的距离c=150 mm <10ef h '=10×60=600 mm ,因此四个锚栓中只有部分锚栓承受剪切荷载。 承受剪力最大锚栓的剪力设计值: 2 h Sd V V = =2074/2=1037 N 二、锚固承载力计算 1、锚栓钢材受拉破坏承载力 锚栓钢材受拉破坏承载力标准值: ,5850029000Rk s s stk N A f ==?=N 锚栓钢材破坏受拉承载力分项系数: S, 1.25001.2 2.0300 stk R N yk f f γ?===≥1.4 1.0-1.55 锚栓钢材破坏时受拉承载力设计值: ,,,29000 145002.0 Rk s Rd s RS N N N γ= ==N >h Sd N =2216 N 锚栓钢材受拉承载力满足规范要求! 2、混凝土锥体受拉破坏承载力 锚固区基材为开裂混凝土。 单根锚栓理想混凝土锥体破坏时的受拉承载力标准值:

化学锚栓计算书

化学锚栓计算书 一、拉弯作用下,单根锚栓最大拉力设计值 12i My N n y -≥∑0 (5.2.2-1) 形心点取锚栓中心 y1=0.240m V=45kN M=45×0.25=11.25kN ?m N=44kN 224411.250.24840.0840.24 ?-=?+? 5.5-17.6<0 12h sd i My N N n y =+∑(5.2.2-2) 不满足公式5.2.2-1

()/1/2 h sd i NL M y N y +=∑(5.2.2-3) =()()2224424011.251000480248023202160?+??=?+?+?14.6kN 二、部分锚栓受拉,群锚受拉区总拉力设计值(按6根锚栓受拉,2根锚栓受剪) g sd si N N =∑ (5.2.3-1) //1/h si sd i N N y y = (5.2.3-2) 2s N =14.6×320/480=9.73kN 3s N =14.6×160/480=4.86kN g sd N =14.6×2+9.73×2+4.86×2=58.38kN 三、混凝土锥体破坏受拉承载力设计值 ,,Rc,/Rd c Rk c N N N =γ (6.1.3-1) 根据表4.3.10 按非结构构件考虑 Rc,N γ=1.8 对于开裂混凝土,混凝土标号C60,hef=180mm 0 1.5,Rk c ef N = (6.1.3-3) =127.6kN ,0 ,,,,,0 ,c N Rk c Rk c s N re N ec N c N A N N A ψψψ= (6.1.3-2) 0,c N A =2,cr N s (6.1.4) 0,c N A =660×660=435600mm 2 ,c N A =()()11,22,0.50.5cr N cr N C S S C S S ++++ (6.1.5-4) 1S =220mm,2S =320mm 1C =,cr N C =330 , 1.5cr N C hef = =1.5×220=330mm =(330+220+330)(330+320+330) =880×980=862400 mm 2

开裂混凝土用锚栓选型(按照JGJ145-2013最新规范)

幕墙用开裂混凝土锚栓 JGJ145-2013混凝土结构后锚固技术规程P15,用于幕墙(非结构构件)的锚栓有以下画蓝色标记的四种(见下表): 1、扭矩控制式膨胀型锚栓(通过开裂砼测试的)是可以使用的,但是这种锚栓被很多设计师反对和忽视。 2、扩底型锚栓,“锁键效应”的受力与安全特性高于膨胀型锚栓和普通化学锚栓,也是未来锚栓选用的趋势。现在制约其大范围使用的因素是价格,但是随着使用量的增加,其价格会与普通化学锚栓持平,应该是一年左右的事情,因为扩底型锚栓在幕墙行业最近几年才开始推广,加上建筑行业的萎靡,建材市场出现饱和,价格战其实现在已经打响。 3、特殊倒锥形化学锚栓,科学的叫法应为“特殊倒锥形胶粘型锚栓”,国家为了与化学危险品划清界限。这种锚栓是承载力最好的锚栓,用于雨篷等受力比加大的构件,正品价格不菲,不推荐在幕墙大范围使用。 4、普通化学锚栓(适用于开裂混凝土),表格下面小字部分,有详细解释,适用于开裂砼的锚栓应进行开裂砼及裂缝反复开合下锚栓承载力的检测。也就是说,适用于幕墙的普通化学锚栓,必须通过开裂混凝土及裂缝反复开合下锚栓承载力的检测。这一点很重要,市面上的化学锚栓基本上都没有相关测试,只有在非开裂情况下的拉拔值,同时也不能提供权威机构测试的化学锚栓的使用寿命,这对于受拉及受弯构件来讲,存在很大的安全隐患。 对于新项目,为了保证幕墙结构的设计及使用安全,有必要按照规范的要求,强调一下普通化学锚栓必须通过“开裂混凝土认证”。同时,现在应用比较广泛的适用于开裂砼的普通化学锚栓有两种形式,一种是玻璃管包装或者塑料包装药剂配螺杆形式,一种是结构胶配螺杆的形式,这两种都可以采用,只是前者固化时间短,20~30摄氏度,5分钟固化,后者要45分钟左右,如果为了提高工作效率和工期,建议选择前者。其次,后者理论计算价格是稍便宜的,但是不容易控制用较量,一般注入三分之二即可,然而现场工人操作很容易或多或少,施工质量及成本难以控制和保证。 适用于开裂砼的玻璃管化学锚栓,全球唯一一款就是慧鱼的RSB化学锚栓。总之,建议在设计说明中写明:选择适用于开裂区混凝土的成套玻璃管化学锚栓或者预扩孔的后扩底锚栓,且需提供权威机构认证的开裂混凝土报告,或者ETA(欧洲技术认证)认证报告。提供50年使用寿命质保。优质项目直接推荐慧鱼、喜利得更好,这两个品牌有质量保证。因为国内锚栓仅有拉力及剪力测试,基本上没有开裂混凝土认证。

预埋件及化学锚栓计算

后置埋件及化学螺栓计算 一、设计说明 与本部分预埋件对应的主体结构采用混凝土强度等级为C30。在工程中尽量采用预埋件,但当实际工程中需要采用后置埋件,需对后置埋件进行补埋计算。本部分后置埋件由4-M12×110mm膨胀、扩孔锚栓,250×200×10mm镀锌钢板组成,形式如下: 埋件示意图 当前计算锚栓类型:后扩底机械锚栓; 锚栓材料类型:A2-70; 螺栓行数:2排; 螺栓列数:2列; 最外排螺栓间距:H=100mm; 最外列螺栓间距:B=130mm; 螺栓公称直径:12mm; 锚栓底板孔径:13mm; 锚栓处混凝土开孔直径:14mm; 锚栓有效锚固深度:110mm; 锚栓底部混凝土级别:C30; 二、荷载计算 V x:水平方轴剪力; V y:垂直方轴剪力; N:轴向拉力; D x:水平方轴剪力作用点到埋件距离,取100 mm; D y:垂直方轴剪力作用点到埋件距离,取200 mm; M x:绕x轴弯矩; M y:绕y轴弯矩;

T :扭矩设计值T=500000 N ·mm ; V x =2000 N V y =4000 N N=6000 N M x1=300000 N·mm M x2= V y D x =4000×100=400000 N·mm M x =M x1+M x2=700000 N·mm M y = 250000 N·mm M y2= V x D y =2000×200=400000 N·mm M y =M y1+M y2=650000 N·mm 三、锚栓受拉承载力计算 (一)、单个锚栓最大拉力计算 1、在轴心拉力作用下,群锚各锚栓所承受的拉力设计值: 1/sd N k N n ;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.1条) 式中,sd N :锚栓所承受的拉力设计值; N :总拉力设计值; n :群锚锚栓个数; 1k :锚栓受力不均匀系数,取。 2、在拉力和绕y 轴弯矩共同作用下,锚栓群有两种可能的受力形式,具体如下所示;(依据《混凝土结构后锚固技术规程》JGJ145-2013 第5.2.2条) 假定锚栓群绕自身的中心进行转动,经过分析得到锚栓群形心坐标为(125,100),各锚栓到锚栓形心点的x 向距离平方之和为:∑x 2=4×652=16900 mm 2; x 坐标最高的锚栓为4号锚栓,该点的x 坐标为190,该点到形心点的x 轴距离为:x 1= 190-125=65mm ; x 坐标最低的锚栓为1号锚栓,该点的x 坐标为60,该点到形心点的x 轴距离为:x 2= 60-125=-65mm ; 锚栓群的最大和最小受力分别为:

后置埋件锚栓适用范围规范解析

作者:黄潇校对:庞卫锋 随着幕墙行业的不断发展,幕墙的安全重要性已经被提上日程,开发商越来越关注幕墙的安全性,特别是幕墙主受力龙骨与主体结构之间的连接。从国家到地方,近几年新发布的规范对幕墙后锚固用锚栓的选择使用都进行了规定,比如《混凝土结构后锚固技术规程》、《混凝土结构加固设计规范》、《上海市建筑幕墙工程技术规范》、《浙建〔2013〕2号》文(关于印发《建筑幕墙安全技术要求》的通知)等。现针对各规范条文的规定来解读幕墙后锚固用锚栓的选用。 一、相关规范中对后锚固的规定原文摘录 (一)《混凝土结构后锚固技术规程》JGJ145-2013技术规程原文摘录 表锚栓用于结构构件连接时的使用范围 表锚栓用于非结构构件连接时的使用范围 《混凝土结构后锚固技术规程》中相关名词解析——概念及规范解析: 1. 扭矩控制式膨胀螺栓与位移控制式膨胀螺栓:两者的区别在于安装方式,扭矩控制式特指

螺栓的安装是借助力矩扳手达到设定的力矩值,促使螺杆入孔,进而端头膨胀片挤压混凝土的膨胀螺栓,位移控控制式特指需要使用敲击的方式促使螺杆入孔,进而端头膨胀片挤压混凝土的产生抵抗混凝土破坏时的膨胀螺栓; 2. 特殊倒锥形化学锚栓:我们比较熟悉的另一种称呼叫做定型化学锚栓,常见的锚杆呈一节 一节倒锥状或球状凸起的锚栓就是定型化学锚栓了。这种锚栓结合了普通化学锚栓和扩底锚栓的优点,一方面通过化学粘结剂保证锚栓与混凝土体的粘结强度,另一方面又通过倒锥体与混凝土机械锁键保证螺栓与混凝土体的连接强度,是一种具备较好抗震性能的化学锚栓。 3. 生命线工程:主要是指维持城市生存功能系统和对国计民生有重大影响的工程。主要包括 供水,排水系统工程;电力、燃气,石油输送管线等能源供给系统工程;电话和广播电视等情报通信系统工程;大型医疗系统工程和公路、铁路等交通系统的工程。所以针对大多数幕墙项目来说,基本均属于非生命线工程。 4. 开裂混凝土和非开裂混凝土:这两个概念其实并不是文字描述的那样以混凝土自身实际开 裂与否来区分,而是工程本身对混凝土构件在施工和使用中的不同要求。对于一般混凝土构件,允许其在内部产生一定宽度的裂缝的状态下工作,而对于一些大跨度混凝土预应力,大体积水工混凝土等重要混凝土结构,则不允许结构内部带裂缝工作,所以一般民用建筑幕墙我们推荐使用适用于开裂混凝土的锚栓。 5. 非结构构件:主要指建筑非结构构件(如维护外墙、隔墙、幕墙、吊顶、广告牌、储物柜 架等)及建筑附属机电设备支架(如电梯,照明和应急电源,通信设备,管道系统,采暖和空调系统,烟火监测和消防系统,公用天线)等。 针对幕墙行业,虽相对主体结构来说,幕墙被划入建筑非结构构件,但是作为一种持久性使用的外围护结构,它的安全性和适用性应满足住宅建筑设计要求,并应符合国家现行有关标准的规定。对其耐久性问题,由于材料性质、功能要求及更换的难易程度不同在具体设计上应予以重视。根据其重要性、破坏后果的严重性及其对建筑结构的影响程度,采取不同的设计要求和构造措施。对抗震设计要求的,尚应对非结构构件采取抗震措施或进行必要的抗震计算。对不同功能的非结构构件,应满足相应的承载能力、变形能力(刚度和延性)要求,并应具有适应主体结构变形的能力;与主体结构的连接、锚固应牢固、可靠,要求锚固承载力大于连接件的承载力。所以幕墙工程涉及到幕墙结构主受力位置的锚固,关系到工程整体的耐久性,适用性,安全性问题时,还是要严格对待对锚栓的选用的。

相关文档
最新文档