关于地铁通风空调系统设计探讨

关于地铁通风空调系统设计探讨
关于地铁通风空调系统设计探讨

关于地铁通风空调系统设计探讨

曾玲玲余松松

【摘要】针对地铁区别于地上建筑的特殊情况,对地铁通风空调系统的设计进行总结及分析,简单介绍了地铁通风空调系统的构成,重点对各种系统的设计以及不同环境条件下节能运行模式进行探讨。

【关键词】地铁;隧道;通风空调系统;设计

Design discussion on Ventilation and Air Conditioning

Zeng Ling-ling,Yu Song-song

Abstract: Aiming at the special condition of difference from metro and ground buildings, this paper summarizes and analyzes the design of Ventilation and Air Conditioning system of metro, simply introduces the compositions of the Ventilation and Air Conditioning system of metro, and discusses mainly the design of various systems and energy conservation models in different environment.

Key words: metro; tunnel; Ventilation and air conditioning system; Design

随着生活水平的提高,近几年来,城市轨道交通在我国各城市迅速发展起来,通风空调系统作为地铁系统中的一个重要组成部分,不仅能为乘客提供舒适的过渡环境,为工作人员提供舒适的工作环境,而且为地铁安全及正常运营提供保障。

1 概述

根据地铁环境及运营特点,通风空调系统应具备入以下几种功能[1][2]:

(1)列车正常运行时,保证地体内部空气环境在规定的标准范围内,为乘客提供一个舒适的过渡环境,为管理人员提供舒适的工作环境;

(2)根据地铁系统内部各种设备的工艺要求,提供空调或通风换气,以保证工艺设备良好运行所需的环境要求;

(3)列车阻塞在区间隧道时,对阻塞隧道进行机械通风,为列车空调系统提供运行所需的空气冷却能力和新风量,在阻塞期间维持列车内部乘客能接受的环境条件,或向疏散的乘客提供足够的新鲜空气,使乘客能迎着新风方向疏散;

(4)列车在地铁内发生火灾时,根据火灾发生地部位和具体位置,对事发点采取有效的通风、排烟措施,

曾玲玲:(1983—)女,硕士,毕业于重庆大学,2009年加入中铁隆公司,现任职于公司设计部。

余松松:(1982—)助理工程师,毕业于华东交通大学,任职于中铁二局集团建筑有限公司。

以诱导乘客安全撤离火场及消防人员进行灭火工作。

根据以上功能,将地铁通风空调系统分成如图1所示几个组成部分,三个风系统和一个水系统。

图1 地铁通风空调系统的组成

2 地铁车站通风空调各系统设计探讨

2.1 隧道通风及排烟系统

由图1可知,隧道通风系统包括区间隧道通风及排烟系统和车站隧道通风及排烟系统。

区间隧道通风系统主要负责两个车站之间隧道的通风与排烟,包括自然通风和机械通风。地铁隧道正常通风应采用活塞通风,但活塞效应所产生的换气量是有限的,而且在地铁的实际建设中,由于环境条件的限制,可能导致活塞风道无法修建或着由于风亭出口位置的关系致使活塞风道过长,以致活塞效应失效。因此,根据隧道通风系统的要求以及节能要求,在条件允许的情况下,车站两端上下行线路应设一个活塞风道以及相应的风井,作为正常运行时依靠列车活塞作用实现隧道与外界通风换气的通道,同时,在隧道与其相对应的活塞风井之间还应设置一套隧道风机系统,该系统在无列车活塞作用时对隧道进行机械通风。而且在设置上要求车站每端上下行线的两套隧道风机可相互为备用。通过对活塞通风风道以及机械通风风道上的各个组合风阀的开闭与隧道风机启停的各种组合,构成多种运行模式,满足不同的运营工况要求,达到节能效果。

地铁列车由于高速运行而消耗大量电能,通过摩擦,刹车等运动又将产生大量的热能,列车产热的67%都将分布站台[3],使车站温度升高。因此,地下车站宜在列车停靠在车站时的发热部位设置排风系统[2]。车站隧道通风一般设置轨顶排风和轨底排风,一般轨顶排风量与轨底排风量之比为6:4。通过局部排风的方法,有效地阻止热空气扩散,并将其排出。

2.2 车站公共区通风空调及防排烟系统

对车站空调系统进行设计时,首先应根据工程的实际情况选择车站的环境控制系统,车站环境控制系统分为:开式系统、闭式系统和屏蔽门系统。车站环境控制系统的不同,其负荷计算和送排风形式设计也可能有所不同。开式系统一般采用横向送排风,也可将车站与区间隧道连成一体进行纵向通风;闭式系统通常将

送风管沿车站长度方向布置在站台两侧,风口朝下均匀送风,在站台和轨顶设置排风系统;屏蔽门系统中车站成为独立的空调场所,一般将送风管沿车站长度方向布置在站台和站厅上方两侧,风口朝下均匀送风,回风管设置在车站中间上部,也可采用车站两端集中回风的形式[3]。文献[4]对开闭式系统与屏蔽门系统的差别和各自的特点进行了比较,指出总投资上,屏蔽门系统要低于开闭式系统,同时屏蔽门系统具有一定的节能效果。目前地铁系统已广泛采用了屏蔽门系统。

车站公共区通风空调系统一般采用全空气系统。因地铁车站空间小,各种系统管线繁多,难以单独设置排烟系统,因而常将排烟系统与空调系统的回排风系统合用(如图2),此做法可提高系统运行的可靠性,并可减小初投资[5]。

图2 空调系统原理图[5]

按照节能要求,根据室外空气的状态,可以调整空调运行模式,达到节能效果。当室外新风焓值大于车站回风焓值时,采用空调小新风运行(回风工况),全新风风阀关闭,排风机的排风阀关闭,回风风阀打开,回风与新风混合,经处理后送入车站公共区。当室外新风焓值小于车站回风混合点焓值且其温度大于空调送风温度时采用空调全新风运行,此时全新风风阀打开,回风风机的回风风阀关闭,排风风阀打开,回风经排风机直接排至排风道,室外新风经空调器处理后送至车站公共区;当室外新风温度小于空调设计送风温度时,室外新风不经冷却处理,由空调器直接送入车站公共区,回风直接排至室外。

当公共区有一处发生火灾时,空调系统停止运行,即相应的送风、回风机关闭相应的风阀,启动排烟风机对着的着火区所在区域集中排烟,防止烟气蔓延。

2.3 车站管理及设备管理用房的通风空调和防排烟系统

车站设备管理用房主要包括车控室、站长室、站务室、会议室、卫生间等运营管理用房和通信机房、信

号房、变电所、环控机房等设备用房[5]。根据各设备管理用房的不同使用功能要求,结合实际建筑布局情况,对此部分房间进行分类,大致可划分为三类:第一类如车控室、会议室等主要管理用房,均需要设置舒适性空调以满足人员和设备的要求;第二类像通信室、信号房等;第三类如卫生间等。第一类房间常采用空气-水(风机盘管加新风)系统,第二类房间可采用全空气系统,第三类房间可采用全通风系统,采用送、排风机通过风管和防火阀对此类房间进行通风换气。

进行排烟设备选择时,由于通风空调兼排烟系统调试是按通风空调风量进行调试,因此需根据每一防烟分区的排烟量是否满足面积1m3/min进行校核。根据文献[2],进行防烟分区时,每个防烟分区面积不超过750m2,且排烟设备按照同时排除两个防烟分区烟量配置,以确保发生火灾时排烟设备能满足排烟要求。

2.4 水系统

空调水系统设计时,应优先考虑自然冷源,同时考虑到吸收式冷水机组对比较封闭的地下环境造成影响,因此,冷源设备应采用电动压缩式。冷水机组的选用不宜少于2台,不需设置备用机组,当只选用一台冷水机组时,宜选用多机头联控型机组。冷冻水系统应采用闭式系统,冷却水循环使用,冷冻水泵、冷却水泵宜与冷水机组一一匹配,可不设备用。[2]

3 结束语

作为现代化方便快捷的公共交通工具,地铁对城市的迅速发展有着重要的作用。地铁通风空调系统作为地铁系统必不可少的组成部分,其能耗不可忽视。通风空调系统在满足其功能及节能的条件下,还应不影响城市美观,其系统中风亭,冷却塔等应尽量与周围环境相协调。

参考文献:

[1]林世生.浅谈地铁车站通风空调系统设计中的优缺点[J].广东建材2008,5:188-190.

[2]国家标准《地铁设计规范》(GB50157-2003).

[3]董志周,吴喜平.地铁车站热环境分析[J].上海节能,2003,(5):36-40.

[4]侯桂敏.同一地铁车站两种空调通风系统的比较[J].铁道工程学报,2006,5:104-108.

[5]姚景生.地铁车站通风空调系统设计[J].论文集(铁路暖通空调专业2006年学术交流会):31-32.

地铁站通风空调施工方案

1、通风空调系统概述 本标段车站属于高架车站,车站通风空调系统主要由车站公共区通风空调系统(简称车站大系统)和车站设备管理用房通风空调系统(简称车站小系统)两部分组成。 车站大系统以自然通风方式为主,系统主要设备包括多联式新风系统、分体空调、墙壁式排风扇等。车站小系统主要设备包括送风机、排风机、墙壁式排风扇、吸顶式排气扇、多联式空调系统、多联式新风系统、分体空调等。 2、施工组织 组织有经验的施工骨干按照图纸进行定位放线、预留预埋、加工制作与安装。协调好与其它各专业的关系,确保质量、安全和工期满足工程要求。 3、施工重点难点控制 通风空调系统由通风系统和空调系统两部分组成,其中风管的制作与风管安装、水管的安装、空调工程设备安装、管道的检验试验、管道、设备绝热施工、空调设备的单机试运转与调试和无负荷联合试运转与调试构成了通风空调施工的主线,也是影响整个系统质量的关键点,需进行重点控制。 3.1风管制作与安装

3.1.1材料的选择 本车站所有风管均采用镀锌钢板风管材料,镀锌钢板的厚度不小于下表规定: 防火风管的本体、框架与固定材料、密封垫料必须为不燃材料,其耐火等级应符合设计规定。 3.1.2风管制作 制作时以机械加工为主,手工制作为辅,采取场内预制;预制过程中应严格控制预制风管规格尺寸和设计风管规格尺寸一致,风管板材拼接的咬口缝应错开,不得有十字形品接缝。风管预制作业分为法兰和风管两条制作线,进行平行流水作业

3.1.3风口加固 风管边长大于630mm、保温风管边长大于800mm,管段长度大于1250mm或低压风管单边平面积大于1.2m2,中、高压风管大于1.0m2,均应采取加固措施。 边长小于或等于800mm的风管,宜采用愣筋、楞线的方法加固;中、高压风管的管段长度大于1200mm时,应采用加固框的形式加固;高压风管的单咬口缝应采取加强措施加固;风管的板材厚度大于或等于2mm时,加固措施的范围可适度放宽。几种常用加固的形式如下:

地铁机电安装知识(通风空调概述)

目录 1、概述 (3) 2、通风空调系统分类 (3) 3、通风空调各系统组成及工作原理 (3) 4、车站排热系统 (7) 5、送排风(排烟)系统 (9) 6、空调通风(净化)系统 (11) 7、空调水系统 (13) 8、通风空调系统的控制方式 (15)

地铁通风空调系统简介 1、概述 地铁,顾名思义,是在地下运行的轨道交通工具。它是由区间隧道和站区构成的封闭式空间,它在作为城市地下交通的同时还肩负着战时人防的重要功能。地铁是作为一个特殊的公共场所,人口密度高,流量大,所存在的潜在危险也不容忽视。在这个封闭的空间里,由于空气流通不畅,随着季节、天气、客流量的变化而变化,同时地铁设备的运行所散发的热量及废气若不及时排除,将使本站和区间温度空气污染温度上升,空气质量下降,严重影响到地铁乘客乘车舒适度及车站办公人员工作环境的乘车环境。如何有效的控制室内环境,为乘客提供一个舒适、安全的乘车环境,如何在发生灾害(例如火灾)情况能够迅速和安全的帮助乘客离开现场,减少乘客和公共设施的损失通风空调系统发挥着极其重要的作用。归纳起来地铁通风空调系统有以下四方面作用: 1)为乘客正常行车创设舒适的环境; 2)为工作人员提供合理的工作环境; 3)保证设备正常运行; 4)事故及灾害情况下,进行合理的气流组织,及时排烟,诱导乘客疏散。 2、通风空调系统分类 2.1地铁通风空调系统按其质量验收规范分部工程分为:送排风系统、防排烟系统、空调风系统、冷却水系统、冷冻水系统

2.2按功能区域分为:隧道通风系统、排热系统、送排风系统、空调大系统(公共区空调通风)、空调小系统(设备办公区及设备机房空调通风)、空调水系统。 3、通风空调各系统组成及工作原理 3.1隧道通风系统组成 区间隧道活塞风与机械通风系统(兼排烟系统),简称TVF系统。隧道通风系统组成按照风亭至轨行区排列,一般主要设备包括:风亭、立式组合风阀、消声器、渐扩管、耐火软接、事故风机(可逆转轴流风机)、耐火软接、渐扩管、消声器、卧式风阀、就地控制箱、控制柜,按照该组成方式,在每个车站的两端安装分别两套,按照不同的功能模式,实现与风机同步配置运行的电动风阀(与风机开启状态一致),实现风机正反转(送排风)的单台或两台并联运行。其系统设备组成详见图1

广州地铁通风空调系统设计说课讲解

广州地铁通风空调系统设计 简介:随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 关键字:通风空调地铁冷负荷 前言 随着广州地铁一号线于1997年的开通,地铁的客运量大、速度快、安全准点以及舒适的特点日益显现出来,并迅速得到了广大市民的欢迎,取得了巨大的经济和社会效益。在番禺和花县撤市改区后,市政府及地铁总公司为实现广州现代化大都市的目标,以及尽快形成地铁网络,完善广州市的交通网络,将在今后的几年里迅速发展地铁二号线以及三号线,以至更多线路。笔者有幸参加了一号线的设计工作,在二号线工程中又参加了新港东站的设计,本文就新港东站的通风空调系统的设计问题与大家进行探讨,供参考。 一、工程概述

广州市地下铁道二号线首期工程全程约23.245km,南起于琶洲站,北终于江夏站,共设20个车站。新港东站是首期工程中第二个车站,编号为202,位于华南快速大道东侧新港东路中心,东侧为琶洲站,西侧为磨碟沙站,附近有广州会展中心和广州博览中心等大型建筑。车站总长度206.2m,标准段宽度16.5m,为单层明挖侧式站台的地下车站,站台在轨道两侧纵向布置,站厅为服务及中转区域,设在南北两侧中部,站台边缘设置屏蔽门与轨道隔开。由于轨道将车站分割为南北两侧,因此南北两侧均设环控机房及设备管理用房。车站东端隧道风亭及排风亭设于车站东端南北两侧,西端隧道风亭及排风亭,车站中部新风亭及排风亭结合出入口设于中部南北两侧,本车站南北两侧各有六个风亭。整个车站呈一个古字“車”形。车站总布置详见附图1。 根据隧道通风系统的要求,在车站两端布置相应的隧道通风设备。根据地铁运营环境要求,在车站站厅站台的公共区部分设置通风空调和防排烟系统,正常运行时为乘客提供过渡性舒适环境,事故状态时迅速组织排除烟气(简称大系统)。根据地铁设备管理用房的工艺要求和运营管理要求设置通风空调和防排烟系统,正常运行时为运营管理人员提供舒适的工作环境和为设备正常工作提供必需的运行环境,事故状态时迅速组织排除烟气(简称小系统)。

轨道空调系统简介

地铁通风空调系统 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1、开式系统 开式系统是应用机械或"活塞效应"的方法使地铁内部与外界 交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1)活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道内的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以内、风道面积大于10m2时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全"活塞通风系统"只有早期地铁应用,

现今建设的地铁多设置活塞通风与机械通风的联合系统。 暖通-空调-在线 2)机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2、闭式系统 闭式系统使地铁内部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的"活塞效应"携带一部分车站空调冷风来实现。这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间内每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。暖通空调在线 3、屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以内时,应采用空

地铁通风及空调工程施工方案

西安地铁 通风空调工程施工方案 编制人: 审核人: 批准人: XXX有限公司 西安地铁XX项目经理部 XXX年02月17日

目录 第一章、编制说明 (4) 1.1编制前言 (4) 1.2编制依据 (4) 1.3编制原则 (5) 第二章、工程概况 (6) 2.1工程简介 (6) 2.2工程特点 (8) 2.3施工范围 (8) 第三章、施工总体部署 (9) 3.1施工组织管理体系及质量管理体系 (9) 3.1.1施工组织管理体系 (9) 3.1.2质量管理体系 (9) 3.1.3施工及质量管理机构设置 (10) 3.2施工组织作业计划 (10) 3.2.1总体原则 (10) 3.2.2施工顺序 (11) 3.2.3劳动力安排 (12) 第四章、施工准备……………………………………………………… 12 4.1组织准备 (12) 4.2技术准备 (12) 4.3劳动力准备 (13) 4.4施工机械、机具准备 (14) 4.5材料、设备准备 (16)

4.6施工现场用电准备 (17) 4.7建立健全各项管理制度 (17) 第五章、主要施工方法及技术措施…………………………………… 18 5.1施工依据及主要参考资料 (18) 5.2现场施工及质量控制流程图 (19) 5.3主要施工方法及技术措施 (20) 5.3.1、通风与空调施工顺序安排 (20) 5.3.2、通风管道施工工艺流程图 (22) 5.3.3、风管制作工艺流程:风管制作工艺流程图 (23) 5.3.4、风管部件制作工艺流程 (34) 5.3.5、风管及部件安装工艺流程 (36) 5.3.6、风机安装工艺流程 (45) 5.3.7、风柜安装工艺流程 (49) 5.3.8、风管及部件保温工艺流程 (50) 5.3.9、冷冻、冷却、冷凝水管道及设备安装工艺流程 (52) 5.3.10、制冷设备的安装 (61) 5.3.11、通风空调系统调试工艺流程 (63) 第六章工期目标及工期保证措施 (69) 6.1工期目标 (69) 6.2工期保证措施 (69) 第七章、施工进度计划安排…………………………………………… 70 第八章、施工资源投入………………………………………………… 71 第九章、现场的材料供应和管理措施…………………………………

浅谈地铁通风空调系统的新模式

龙源期刊网 https://www.360docs.net/doc/dd8345976.html, 浅谈地铁通风空调系统的新模式 作者:杨涛 来源:《建筑建材装饰》2016年第10期 摘要:在地铁通风空调系统的建设中,地铁通风空调系统主要有屏蔽门系统、非屏蔽门系统以及二者相结合的复合式系统三种系统。其中复合式系统可以说是前两种系统模式的继承与发展。通过大量实验数据可以得出,复合式系统是三者中全年能耗最低的一种系统模式。 关键词:地铁通风空调系统新模式;复合式系统 1.地铁通风系统的建设与设计 1.1早期降温模式 在19世纪60年代早期,于英国建成地铁并投入使用,而地底空气流通与地面空气流通完全不一样,地下环境较为封闭,空气流通缓慢,不容易散热,造成的不仅是温度的上升,还有细菌的滋生,由此通风系统就显得不可或缺。早期使用时,人流量并不大,因此地下活动产生的热效应并不显著,通过简单的设备将热空气引流至地上便可解决。而随着社会发展,地铁建设发展迅速,人流量的增加,使得地下温度逐渐升高,特别是在夏季,传统的通风系统已不能满足人们对温度的要求,即需要运用人工降温技术,因地制宜,采取不同方案达到降温的目的。 1.2闭式系统 城市下的地铁路线错综复杂,构成的空间如此之大,为了达到基础卫生部标准,必须建设好通风系统,使之与外界相连,避免形成一个密闭的环境,而此通风系统使用机器或自然通道的形式,使其空气进行流通,确保地下空间的温度及卫生。同时这也是最常用的方式。 在实施人工降温后,制冷能量需求增加,即使得在空调高峰期时间内关闭通风通道,使地下空间与地上大气环境相隔,也是当下所称的屏蔽门系统。 1.3屏蔽门系统 在闭式条件下的地铁环境中,隧道中列车是大量热负荷的主要来源,最初实施人工降温,只是为乘客提供更为舒适的行车环境,并未将热负荷考虑进去。根据能量守恒定律,列车输入的能量为电能,运行中一切动作包括启动、加减速等机械能均由电能转化而来,但是,并非所有的电能都转化为了机械能,还有大部分的能量以热能的形式散发在空气中,加重热负荷。有关部门近些年一直致力于提高能源的有效利用率,虽然从某种程度上的的确确减少了热量的产生,但是剩余的部分仍是不可估量。依旧需要由通风系统转至地上。

地铁车站通风空调系统优化设计探讨

地铁车站通风空调系统优化设计探讨 【摘要】以缩小地铁车站规模、减少工程投资为出发点,在满足地铁车站通风空调系统基本功能的前提下,通过对地铁隧道通风系统和空调水系统遇到的设计问题进行总结,提出优化设计方案供设计参考。隧道通风系统可通过设置单活塞风井来压缩车站规模,减少活塞风亭对车站周围环境的影响。同时特殊区段的隧道通风系统,可在充分了解地铁隧道通风系统原理的基础上优化系统设计,降低车站土建规模、避免对重要场合周围建筑景观的影响。地铁车站空调水系统可以选择设置集中冷站和采用新型制冷设备等方式来减小冷水机房的面积。 【关键词】地铁车站;通风空调;优化设计 0 引言 城市轨道交通作为城市中重要的交通工具,具有舒适、快捷等特点。随着我国国民经济的发展与城市化水平的不断提高,越来越多的城市开始建设并拥有地铁。地铁通风空调系统设备庞大,其布置方案的合理与否直接影响车站的建筑规模。地铁车站一般分为公共区和设备区,通风空调系统是占用机房最多的机电系统,根据系统形式的不同,通常占用设备管理用房面积的1/2~1/3。如何在满足系统功能的前提下,减少通风空调系统占用的设备用房面积,减小车站土建规模,降低地铁投资一直是地铁设计者的努力方向。 以缩小地铁车站规模为出发点,在满足系统基本功能的前提下,本文通过对实际设计过程遇到的问题进行总结,提出设计方案供设计参考。 1 车站隧道通风系统优化设计方案 目前上海、广州、深圳、成都等城市设计的地铁都采用了屏蔽门(Platform Screen Door,PSD)系统,很多采用开式或闭式系统的车站也加装了屏蔽门。屏蔽门系统的设置可以有效防止乘客有意或无意跌入轨道,减小噪声及活塞风对站台候车乘客的影响,改善了乘客候车环境的舒适度,具有节能、安全、美观等特点,在地铁中的应用越来越广泛。 屏蔽门系统的应用使隧道与车站分隔开来,不仅减小了车站公共区空调负荷,对隧道通风系统的形式与运行效果也产生了影响。 1.1 单活塞风井方案

地铁站通风空调工程施工工序

地铁站通风空调工程施工工序 内容提要:上海轨道交通11号线云锦路地铁站通风空调系统分区间隧道通风系统、车站公共区空调通风系统、车站设备管理用房通风空调系统、空调水系统。我作为通风技术主管,要充分地了解现场的施工工序并做好施工协调工作。根据我这一年的现场施工经验,提出了我对现场施工中的重点、难点,及处理对策,并根据通风空调系统特点,提出对土建结构的相关要求和注意事宜。 关键词:云锦路站;通风空调;系统;施工重点、难点;大型设备;隧道风机;后砌墙;风道;防腐;保温;组合风阀;风阀墙;预留孔洞 1. 云锦路站通风空调系统特点 1.1云锦路站通风空调工程分为以下几大系统: 1.1.1区间隧道通风系统,根据区间隧道通风系统要求,本车站两端区间通风机房内分别设置2台可逆转耐高温轴流风机(TVF-Ⅰ1,Ⅰ2,Ⅱ1,Ⅱ2)和相应活塞/机械风阀(TVS/DZ-Ⅰ1~Ⅰ7,TVS/DZ-Ⅱ1~Ⅱ7)。每端隧道风机的部署既可满足独立运行,又可以相互备用或并且向同一侧隧道送风或排风。车站两端设置活塞/机械通风亭,对应上、下行线各1座,共4座。作为正常运行时依靠列车活塞作用实现隧道与外界通风换气的通道(活塞风道)。活塞风道、隧道风机上设有组合式风阀,通过相关风阀的启闭,系统可进行活塞通风或机械通风的转换。每端2台TVF风机亦可通过风阀的转换,并联运作或相互备用,以满足车站相邻区间隧道正常工况、阻塞工况通风排热或火灾工况时的排烟要求。车站西、东端排热风机房内分别设置1台排热风机(UOF-Ⅰ1,Ⅱ1),和站台下排热风道及屏蔽门外车行道顶排热风道联通,通过风阀转换、与TVF通风系统联合运作以实现区间隧道正常工况。 1.1.2车站公共区空调通风系统,根据地铁运营环境要求,在车站站厅、站台公共区设置通风空调和防排烟系统,正常运行时为搭客提供过渡性安宁环境,事故状态时迅速组织排除烟气。该系统在车站底下一层两端环控机房内各设置2台组合式空调机组(KT-Ⅰ1,Ⅰ2,Ⅱ1,Ⅱ2),2台回/排风机(HPF-Ⅰ1,Ⅰ2,Ⅱ1,Ⅱ2)及1台空调新风机(KXF-Ⅰ1,Ⅱ1),分别承担一半站厅和一半站台公共区的空调通风负荷,采用全空气低速系统。车站站厅、站台和联络通道共分为5个防烟分区,排风管兼做排烟风管。 1.1.3车站设备管理用房通风空调系统,根据地铁设备办理用房的工艺要求和运营办理要求设置通风空调和防排烟系统,正常运行时为运营办理人员提供安宁的工作环境和为设备正常工作提供必须的运行环境,事故状态时迅速组织排除烟气。 1.1.4 空调水系统,由制冷机组,冷却塔,水泵及相应阀门和循环管道组成。 2. 车站通风空调施工重、难点分析 2.1施工过程中的重点和难点 2.1.1 风管与别的管线的综合部署难,地铁工程由于空间狭小,但综合管线多,尤其是风管,截面积比较大,是整个综合管线设计的重点; 2.1.2 大型设备吊装和运输难,如隧道风机,冷水机组,组合风阀、结构消声器等运输和安置都比较困难。

地铁通风空调系统设计分析

地铁通风空调系统设计分析 发表时间:2019-08-16T09:48:31.743Z 来源:《科技新时代》2019年6期作者:骆运霖[导读] 因此要求设计人员在进行地铁通风空调系统设计时,必须要加强对相关结构和构件的设计应用,提高设计质量。 广州广电运通智能科技有限公司广东广州 510663 摘要:交通事业是我国的基础建设事业,交通事业的发展对于我国经济社会发展的重要性是毋庸置疑的,所以随着我国现代化建设水平的不断提高,我国的交通事业发展也在进一步加快。当前我国的道路交通系统建设逐渐向着智能化和立体化的方向发展,特别是地铁作为当前城市的新型交通方式,给人们的生活提供了更大的便利。地铁在建设的过程中,通风空调系统是十分必要的,可以保证地铁车厢内空气的正常流通,保证空气质量,这对于保护人们的身体健康也有着积极作用。所以本文就对地铁通风空调系统进行分析,并探究其设计和优化的有效策略。 关键词:地铁;通风空调系统;设计地铁是目前我国城市交通体系中的重要构成部分,很多城市都已经进行了地铁的建设,而地铁作为一种地下公共交通方式,其建设和发展能够使城市交通系统向着更加立体化的方向发展,提高城市交通系统的运行效率和水平,给人们的出行带来更大的便利,促进城市的快速发展。在地铁系统中,通风空调系统是其中的基础系统,通风空调系统的设计和施工能够为人们提供更舒适的出行体验,所以在现代地铁的设计工作中,必须要加强通风空调系统的设计和施工。 一、地铁通风空调系统的类型 1、开式系统 开式系统是早期地铁通风空调系统的主要类型,其具体又可以被划分为带空调的开式系统和不带空调的开式系统,其主要区别在于通风空调系统在运行时是否使用空调进行辅助。带空调的开始系统在运行时,需要利用空调对空气流通进行辅助,以此来提高通风效果;而不带空调的开始系统在运行时,不需要使用空调进行辅助,只是利用了隧道的方向流动,充分利用自然风带动空气流通。所以由此可见,开式系统在运行时具有低能耗的明显优势,其自然通风率更高,对自然风的利用率也更高,可以减少能源浪费,但是却无法充分满足乘客的需求。 2、闭式系统 闭式系统是与开式系统相对应的地铁通风空调系统,这种系统与开式系统存在着明显的差异,地铁车厢内部与外部是完全隔离的地铁车厢内部与外部是完全隔离的,其通风功能的实现完全依赖于空调设备和排风系统等。所以闭式系统在设计和施工的过程中,需要使用到大量的相关基础设备,而且设备的运行也需要消耗大量的能源,所以能耗比较高。但是,闭式系统能够应用于更大运载量的地铁站中,而且由于地铁内外的充分隔绝,所以可以安装大量的空调和排风系统,与自然风相比,能够为乘客创造更舒适的环境。 3、屏蔽门式系统屏蔽门式系统是近几年来地铁通风空调系统中发展出来的新类型,该系统已经在地铁站的通风空调中得到了有效的应用,其在运行的过程中,屏蔽门能够将地铁的隧道与车站隔离开来,这样地铁站内的通风系统就可以充分发挥出作用,其隔热性能良好,也可以有效保持地铁站内的温度适宜。屏蔽门还具有隔音效果,所以可以有效避免噪声对车站内造成影响。所以屏蔽门式系统已经成为了地铁通风空调系统的主要发展类型,其运行稳定性更强,能耗也得到了有效控制,通风性能更强。 二、地铁通风空调系统设计的问题 1、参数不合理 地铁通风空调系统在设计的过程中,参数的选择是极为重要的,这会对整个系统的功率、功能的发挥以及施工都会产生影响,进而影响到工程的整体质量。地铁通风空调系统的参数会受到多方面因素的影响,比如材料性能、质量以及相关设备的分布等,而设计人员往往没有对其进行深入分析,导致参数设置不合理,使地铁通风空调系统发挥出应有的作用。 2、能耗高 地铁通风空调系统在运行的过程中势必会消耗大量的能源,这是无法避免的,但是能耗却是可以控制的,可是大部分的设计人员在进行系统设计时,却没有考虑到其能耗问题,只考虑其质量和功能,对自然通风的利用率不足,空调系统的功能设置也不合理,这样使得通风空调系统的运行能耗加大。 3、结构不协调 地铁的通风空调系统结构比较复杂,所以在设计的过程中必须要保证结构的协调性,要严格遵循相关规范,并做好后期维护工作。但是很多设计人员在进行地铁通风空调系统的结构设计时,都存在着结构不协调的情况,无法对材料的用量和质量进行有效控制,这会给工程施工造成不利影响。 三、地铁通风空调系统的设计优化 1、利用自然风 在地铁通风空调系统的设计过程中,系统功能的实现不应该仅仅依赖于通风设备,否则会导致能耗过高,这不符合我国的可持续发展战略的要求。所以在现代地铁通风空调系统设计过程中,设计人员需要加强对自然风的利用,要利用自然通风适当替代排风设备的功能,以此来有效降低系统运行的能耗,从而达到节能减排。 2、完善系统冷源设置地铁的通风空调系统比较复杂,其在设计和运行的过程中能够发现,需要大量的设备进行辅助,这就导致了系统在运行的过程中会产生较大的能耗,同时设备本身的温度还会增加,这会使能耗进一步加大,能源的利用率降低。所以在地铁通风空调系统的设计工作中,必须要合理设置冷源,在每个组成部分分别设置不同的冷源,以此来实现对设备的降温和区域温度的调节,减少系统运行的能耗,提高能源利用率。 3、屏蔽门转换装置

浅谈地铁通风空调系统的优化控制

2019年6月 浅谈地铁通风空调系统的优化控制 郭 健 (中交铁道设计研究总院有限公司,北京100088) [摘 要]在社会不断发展的背景下,地铁工程建设逐渐受到人们的重视。作为地铁建设中的重要组成,有效的地铁通风空调系统建设对提升地铁工程整体建设质量,促进能源消耗的降低有着重要的作用。因 此,需要对地铁通风空调系统的优化控制提高重视度,结合有效优化控制策略提升空调系统的控制质量,进而促进地铁事业的可持续发展。基于此,本文针对地铁通风空调系统的优化控制进行探究,望具有参考价值。[关键词]空调系统;通风;地铁;优化控制文章编号:2095-4085(2019)06-0025-02 随着地铁事业的不断发展,地铁空调系统的控制作用与价值逐渐显现出来,并受到人们的高度重视。 有效的空调系统控制对降低地铁运行成本,促进地铁事业的可持续发展有着重要的作用。但是在地铁空调系统实际控制过程中,受到多种因素的影响,使其空调系统控制仍存在些许问题,对地铁的安全运行产生一定影响。基于此,需要认识到地铁空调系统控制的重要性,明确地铁通风系统的实际工作原理,结合有效的策略实现对空调系统的优化控制,进而降低地铁能源损耗,为地铁乘客营造安全,舒适的乘坐环境,促进地铁事业的可持续发展。 1 地铁通风空调系统的主要工作原理 当前,地铁的通风空调系统主要由水系统,小系统以及大系统三个部分组成,实现对地铁环境的有效,自动化调节。在实际地铁运行过程中,主要负责为地铁进行送风和排风的机械设备为空调送风机以及回排风机。而组合空调的使用,可以以水回路为基础,与空调中的水系统进行合理衔接,并且将空调中用于制冷的冷冻水转移到空调系统中的冷水机组[1]。冷水机组的主要工作原理,是以热交换原理为基础,对地铁中存在的热量进行有效转移,将其排放到外界。冷水机组之所以能够进行冷冻水的制造,主要是以压缩机为基础,对冷媒吸热的过程进行不断压缩,以此制造冷冻水,然后将其转移到大系统之中,在大系统中的空调机组进行热交换,最后将其制造的冷风输送到地铁站台以及站厅之中。 2 通风空调系统的特点分析 针对地铁空调系统的建设,因其地理位置的特殊,所以对通风空调系统有着更高的需求,进而让其满足实际运行发展需求。因此,地铁在实际运行过程中,需要对地铁自身运行,气候等因素所产生热量进行合理排放,进而为乘客营造出安全舒适的乘车环境,促进地铁事业的可持续发展。而地铁的管理用房以及相关设备存放区,需要以实际情况为基础,结合相应工艺为其提供特定的温度和湿度。当然,如若地铁在运行过程中遇到阻塞的现象,通风空调系统需要为其提供充足的风量,进而确保地铁的热环境不会产生相应安全隐患。另外,如若在运行过程中发生火灾现象,需要具备有效的排烟手段,并不断为地铁提供新风,以此来降低火灾造成的损失以及隐患。 3 地铁通风空调系统的优化控制策略 3.1 使用开放式系统,强化对活塞效应的使用所谓开放式系统,就是通过活塞效应方式以及机 械性方式使地铁外部与内部进行有效的空气交换,进而在降低地铁内部温度的同时,实现对隧道的冷却。当然,针对此类型系统的运用,并不是所有地区均可使用,需要确保当地高温季节的平均温度低于25℃,并且列车的运行数量相对较少。活塞效应通风方式主要原理为列车在运行过程中,其正面与隧道的断面面积比大于2/5时,列车此时就如同活塞一样,通过高速行驶使地铁正面的空气受到相应的压力,进而形成“正压”,而列车后面的空气就会呈现出稀薄的状态,形成“负压”,最终产生空气的流动。开放式系统的运用,其活塞风量的大小与列车的行驶速度,空气阻力系数,空气流经隧道阻力、隧道列车的阻塞比之间存在直接影响关系。因此,在实际运用过程中,需要注重对活塞风井进行设置,并确定其风井间距,进而让开放式系统的换气量达到标准需求。 3.2 冷水机群控制系统的运用 所谓冷水机群控制系统,就是在地铁空调系统实际运行过程中,通过对相关自动化控制技术的运用,将自动化设备处理与制冷站内部设备的运行过程进行科学配置,提升对内部设备的控制力,在提升其运行效率的同时,确保其运行质量。在实际运用过程中,冷水机群控制系统的运用,会以实际情况为基础,对各类型的信号,信息进行收集和处理,并以相关交互式的控制方式为基础,实现对地铁实际情况进行明 · 52 ·

浅谈地铁车站通风空调系统设计中的优缺点

浅谈地铁车站通风空调系统设计中的优缺点 发表时间:2019-06-19T10:33:32.447Z 来源:《防护工程》2019年第5期作者:肖欣[导读] 使其能够更好地加强通风性能,同时还能减少对电能资源的需求量,这对国家未来可持续发展具有积极的影响意义。天津轨道交通集团枢纽运营管理有限公司天津 300010 摘要:近些年随着经济水平的不断提高,我国交通运输正在进行积极的发展与进步,地铁是现阶段使用较为广泛且深受城市居民喜爱的一种新型交通工具,它具有较强的经济性,同时使出行变得更加安全便利。但在地铁发展的过程中还存在一些需要进一步完善的问题,车站通风空调系统设计就是其中一项重要的内容。本研究将对我国目前地铁车站的通风空调系统进行分析与思考,同时提出合理的优化措 施与方案,使其运行在高效的基础上更加节能环保。关键词:地铁车站;通风空调系统;设计; 前言: 地铁作为深受城市居民喜爱的新型交通工具,是一项利国利民的市政民生工程,完善通风空调系统至关重要。地铁通风空调系统功能性要求较高,不仅需满足站内人员、设备的散热要求,满足区间隧道内温湿度、新风量及区间隧道内事故通风排烟及疏散的要求,还对乘客的健康以及乘车体验起到关键作用。想要有效加强地铁车站通风空调系统设计水平,就要从实际现状的基础上对通风空调系统进行合理的改进,使其能够更好地加强通风性能,同时还能减少对电能资源的需求量,这对国家未来可持续发展具有积极的影响意义。1通风空调系统设计思路1.1需求分析 由于地铁沿线分布着各类机电设备,因此考虑地铁安全运营的同时,也应该为乘客营造舒适的乘车环境,需要对地铁通风空调系统进行控制,应用综合监控系统,并采用现代化的计算机控制与网络技术,对通风空调系统进行自动化的管理与控制,实施优化控制之后,不仅可以提升地铁的服务质量,同时也可实现地铁的安全高效运行,实现地铁的节能控制。在对地铁通风空调系统实施综合监控中,将会应用到包括主备监控工作站、主备服务器以及档案管理计算机、打印机服务器、通信转换接口、服务器、大屏幕系统、车站级监控系统等,有效针对通风系统、冷水系统设备进行监控,实现节能减耗控制。 1.2综合监控系统功能在对空调通风系统实时节能优化控制中,可应用综合监控系统,控制空调主机运行信号与设备启动信号;并且其综合监控系统的控制程序中,还应该包括对环境参数、系统参数的采集与分析,同时也应该具备制冷、制热的选择过程,使地铁通风空调系统可以根据环境、系统参数进行分析,并决定之后可以选择的控制方式,根据控制决策决定设备的运行模式,并且还应该采集空调通风系统设备的运行参数,然后再综合环境与系统参数,决定控制对象,之后再根据环境及系统参数决定设备运行模式。这样的综合控制不仅可以有效监控通风空调系统的运行模式,同时也可以有效实现对地铁通风空调系统的节能监控,降低通风空调系统的运行能耗。2地铁车站空调系统类型及存在的问题 2.1开式系统 开式系统一般在夏季平均温度不大于25℃且客流量较小的地铁系统中使用。开式系统分为带空调通风的系统和不带空调通风的系统。不带空调通风系统可通过机械动力实现车站内的通风,也可通过列车行驶产生的“活塞效应”带动空气流动,降低车站内的温度;带空调系统利用空调与与通风井实现空气交换,带走站内温度。开式系统虽然能消低但不能有效的控制车站内温度。 2.2闭式系统 闭式空调系统是将车站与外部空气断绝,闭式空调系统有两种实现方法。一种是沿用传统的开放式风道系统,不需要专门的空调机房,在排风道加入表冷器和过滤器。一种是套用地面建筑空调设计原理,将站内和区间环控制系统分开,地铁车站采用空调系统,区间采用机械通风系统,有利于地铁车站降温和保温。在夏季温度较高的地区或者是运量较大的地铁站采用这种闭式空调系统。 2.3屏蔽门式系统 屏蔽门式系统是在整个车站、站台及隧道之间安装屏蔽门,有利于实现车站环境的通风制冷要求,安全性能高,噪音低,节能效果良好,是目前常用的地铁站空调系统。但是屏蔽门的存在使地铁站不能利用自然通风,只能使用机械通风。 2.4存在的问题 目前地铁通风空调系统设计复杂,不便于运行控制;通风空调系统结构组成庞大、占地面积大,辅助设备种类较多、运行能耗较高,能耗占比40%左右;建在市区的通风口,在美观及噪音处理方面存在不足。3通风空调系统节能策略3.1优化设计阶段的节能在车站的设计时,应该立足于地铁运行的实际情况,与其他设计专业合作进行整体设计,尽量的优化风道、房间等的设置。在风井和机房位置的设置上,也好尽可能的保持路程的畅通,尽量的减少直角的设计,这样就能在最大程度上减少了不合理的设计,减少了不必要的投入在后期的地铁运行中,也能减少通风空调系统的耗能。在地铁通风空调系统进行设计时,就应该充分的考虑节能这一问题。地铁设计人员应该尽可能的结合地铁的实际负荷情况,优化系统的位置,尽量的减少直角的设计,科学合理的选择空调和通风设备,最大程度上的实现节能的目标。 3.2风机变频风量调节因为地铁的本质属性是载客,所以地铁在运行的过程中会呈现出很多的不稳定性,所以在具体的空调设计中要根据不同情况下的地铁运行载客情况进行计算。在客流量比较少的时候,来通过一些有效的方式减少地铁系统的通风和空调系统流量、风量。当客流量比较大的时候,再通过一些手段来增强地铁通风空调系统的负荷。而这种行之有效的方式就是采用变频器,变频器的使用,可以调控通风和空调系统的,变频器的使用再最大程度上对地铁通风空调系统进行调节,减轻了能源的浪费,实现了资源的节约。 3.3空调水系统流量调节

成都地铁通风空调专业施工方案

成都轨道交通8号线一期机电4标通风空调专业施工方案 编制: 审核: 审批: 中铁隧道集团机电工程有限公司/中铁隧道集团四处有限公司联合体成都轨道交通8号线一期安装及装修4标项目部 二〇一九年 3月 22 日

目录 第一章编制依据 (1) 第二章工程概况 (2) 2.1 工程概况 (2) 2.2 通风空调系统概况 (3) 2.2.1【芳草街站】 (3) 2.2.2【倪家桥站】 (9) 2.2.3【川大望江校区站】 (14) 2.2.4【东湖公园站】 (20) 2.3工程量清单 (26) 第三章施工安排 (27) 3.1 施工总体安排 (27) 3.1.1 施工流程安排 (27) 3.1.2 施工安排的内容 (27) 3.2 施工区段划分及施工安排 (28) 3.2.1 施工区段划分 (28) 3.2.2 各系统具体施工内容安排 (29) 3.3通风空调系统工程重难点分析及解决对策 (30) 第四章项目组织机构及岗位职责 (37) 第五章进度计划与资源配置计划 (40) 5.1进度计划 (40) 5.2劳动力投入计划 (43) 5.3材料设备进场计划 (44) 5.4施工机械设备配置计划 (46) 5.5监视和测量装置配备计划 (46) 第六章施工方法及工艺要求 (48) 6.1 施工流程 (48) 6.1.1 施工组织流程内容 (48) 6.1.2 施工程序说明 (49) 6.2 空调风系统主要施工方法及技术要求 (49) 6.2.1 空调风系统概述 (49) 6.2.2 空调风系统技术要求 (50) 6.2.3 风管配件制作 (50) 6.2.4 冷轧钢板风管制作方法 (53) 6.2.5 风管安装 (55) 6.2.6 风管严密性测试 (59) 6.3 空调水系统主要施工方法及技术要求 (61) 6.3.1 空调水系概述 (61) 6.3.2 管道安装的注意事项 (61) 6.3.3 管道支架制作安装及细部做法 (62) 6.3.4 管道连接 (64) 6.3.5 管道吊装 (66) 6.3.6 阀门安装 (69) 6.4 设备安装方法及技术要求 (73)

浅谈地铁车站通风空调系统设计中的优缺点

广东建材2008年第5期 1引言 通风空调系统是地铁系统中一个重要系统,其不仅直接关系到整个地铁内部空气环境能否满足需要,也关系到险情(列车阻塞、火灾、车站火灾等)发生时整个地铁系统的防灾、救灾和人员疏散工作。因此,地铁通风空调系统应具备以下主要功能: ⑴列车正常运行时,保证地铁内部空气环境在规定的标准范围内,为乘客提供一个往返于地面至车站至列车的“过渡性”舒适环境,为管理人员提供较适宜的工作环境等。 ⑵根据地铁系统内各种设备的工艺要求,提供空调或通风换气,以保证工艺设备良好运行时所需的工作环境要求。 ⑶列车阻塞在区间隧道时,对阻塞隧道进行机械通风,为列车空调系统提供运行所需的空气冷却能力和新风量,在阻塞期间维持列车内部乘客能接受的环境条件,或向疏散的乘客提供足够的新鲜空气,使乘客能迎着新风方向疏散。 ⑷列车在地铁内发生火灾时,根据火灾发生的部位和具体位置,对事发点采取有效的通风、排烟措施,以诱导乘客安全撤离火场及消防人员进行灭火工作。 由此,地铁通风空调系统主要由以下四个子系统组成(其中前三个为风系统): ⑴公共区通风空调兼排烟系统(简称系统A); ⑵设备管理用房通风空调兼排烟系统(简称系统B); ⑶隧道通风兼排烟系统(简称系统C); ⑷空调制冷循环水系统(简称系统D)。 2概述 图1为我国北方某城市在建地铁典型车站(左端)通风空调风系统的原理图(其中点划线范围内为系统B)。由于典型地铁车站一般两端各设1个通风空调机房,各负担半个车站的空调负荷,本文仅针对该车站左端的通风空调系统进行分析。 该城市地处我国北部,根据该地的气象数据、该地铁系统高峰时间内每小时的设计行车对数和每列车车辆编组数等,该地铁采用了自然闭式、机械开式相结合的系统;并在车站站台两端部设置迂回风道,以满足闭式运行时列车活塞风的泄压要求,有效地减小地铁车站站台上的“吹风”现象,最大限度地增加候车乘客的舒适感。 3本工程特点 目前我国地铁通风空调系统普遍存在:①系统比较复杂、庞大,设备众多,机房占用面积过大;②单台设备功能较为单一,系统操作复杂、繁琐,从而也导致了有的地铁已经运营三、四年,其控制系统还不能很好地发挥作用;③设备装机容量大,能耗高,不利于地铁系统的节能运行;④在市区,大体量的地面进、排风亭(风口),其用地、美观、噪声处理等诸多方面,都与周边环境存在较难协调等不利情况。鉴于以上问题,地铁的设计者们也从各个方面作出了努力,力求解决这一系列的问题。 浅谈地铁车站通风空调系统 设计中的优缺点 林世生(广州市地下铁道设计研究院) 摘要:本文以我国北方某地铁车站的通风空调系统设计为例,通过对其运行原理、机房布置、设备 配置、运行控制模式及对其设计出发点和设计思路的分析,与目前应用较多的地铁通风空调系统进行 比较,阐述了该系统在满足系统功能的情况下,基本上解决了普遍存在的一些问题,但同时也存在一 些其他需要解决的问题。 关键词:地铁;通风空调系统;设计;优缺点 图1某地铁车站(左端)通风空调风系统原理图工艺与设备 188 --

地铁通风空调系统方案

地铁通风空调系统 【摘要】简述了地铁通风空调系统和设备控制模式 【关键词】地铁通风空调系统控制模式 1概述 地铁通风空调系统一般分为开式系统、闭式系统和屏蔽门式系统。根据使用场所不同、标准不同又分为车站通风空调系统、区间隧道通风系统和车站设备管理用房通风空调系统。 1.1 开式系统 开式系统是应用机械或“活塞效应“的方法使地铁部与外界交换空气,利用外界空气冷却车站和隧道。这种系统多用于当地最热月的月平均温度低于25℃且运量较少的地铁系统。 1.1.1 活塞通风 当列车的正面与隧道断面面积之比(称为阻塞比)大于0.4时,由于列车在隧道中高速行驶,如同活塞作用,使列车正面的空气受压,形成正压,列车后面的空气稀薄,形成负压,由此产生空气流动。利用这种原理通风,称之为活塞效应通风。 活塞风量的大小与列车在隧道的阻塞比、列车行驶速度、列车行驶空气阻力系数、空气流经隧道的阻力等因素有关。利用活塞风来冷却隧道,需要与外界有效交换空气,因此对于全部应用活塞风来冷却隧道的系统来说,应计算活塞风井的间距及风赶时井断面授尺寸,使有效换气量达到设计要求。实验表明:当风井间距小于300m、风道的长度在25m以、风道面积大于10㎡时,有效换气量较大。在隧道顶上设风口效果更好。由于设置许多活塞风井对大多数城市来说都是很难实现的,因此全“活塞通风系统”只有早期地铁应用,现今建设的地铁多设置活塞

通风与机械通风的联合系统。 1.1.2 机械通风 当活塞式通风不能满足地铁除余热与余湿的要求时,要设置机械通风系统。 根据地铁系统的实际情况,可在车站与区间隧道分别设置独立的通风系统。车站通风一般为横向的送排风系统;区间隧道一般为纵向的送排风系统。这些系统应同时具备排烟功能。区间隧道较长时,宜在区间隧道中部设中间风井。对于当地气温不高,运量不大的地铁系统,可设置车站与区间连成一起的纵向通风系统,一般在区间隧道中部设中间风井,但应通过计算确定。 2.1 闭式系统 闭式系统使地铁部基本上与外界大气隔断,仅供给满足乘客所需的新鲜空气量。车站一般采用空调系统,而区间隧道的冷却是借助于列车运行的“活塞效应”携带一部分车站空调冷风来实现。 这种系统多用于当地最热月的月平均温度高于25℃、且运量较大、高峰时间每小时的列车运行对数和每列车车辆数的乘积大于180的地铁系统。 2.2 屏蔽门系统 在车站的站台与行车隧道间安装屏蔽门,将其分隔开,车站安装空调系统,隧道用通风系统(机械通风或活塞通风,或两者兼用)。若通风系统不能将区间隧道的温度控制在允许值以时,应采用空调或其他有效的降温方法。 安装屏蔽门后,车站成为单一的建筑物,它不受区间隧道行车时活塞风的影响。车站的空调冷负荷只需计算车站本身设备、乘客、广告、照明等发热体的散热,及区间隧道与车站间通过屏蔽门的传热和屏蔽门开启时的对流换热。此时屏蔽门系统的车站空调冷负荷仅为闭式系统的22%~28%,且由于车站与行车隧道隔开,减少了运行噪声对车站的干扰,不仅使车站环境较安静、舒适,也使旅客更为安全。 地铁环控系统一般采用屏蔽门制式环控系统或闭式环控系统。屏蔽门制式系统

地铁通风及设备.ppt.Convertor

第一章地铁通风空调工程概述 地铁通风空调系统是应地铁特殊的环境需求而产生。 原因: 1.温度:基本与外界隔绝,高密度列车运行、设备运转和大量乘客的集散产生的热量,地层的蓄热,若不及时排除,空气温度 2.湿度:地铁周围土壤通过地铁围护结构渗湿量也较大,空气湿度,乘客难以忍受,地铁设备正常运行也会受到影响。 3.新鲜空气:巨大的客流,补充新鲜空气,保证地铁内的空气环境。 必须设置通风空调系统,对地铁内部的空气温度、湿度、气流速度和空气质量等空气环境因素进行控制,为乘客和工作人员提供一个舒适的环境,并满足地铁设备正常运行的需要。 第一章地铁通风空调工程概述 概述 通过空气处理机组、风机、冷水机组、冷却塔、水泵、风阀、消声器、变频多联空调机、BAS系统等设备的工作,实现对地铁线路的站厅、站台、隧道正常工况时的 通风空调;阻塞、事故、火灾等工况时的通风的工程。 地铁通风空调系统是地铁环控系统的主体部分。 第一节地铁通风空调工程的组成 一、组成

第一节地铁通风空调工程的组成 二,作用 1.为乘客提供过渡性舒适环境: 往返于地面到车站至列车内 2.当列车阻塞在区间隧道时,通风系统向阻塞区间提供通风: 保证列车空调正常工作,维持列车箱内乘客在短时间内能承受的环境条件; 3.在车站或区间隧道发生火灾时,通风系统有效排烟: 向乘客和工作人员提供必要的新风和通风,使得乘客和工作人员能安全迅速 疏散,为消防人员灭火创造条件; 4.满足地铁车站内管理用房及设备用房的温度、湿度要求: 提供良好的工作环境和保证设备正常运行环境。 三、基本要求、设计原则和标准《地铁设计规范》GB50157—2003 1.基本要求: 当列车正常运行时,应保证地铁内部空气环境在规定范围内; 当列车阻塞在区间隧道时,应保证阻塞处的有效通风功能; 当列车在区间隧道发生火灾事故时,应具备防灾排烟、通风功能; 当车站发生火灾事故时,应具备防灾排烟、通风功能。 2.地铁隧道、车站室内参数及设计原则(部分): 列车车厢设置空调,车站设置屏蔽门时,地铁隧道夏季的最高温度不得高于40℃; 当地下车站采用空调系统时,站厅层的空气计算温度比空调室外计算干球温度低2—3℃,且不应超过30℃; 站台层的空气计算温度比站厅层的空气计算温度低1—2℃; 当采用空调系统时,每个乘客每小时需供应的新鲜空气量不应少于12.6m3,且系统的新风量不应少于总送风量的10%。 地下车站管理用房及设备用房内每个工作人员每小时需供应的新鲜空气量不应少于30m3,且新风不应少于总送风量的10%。 3. 对噪声控制的标准 地铁的通风空调系统设备传至站厅、站台厅的噪声不得超过70dB(A); 车站管理用房及设备用房的通风空调应有消声和减振措施。 通风空调设备传至各房间内的噪声不得超过60dB(A); 通风空调机房内的噪声不得超过90dB(A)。 这些基本要求、设计原则和标准,能有效保证地铁通风空调工程实现其功能 第二节隧道通风系统 活塞通风: 一般是在车站在两端上下行线各设一个活塞风道及相应的风井 原理: 利用地铁列车在隧道内高速运行所产生的活塞效应(指在隧道中高速运行的列车,会带动隧道中的空气产生高速流动,类似汽缸内活塞压缩气体(如图)的现象)而形成的通风,实现隧道与外界通风换气

相关文档
最新文档