工业以太网简介

工业以太网简介
工业以太网简介

工业以太网简介:

工业以太网是基于IEEE 802.3 (Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新的多媒体世界的途径。

企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u 的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无缝升级到新技术。

为用户带来的利益:市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益:?通过简单的连接方式快速装配。

?通过不断的开发提供了持续的兼容性,因而保证了投资的安全。

?通过交换技术提供实际上没有限制的通讯性能。

?各种各样联网应用,例如办公室环境和生产应用环境的联网。

?通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。

工业以太网络的构成:一个典型的工业以太网络环境,有以下三类网络器件:

◆ 网络部件

连接部件:

?FC 快速连接插座

?ELS(工业以太网电气交换机)

?ESM(工业以太网电气交换机)

?SM(工业以太网光纤交换机)

?MC TP11(工业以太网光纤电气转换模块)

通信介质:普通双绞线,工业屏蔽双绞线和光纤

◆ SIMATIC PLC控制器上的工业以太网通讯外理器。用于将SIMATIC PLC连接到工

业以太网。

◆ PG/PC 上的工业以太网通讯外理器。用于将PG/PC连接到工业以太网。

工业以太网重要性能:为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC NET 为以太网技术补充了不少重要的性能:

?工业以太网技术上与IEEE802.3/802.3u兼容,使用ISO和TCP/IP 通讯协议

?10/100M 自适应传输速率

?冗余24VDC 供电

?简单的机柜导轨安装

?方便的构成星型、线型和环型拓扑结构

?高速冗余的安全网络,最大网络重构时间为0.3 秒

?用于严酷环境的网络元件,通过EMC 测试

?通过带有RJ45 技术、工业级的Sub-D 连接技术和安装专用屏蔽电缆的Fast

Connect连接技术,确保现场电缆安装工作的快速进行

?简单高效的信号装置不断地监视网络元件

?符合SNMP(简单的网络管理协议)

?可使用基于web 的网络管理

?使用VB/VC 或组态软件即可监控管理网络。

工业以太网冗余原理

1、引言

在一个桥接的局域网里,为了增强可靠性,必然要建立一个冗余的路径,网段会用冗余的网桥连接。但是,在一个透明桥桥接的网络里,存在冗余的路径就能建立一个桥回路,桥回路对于一个局域网是致命的。它会带来如下问题:

A.广播风暴

B.同一帧的多份拷贝

C.不稳定的MAC地址表

因此,在交换网络中必须有一个机制来阻止回路。

2、生成树协议

生成树协议就是IT界中常用的机制.生成树协议是一种桥嵌套协议,在IEEE 802.1d 规范里定义,可以用来消除桥回路。它的工作原理是这样的:生成树协议定义了一个数据包,叫做桥协议数据单元BPDU(Bridge Protocol Data Unit)。网桥用BPDU来相互通信,并用BPDU的相关机能来动态选择根桥和备份桥。但是因为从中心桥到任何网段只有一个路径存在,所以桥回路被消除。

在一个生成树环境里,桥不会立即开始转发功能,它们必须首先选择一个桥为根桥,然后建立一个指定路径。在一个网络里边拥有最低桥ID的将变成一个根桥,全部的生成树网络里面只有一个根桥。根桥的主要职责是定期发送配置信息,然后这种配置信息将会被所有的指定桥发送。这在生成树网络里面是一种机制,一旦网络结构发生变化,网络状态将会重新配置。

当选定根桥之后,在转发数据包之前,它们必须决定每一个网段的指定桥,运用生成树的这种算法,根桥每隔2秒钟从它所有的端口发送BPDU包,BPDU包被所有的桥从它们的根端口复制过来,根端口是接根桥的那些桥端口。BPDU包括的信息叫做端口的COST,网络管理员分配端口的COST到所有的桥端口,当根桥发送BPDU的时候,根桥设置它的端口值为零。然后沿着这条路径,下一个桥增加它的配置端口COST为一个值,这个值是它接收和转发数据包到下一个网段的值。这样每一个桥都增加它的端口的COST值为它所接收的BPDU的包的COST值,所有的桥都检测它们的端口的COST值,拥有最低端口的COST值的桥就变为了指定的桥。拥有比较高端口COST值的桥置它的端口进入阻塞状态,变为了备份桥。在阻塞状态,一个桥停止了转发,但是它会继续接收和处理BPDU数据包。

IEEE 802.1D规范包括了生成树算法(Spanning Tree Algorithm,STA),这是一种确保转发循环永远不会发生的机制。 STA使用网桥协议数据单元(Bridge Protocol Data Units,BPDU),自动配置网桥上处于转发或阻塞状态的独立端口。BPDU是网桥发送到一个已保存的多播MAC地址(对于以太网,这个地址是01-80-C2-00-00-00)的消息,所有透明网桥都会侦听该地址。在阻塞状态下,端口不会获悉或转发已接收到的帧。STA的最终结果是一个无循环的桥接环境,不管局域网网段拓扑结构是否改变,这个环境总是一直存在。生成树算法,决定了网络链路故障恢复时间,最少不低于15秒。生成树的状态:

运行生成树协议的交换机上的端口,总是处于下面五个状态中的一个:

阻塞:所有端口以阻塞状态启动以防止回路,由生成树确定哪个端口切换为转发状态,处于阻塞状态的端口不转发数据帧但可接受BPDU。

监听:不转发数据帧,但检测BPDU(临时状态)。

学习:不转发数据帧,但学习MAC地址表(临时状态)。

转发:可以传送和接受数据数据帧。

禁用:通常由于端口故障或交换机配置错误引起.

3、Supreme-Ring协议

Supreme-Ring协议是在工业以太网使用的冗余机制。Supreme-Ring协议和生成树协议有点相似,Supreme-Ring协议也定义了一种数据包,称为HELLO包,又称为WD包

(Watch Dog Packets)。交换机之间用HELLO包通信,在主交换机上动态选择主链路和备份链路。但是因为从中心桥到任何网段只有一个路径存在,所以桥回路被消除。

在工业冗余环网网络环境里,交换机不会立即开始转发功能,主交换机(Local)由手动指定,选择主链路和备份链路建立一个指定路径,由Supreme-Ring协议自动指定。一个工业冗余环网网络里面只能有一个主交换机(Local)。主交换机(Local)会定期发送配置信息,这种配置信息将会被所有的从交换机(Remote)发送。一旦网络结构发生变化,网络状态将会重新配置。

当指定主交换机(Local)之后,在转发数据包之前,所有端口都以阻塞方式启动。运用Supreme-Ring算法,主交换机(Local)选择最低COST值的端口作为主链路,另一条COST值高的端口作为备份链路。备份链路不转发数据,只接收和处理HELLO包,处于热备(Hot Standby)状态。从交换机(Remote)没有主链路和备份链路的区别。Supreme-Ring协议是一种简洁高效的冗余协议,能够保证环网在链路故障时,在300ms 之内恢复网络通信。

Supreme-Ring的状态:

运行Supreme-Ring协议的交换机上的端口,总是处于下面四个状态中的一个:

阻塞:所有端口以阻塞状态启动以防止回路,处于阻塞状态的端口不转发数据帧但可接受HELLO包。

热备:不转发数据帧,但学习MAC地址表,在主链路故障时,在300ms之内,立刻进入转发状态。

转发:可以传送和接受数据数据帧。

禁用:通常由于端口故障或交换机配置错误引起。

4、结束语:工业网络环境需要快速反应冗余机制,生成树协议的15秒恢复时间,不能满足工业环境要求。只有采用Supreme-Ring协议才是工业网络环境的最佳冗余机制。

IEEE 802.1w和802.1s详解

功能强大、可靠的网络需要有效地传输流量,提供冗余和故障快速恢复功能。在第二层网络中,路由协议不可用,生成树协议通过从网格化物理拓扑结构而构建一个无环路逻辑转发拓扑结构,提供了冗余连接,消除了数据流量环路的威胁。原始生成树协议IEEE 802.1D 通常在 50 秒内就可以恢复一个链接故障 [ 融合时?=

( 2xForward_Delay ) +Max_Age] 。当设计此协议时,这种停机还是可接受的,但是当前的关键任务应用(如语音和视频)却要求更快速的网络融合。

为加速网络融合并解决与生成树和虚拟 LAN ( VLAN )交互相关的地址可扩展性限制的问题, IEEE 委员会开发了两种新标准:在 IEEE 802.1w 中定义的快速生成树协议( RSTP )和在 IEEE 802.1s 中定义的多生成树协议( MST )。

本文介绍了 802.1w 和 802.1s 的主要特性、与传统生成树协议的互操作性,并提供了一些协议移植准则建议。

IEEE 802.1w 快速生成树协议

IEEE 意识到原始 802.1D 生成树协议的融合特性与现代化的交换网络和应用相比是有差距的,为此设计了一种全新的 802.1w 快速生成树协议( RSTP ),以解决 802.1D 的融合问题。 IEEE 802.1w RSTP 的特点是将许多思科增值生成树扩展特性融入原始802.1D 中,如 Portfast 、 Uplinkfast 和 Backbonefast 。(浏览这些思科特性的具体信息)通过利用一种主动的网桥到网桥握手机制取代 802.1D 根网桥中定义的计时器功能, IEEE 802.1w 协议提供了交换机(网桥)、交换机端口(网桥端口)或整个 LAN 的快速故障恢复功能。通过将生成树“ hello ”作为本地链接保留的标志, RSTP 改

变了拓扑结构的保留方式。这种做法使原始 802.1D fwd-delay 和 max-age 计时器主要成为冗余设备,目前主要用于备份,以保持协议的正常运营。

除了下面章节中列举的新概念外, RSTP 引入了新的 BPDU 处理和新的拓扑结构变更机制。每个网桥每次“ hello time ”都会生成 BPDU ,即使它不从根网桥接收时也是如此。 BPDU 起着网桥间保留信息的作用。如果一个网桥未能从相邻网桥收到 BPDU ,它就会认为已与该网桥失去连接,从而实现更快速的故障检测和融合。

在 RSTP 中,拓扑结构变更只在非边缘端口转入转发状态时发生。丢失连接——例如端口转入阻塞状态,不会像 802.1D 一样引起拓扑结构变更。 802.1w 的拓扑结构变更通知( TCN )功能不同于 802.1D ,它减少了数据的溢流。在 802.1D 中, TCN 被单播至根网桥,然后组播至所有网桥。 802.1D TCN 的接收使网桥将转发表中的所有内容快速失效,而无论网桥转发拓扑结构是否受到影响。相形之下, RSTP 则通过明确地告知网桥,溢出除了经由 TCN 接收端口了解到的内容外的所有内容,优化了该流程。TCN 行为的这一改变极大地降低了拓扑结构变更过程中, MAC 地址的溢出量。

端口作用

RSTP 在端口状态(转发或阻塞流量)和端口作用(是否在拓扑结构中发挥积极作用)间进行了明确的划分。除了从 802.1D 沿袭下来的根端口和指定端口定义外,还定义了两种新的作用(见图 1 ):

图 1

·备份端口——用于指定端口到生成树树叶的路径的备份,仅在到共享LAN 网段有 2 个或 2 个以上连接,或 2 个端口通过点到点链路连接为环

路时存在。

·替代端口——提供了替代当前根端口所提供路径、到根网桥的路径。

这些 RSTP 中的新端口实现了在根端口故障时替代端口到转发端口的快速转换。下面的例子中详细解释了此过程。

端口状态

端口的状态控制转发和学习过程的运行。

RSTP 定义了 3 种状态:放弃、学习和转发。根或指定端口在拓扑结构中发挥着积极作用,而替代或备份端口不参与主动拓扑结构。在稳定的网络中,根和指定端口处于转发状态,替代和备份端口则处于放弃状态。

快速融合概述

如前所述, RSTP 旨在尽快地将根端口和指定端口转成转发状态,以及将替代和备份端口转成阻塞状态。为防止生成转发环路, RSTP 在网桥间采用了明确的“握手”功能,以确保端口作用在网络中分配的一致性。

图 2

图 2 介绍了将端口转换成转发前达成的协定 / 建议握手。当链接激活时,“ P1 ”和“ P2 ”都成为处于放弃状态的指定端口。

在这种情况下,“ P1 ”将向交换机 A 发送一个建议 BPDU 。收到新 BPDU 后,交换机 A 将确认根交换机有较优根成本。因为 BPDU 包含较高的根优先级,交换机 A 在将新的根端口“ P2 ”转入转发状态前,会先启动同步机制。如果一个端口处于阻塞状态或是一个边缘端口(位于网桥 LAN 边缘或连接到终端工作站),该端口与根信息同步。

端口 3 (“ P3 ”)已满足上述要求,因为它已经是阻塞的。因此,不会对该端口采取任何行动。但是,“ P4 ”是一种指定端口,需要阻塞。一旦交换机 A 上的所有接口处于同步状态,“ P2 ”就会承认从前从根接收的建议,并可以安全地转入转发状态。在收到交换机 A 的认可后,根交换机将立即将“P1”转入转发。建议/协定信息的类似传送波将从“ P4 ”传播至网络枝叶部分。

由于这种握手机制不依赖计时器,因此它可以快速地传播至网络边缘,并在拓扑结构变更后迅速恢复连接。如果协定并未复制建议信息,端口会转换成 802.1D 模式,并通过传统听学顺序转入转发状态。需要说明的是, 802.1w 协议只适用于点到点链接。在媒体共享的情况下, 802.1w 协议将转换成 802.1D 运行。

多生成树协议

在 Cisco MISTP[ 多实例生成树协议 ] 的推动下, MST 通过将一些基于 VLAN 的生成树汇聚入不同的实例,并且每实例只运行一个(快速)生成树,从而改进了 RSTP 的可扩展性。为确定 VLAN 实例的相关性, 802.1s 引入了 MST 区域概念。每台运行 MST 的交换机都拥有单一配置,包括一个字母数字式配置名、一个配置修订号和一个 4096

部件表,它与潜在支持某个实例的各 4096 VLAN 相关联。作为公共 MST 区域的一部分,一组交换机必须共享相同的配置属性。重要的是请记住,配置属性不同的交换机会被视为位于不同的区域。

为确保一致的 VLAN 实例映射,协议需要识别区域的边界。因此,区域的特征都包括在 BPDU 中。交换机必须了解它们是否像邻居一样位于同一区域,因此会发送一份VLAN 实例映射表摘要,以及修订号和名称。当交换机接收到 BPDU 后,它会提取摘要,并将其与自身的计算结果进行比较。为避免出现生成树环路,如果两台交换机在 BPDU 中所接收的参数不一致,负责接收 BPDU 的端口就会被宣布为边界端口。

IEEE 802.1s 引入了 IST (内部生成树)概念和 MST 实例。 IST 是一种 RSTP 实例,它扩展了 MST 区域内的 802.1D 单一生成树。 IST 连接所有 MST 网桥,并从边界端口发出、作为贯穿整个网桥域的虚拟网桥。 MST 实例( MSTI )是一种仅存在于区域内部的 RSTP 实例。它可以缺省运行 RSTP ,无须额外配置。不同于 IST 的是,MSTI 在区域外既不与 BPDU 交互,也不发送 BPDU 。 MST 可以与传统和 PVST+ 交换机互操作。思科实施定义了 16 种实例:一个 IST (实例 0 )和 15 个 MSTI ,而802.1s 则支持一个 IST 和 63 个 MSTI 。

与传统生成树的互操作性

RSTP 和 MSTP 都能够与传统生成树协议互操作。但是,当与传统网桥交互时,802.1w 的快速融合优势就会失去。

为保留与基于 802.1D 网桥的向后兼容性, IEEE 802.1s 网桥在其端口上接听802.1D 格式的 BPDU 。如果收到了 802.1D BPDU ,端口会采用标准 802.1D 行为,以确保兼容性。例如,在图 3 中,交换机 A 上的“ P4 ”一旦在至少两倍的“ hello time ”中检测到 PVST+ BPDU ,它就会发送 PVST+ BPDU 。要说明的是,如果 PVST+ 网桥从网络中删除后,交换机 A 就无法发现拓扑结构变更,需要人工重启协议移植。

图 3

图 3 介绍了应用于 VLAN 2000 的转发拓扑结构,它映射至 RSTP/MSTP 区域中的MST #2 。用于 IST 和 MST #2 的根交换机驻留于 RSTP/MSTP 区域内。 MSTI BPDU 并未发送至边界端口“P4”外,只有IST BPDU 是如此。通过在 PVST+ 域所有现用 VLAN 上复制 ISTP BPDU,MST 区域模拟了 PVST + 邻居。然后, PVST+ 域接收 IST 上发送的 BPDU ,并选择交换机 B 作为 VLAN 2000 的根交换机(注:交换机 B 是 IST 的根。)如果 PVST+ 域中出现拓扑结构变更,在传统云中生成的相应的拓扑结构变化通知( TCN ) BPDI 将由 IST 在 MST 域中处理,不致影响 MST 转发拓扑结构。为了避免可能导致环路的错误配置,强烈建议为 MST 域中的 PVST+ 实例(即 IST 根)配置根交换机。

工业以太网技术的新进展(一)--工业以太网环型网络

为了提高可靠性,工业领域广泛使用设备冗余方法,当工作的设备发生故障时,自动切换到冗余的备用设备。以太网也必须建立冗余。

单环冗余

环状拓扑为建立冗余网络提供了一个设计简单、成本低廉的解决方案(图1)。环型网络由多台交换机连接成环型,设备连接到交换机上。理论上,以太网不能如此连接,因为广播数据包会沿环反复传播引起传输负荷骤增导致阻塞。解决的方法是在以太网交

换机上配置生成树协议(802.1D)或快速生成树协议(802.1W)。安装了该协议后,环上的一个网段会自动从逻辑上阻塞变成一个备用的网段。如果某一个运行的网段出现故障,则阻塞的备用网段将会运行起来,使网络继续正常运转。

图1:单

环冗余

提供设备冗余的以太网双环拓扑

单环拓扑只能提供传输媒体的冗余。双环拓扑可以建立一个具有冗余的网络设备的完全的冗余系统。例如,一个具有以太网冗余接口的工业控制设备可以分别连接到两个以太网环上(图2),实现了以太网接口、交换机和介质的完全冗余。

图2:双环冗余

美国卓越通讯的工业冗余环网交换机

美国卓越通讯TSC Carat50系列工业以太网交换机是专为工业类客户设计的支持冗余环网拓扑结构的通信设备,充分考虑到工业控制对通讯系统可靠性的要求,采用TSC 独有的环网协议,其链路故障恢复时间达到了300ms 以内,完全采用封闭金属褶皱散热结构,适用于高温、灰尘、强电磁等恶劣环境。特殊型号机型更能胜任水下运行。该机型环网设置已经高度智能化,无须现场PC设置,智能确认开关的使用既使得网络工程师的现场操作简单,又确保通讯系统安全可靠。工厂、电站、军方等不同客户可根据各自需要选择该系列产品。

高性能:Carat50工业以太网交换机可提供全线速无阻塞100M转发,构筑

“Supreme-Ring”环形网络。具有6个10/100M双绞线端口(RJ45)用于连接终端设备或网段,2个主干端口(光纤)用于构成主干“Supreme-Ring”连接,可为工业现场控制设备提供可冗余的连接,任何一段主干通讯通道的故障都将在300ms内被察觉出来,并将启动冗余链路传送数据。让您的自动化系统保持正常工作。Carat50工业以太网交换机采用存储转发交换方式,最大学习8000个地址,其每个端口均可连接多个独立的物理网段。完全兼容IEEE802.3标准,减少了与其他支持以太网设备与 Carat相连接时候出现的兼容性问题。

高可靠:工业化设计的可冗余双DC电源(18V-36V)输入,有效保障与减少故障还原时间。电源故障时,提供继电器报警输出,便于技术人员对故障作出快速反应。Carat50工业以太网交换机高强度金属褶皱结构外壳,能够屏蔽电磁干扰,并且抗振动耐冲击,同时又是散热器,避免了因使用风扇引起的灰尘,减少了因风扇停转而引起的故障点。IP30级别防护等级,-10℃~+70℃宽工作温度,确保产品在严苛的工业现场工作良好。

高易用:Carat50系列工业以太网交换机可以导轨式、壁挂式、任意平面安装。通过前面板按键简单设置即可构建坚固可靠的“Supreme-Ring”环形网络。

图3:TSC Carat 5008FC2工业以太网交换机

工业以太网技术的新进展(二)--实时以太网

工业以太网的关键技术是通信实时性

以太网在设计之初是用于商业领域,要将它应用于工业自动化领域,还有一些需要解决的技术问题: (1)需要解决它在工业环境中的适应性问题; (2)以太网不提供电源,因此需要额外的供电电缆; (3)以太网不是本质安全系统; (4)以太网介质访问方式采用CSMA/CD协议,不能满足工业过程控制在实时性上的要求,甚至在通信繁忙时,还存在信息丢失的危险,确定性不高。

对于以太网不适应工业现场的问题,工业以太网可以通过多种途径,如改善传统的以太网电缆、采用网关,还有采用PC-BASED方案和ON-CHIP设备等方法来解决工业以太网对工业环境的适应问题。

以太网作为商用网络的使用中,被认为是实时性不高、非确定性的网络,这主要是由于它所采用的介质访问方式所决定的。CSMA/CD协议,即“带冲突检测的载波监听多路访问”。在工作过程中,如果有站点需要传输数据,首先侦听电缆。如果链路正被其它的站点使用,该站点等待链路空闲再传输;如果链路空闲,则立即传输。如果有2

个或多个站点同时在空闲的链路上开始传输数据,就发生冲突,于是所有的冲突站点停止传送数据,运行二进制后退算法,等待一个随机的时间,再重复上述过程。正是由于CSMA/CD的工作原理,造成数据传输有可能经历不可预见的延时,甚至长时间无法发送的情况。而且,以太网的整个传输体系没有有效的措施及时发现某一节点故障而加以隔离,从而有可能使故障节点占用总线而导致其它节点传输失败。

工业控制系统要求数据的传输不仅速度快,而且要求响应快,即通信的实时性要好。控制系统对时间特性的要求比一般的信息传输要更严格,因为这往往涉及到安全等问题,必须在任何时间都要及时响应,不允许有任何的不确定性。因此,工业以太网需要解决商用以太网存在的实时性不强的问题,以使工业以太网能够实现实时通信,满足工业控制的要求。

工业以太网通信实时性的解决方案

以太网技术在最近取得了很大的进步,其中交换式以太网技术的发展与应用大大地改善了以太网技术中由于CSMA/CD介质访问方式产生的不确定性问题,它与快速以太网、千兆以太网技术结合,使以太网的实时性得到了很大的改善。经过精心设计的工业以太网响应时间可以小于4ms,可满足大多数工业过程控制的要求。

工业以太网从通信技术的角度实现实时性的机制有:

<1>采用交换式集线器。传统以太网采用共享式集线器,由于共享式集线器的结构和功能仅仅是一种物理层中继器,因此连接到共享式集线器上的所有站点共享一个带宽,遵循CSMA/CD协议进行发送和接收数据。而交换式集线器可以认为是一个受控的多端口开关矩阵,各个端口之间的信息流是隔离的,只有在同一个端口上的信息流才会发生冲突,即每个端口是一个冲突域。这样,不同端口可以形成多个数据通道,端口之间的数据输入和输出不再受CSMA/CD的约束,可以大大提高网络上每个站点的带宽,从而提高了交换式以太网的网络性能。

<2>使用全双工(full-duplex)通信模式。即使是交换式以太网,由于一个端口是一个冲突域,在半双工情况下仍不能同时发送和接收数据。如果采用全双工模式,同一条数据链路中两个站点可以在发送数据的同时接收数据,解决了这种情况下半双工存在的需要等待的问题,理论上可以使传输速率提高一倍。

<3>采用虚拟局域网(VLAN)技术。虚拟局域网的出现打破了传统网络的许多固有观念,使网络结构更灵活、方便。实际上,VLAN就是一个广播域,不受地理位置的限制,可以根据部门职能、对象组和应用等因素将不同地理位置的网络用户划分为一个逻辑网段。局域网交换机的每一个端口只能标记一个VLAN,同一个VLAN 中的所有站点拥有一个广播域,不同VLAN之间广播信息是相互隔离的,这样就避免了广播风暴的产生。工业过程控制中控制层单元在数据传输实时性和安全性方面都要与普通单元区分开来,使用虚拟局域网在工业以太网的开放平台上做逻辑分割,将不同的功能层、不同的部门区分开,从而达到提高网络的整体安全性和简化网络管理的目的。通常虚拟局域网的划分方式有3种:静态端口分配、动态虚拟网和多虚拟网端口配置。静态端口分配指的是网络管理人员利用网管软件或直接设备交换机的端口,使其直接从属某个虚拟网,这些端口将保持这样的从属性,除非网管人员重新设置;动态虚拟网指的是支持动态虚拟网的端口可以借助智能管理软件自动确定它们的从属;多虚拟网端口配置支持一个用户或一

个端口同时访问多个虚拟网,这样可以将一台控制层计算机配置成多个部门可以同时访问、也可以同时访问多个虚拟网的资源。

<4>引入质量服务(QoS)。IP 是指IP的服务质量(quality of service),亦即IP 数据流通过网络时的性能,它的目的是向用户提供端到端的服务质量保证。它有一套度量指标,包括业务可用性、延迟、可变延迟、吞吐量和丢包率等。QoS网络可以区分实时. 非实时数据,在工业以太网中采用QoS技术,可以识别来自控制层的拥有较高优先级的数据,并对它们优先处理,为工业控制数据的实时通信提供一种保障机制。另外,QoS网络还可以制止对网络的非法使用,譬如非法访问控制层现场控制单元和监控单元的终端等。

世界上有一些国际组织正在从事推动以太网进入控制领域的工作,如IEEE着手制订现场总线和Ethernet通信的新标准。ODVA发布了一个为在工厂基层使用以太网服务的工业标准。AG-E,Kuka及Phoenix Contact等公司在2000年3月成立了IDA(Interface for Distributed Automation)组织,致力于开发一种基于Ethernet TCP/IP的标准化的开放的通信接口。2000年8月Schneider Electric加入该组织后,IDA大大增强了它的影响力。

2001年11月,IDA组织公布了它的第一份技术规范,与上面介绍的从通信技术方面做的改进不同,IDA为以太网建立一个新的实时通信用户层,采用一种新的通信协议———RTPS(real-time publish/subscribe)实现实时通信,RTPS的实现则由一个中间件来完成。

以太网与现场总线技术

前言:

以太网及TCP/IP通信技术在IT行业获得了很大的成功, 成为IT行业应用中首选的网络通信技术。近年来,由于国际现场总线技术标准化工作没有达到人们理想中的结果,以太网及TCP/IP技术逐步在自动化行业中得到应用,并发展成为一种技术潮流。

以太网在自动化行业中的应用应该区分为两个方面问题,或者说两个层次的问题。一是工厂自动化技术与IT技术结合,与互连网Internet技术结合,成为未来可能的制造业电子商务技术、网络制造技术雏形。大多数专家们对自动化技术这种发展趋势给予肯定的评价。另一个方面,即以太网能否在工业过程控制底层,也就是设备层或称为现场层广泛应用?能否成为甚至取代现有的现场总线技术成为统一的工业网络标准?这些问题实为目前自动化行业专家们争论的热点。本文将只就这一问题,从以太网与现场总线的技术比较出发,谈谈个人看法。

1.以太网指的是什么

什么是“以太网”?以及相关的IEEE 802.3及TCP/IP技术? 这对计算机网络工程师可能是基本常识,但我们自动化技术工程师未必清楚。在讨论以太网与自动化技术及现场总线技术之前,有必要先澄清一下这几个基本术语的含义。笔者查阅了有关资料,现将有关“以太网”、IEEE 802.3及TCP/IP相关的技术背景摘要如下:

(1)以太网:

?1975年: 美国施乐(Xerox)公司的Palo Alto研究中心研制成功[METC76],该网采用无源电缆作为总线来传送数据帧,故以传播电磁波的“以太(Ether)”命名。

?1981年:美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司联合推出以太网(EtherNet)规约[ETHE80]

?1982年:修改为第二版,DIX Ethernet V2

因此:“以太网”应该是特指“DIX Ethernet V2”所描述的技术。

(2)IEEE802.3

?80年代初期: 美国电气和电子工程师学会IEEE 802委员会制定出局域网体系结构, 即IEEE 802参考模型.

IEEE 802参考模型相当于OSI模型的最低两层:

?1983年:IEEE 802 委员会以美国施乐(Xerox)公司+数字装备公司(Digital)+英特尔(Intel)公司提交的DIX Ethernet V2为基础,推出了IEEE802.3

?IEEE802.3又叫做具有CSMA/CD(载波监听多路访问/冲突检测)的网络。CSMA/CD是IEEE802.3采用的媒体接入控制技术,或称介质访问控制技术。

因此: IEEE802.3 以“以太网”为技术原形,本质特点是采用CSMA/CD 的介质访问控制技术。“以太网”与IEEE802.3略有区别。但在忽略网络协议细节时, 人们习惯将IEEE802.3称为”以太网”。

与IEEE 802 有关的其它网络协议:

IEEE 802.1—概述、体系结构和网络互连,以及网络管理和性能测量。

IEEE 802.2—逻辑链路控制LLC。最高层协议与任何一种局域网MAC子层的接口。IEEE 802.3—CSMA/CD网络,定义CSMA/CD总线网的MAC子层和物理层的规范。

IEEE 802.4—令牌总线网。定义令牌传递总线网的MAC子层和物理层的规范。

IEEE 802.5—令牌环形网。定义令牌传递环形网的MAC子层和物理层的规范。

IEEE 802.6—城域网。

IEEE 802.7—宽带技术。

IEEE 802.8—光纤技术。

IEEE 802.9—综合话音数据局域网。

IEEE 802.10—可互操作的局域网的安全。

IEEE 802.11—无线局域网。

IEEE 802.12—优先高速局域网(100Mb/s)。

IEEE 802.13—有线电视(Cable-TV)

(3)TCP/IP协议

?TCP/IP是多台相同或不同类型计算机进行信息交换的一套通信协议。TCP/IP协议组的准确名称应该是internet协议族,TCP和IP是其中两个协议。而internet协议族TCP/IP还包含了与这两个协议有关的其它协议及网络应用,如用户数据报协议(UDP)、地址转化协议(ARP)和互连网控制报文协议(ICMP)。由于TCP/IP是internet采用的协议组,所以将TCP/IP体系结构称作internet体系结构。

?以太网是TCP/IP使用最普遍的物理网络,实际上TCP/IP技术支持各种局域网络协议,包括:令牌总线、令牌环、FDDI(光纤分布式数据接口)、SLIP(串行线路IP)、PPP (点到点协议)、X2.5数据网等。见图1:TCP/IP技术支持的各种局域网络协议由于TCP/IP是世界上最大的Internet采用的协议组,而TCP/IP底层物理网络多数使用以太网协议,因此,以太网+TCP/IP成为IT行业中应用最普遍的技术。

本文主题中所提到的“以太网”,按习惯主要指IEEE 802.3协议,如果进一步采用TCP/IP协议族,则采用“以太网+TCP/IP”来表示。

2.以太网为什么会进入自动化行业

以太网+TCP/IP作为办公网、商务网在IT行业中独霸天下,其技术特点主要适合信息管理、信息处理系统。但为什么近年来会逐步向自动化行业发展,形成与现场总线技术竞争的局面?回顾近年来自动化技术的发展, 可以了解到其中的原委。

(1)自动化技术从单机控制发展到工厂自动化FA,发展到系统自动化

近年来,自动化技术发展使人们认识到,单纯提高生产设备单机自动化水平,并不一定能给整个企业带来好的效益;因此,企业给自动化技术提出的进一步要求是:将整个工厂作为一个系统实现其自动化,目标是实现企业的最佳经济效益。因此,有了现代制造自动化模型,见图2。所以说自动化技术由单机自动化发展到系统自动化。

<现代制造自动化模>

自动化技术从单机控制向工厂自动化FA、系统自动化方向发展。制造业对自动化技术提出了数字化通信及信息集成的技术的要求;即要求应用数字通信技术实现工厂信息

纵向的透明通信。

(2)工厂底层设备状态及生产信息集成、车间底层数字通信网络是信息集成系统的基础

为满足工厂上层管理对底层设备信息的要求, 工厂车间底层设备状态及生产信息集成是实现全厂FA/CIMS的基础。见图3: 工厂自动化信息网络分层结构:工厂管理级、车间监控级、现场设备级

<工厂自动化信息网络分层结构:工厂管理级、车间监控级、现场设备级 >

(3) 现场总线技术的产生

现场总线(FieldBus)是工厂底层设备之间的通信网络,是计算机数字通信技术在自动化领域的应用,为车间底层设备信息及生产过程信息集成提供了通信技术平台.图4是工厂底层应用现场总线技术实现了全厂信息纵向集成的透明通信,即从管理层到自动化底层的数据存取.

<工厂底层应用现场总线技术实现了全厂信息纵向集成的透明通信>

(4)现场总线国际标准之一ROFIBUS技术

ROFIBUS技术是1987年由Siemens公司等13家企业和5家研究机构联合开发;1989年批准为德国工业标准DIN 19245(PROFINUS-FMS/-DP);1996年批准为欧洲标准EN 50170 V.2 (PROFIBUS-FMS/-DP);1999年PROFIBUS成为国际标准 IEC 61158 的组成部分(Type III).

PROFIBUS技术为设备层提供了PROFIBUS-DP和-PA技术,为车间层提供了PROFIBUS-FMS技术,见图5。

?PROFIBUS-DP是设备层现场总线, 用于控制器(如PLC、PC、NC)与现场控制设备(如驱动器、检测设备、HMI等)之间的通信总线;

?设备层现场总线技术具有高速(12M)、实时、确定、可靠特点(如-DPV2可用于运动控制),传输的数据量相对较小。

?PROFIBUS-PA也是设备层总线,具有IEC61158-2的物理层,可实现总线供电,并有本质安全技术。

?PROFIBUS-FMS车间级现场总线,主要用于车间级设备监控。主要完成车间生产设备状态及生产过程监控、车间级生产管理、车间底层设备及生产信息集成。车间级现场总线具有传输数据量大、应用层信息规范完整等特点,对网络实时性要求不高。

(5)国际现场总线技术标准IEC61158

根据现场总线技术概念,面对自动化行业千变万化的现场仪表设备,要实现不同厂家不同种类产品的互连,现场总线技术标准化工作至关重要。为此,国际IEC委员会于1984年提出制定现场总线技术标准IEC1158(即IEC61158)。

A. IEC 61158目标:IEC1158的目标是制定面向整个工业自动化的现场总线标准。为此,根据不同行业对自动化技术的需求不同,将自动化技术分为五个不同的行业;见图6:IEC1158的目标。IEC61158是要制定出一部满足工业自动化五大行业不同应用需求的现场总线技术标准。

B.妥协的结果

经过十几年的努力,1998年,对IEC 61158 (TS)进行投票。由于IEC 61158 (TS)只包含了Process Control部分,因此,IEC 61158 (TS)没有通过投票,自动化行业期待了十多年的统一的现场总线技术标准的努力失败。1999年12月,IEC61158放弃了原有设想,通过妥协方案,即:以IEC 61158 (TS)+ Add.Protocols作为IEC61158技术标准的方案;其中Add.Protocols包含Control Net、PROFIBUS、P-Net、FF HSE、Swift Net、WorldFIP和Interbus总线。

自动化行业将面临一个多种总线技术标准并存的现实世界。

C.IEC 61158发展历程给我们的启示

面对当今以太网在自动化领域的应用潮流,IEC 61158发展历程至少给了我们两点

启示,这对我们能够清醒面对现实颇有好处:I、工业自动化技术应用于各行各业,使用一种现场总线技术不可能满足所有行业的技术要求;现场总线不同于计算机网络,人们将会面对一个多种总线技术标准共存的现实世界。II、技术发展很大程度上受到市场规律、商业利益的制约;技术标准不单是一个技术规范,也是一个商业利益的妥协产物。(6)以太网进入自动化领域

IEC61158制定统一的现场总线技术标准努力的失败,使一部分人自然转向了在IT 行业已经获得成功的以太网技术。因此,现场总线标准之争,给了以太网进入自动化领域一个难得的机会。积极推进这种技术概念的如法国施耐德公司,面向工厂自动化提出了基于以太网+TCP/IP的解决方案,称之为“透明工厂”。望文生义可以理解为:“协议规范统一,信息透明存取”。施耐德公司是将以太网技术引入工厂设备底层,广泛取代现有现场总线技术的积极倡导者和实践者,已有一批工业级产品问世和实际应用。3.太网在自动化领域应用现状

目前,以太网工业在自动化领域已有不少成功应用实例,主要集中在以下几个方面:(1) 车间级生产信息集成:主要由专用生产设备、专用测试设备、条码器、PC机及以太网络设备组成;主要功能是完成车间级生产信息及产品质量信息的管理。管理层信息网络:即支撑工厂管理层MIS系统的计算机网络。主要完成如ERP的信息系统。SCADA系统:特别是一些区域广泛、含有计算机广域网技术、无线通信技术的SCADA系统,如城市供水或污水管网的SCADA系统、水利水文信息监测SCADA系统等。个别的控制系统网络:个别要求高可靠性和一定实时性的分布式控制系统也有采用以太网+TCP/IP技术,并获得很好的效果;如水电厂的计算机监控系统。既然以太网已成功的应用于工业自动化诸多方面,既然IEC61158没有给出一个统一的现场总线技术标准,为什么不能将以太网技术引入工业过程控制底层,即设备层,成为甚至取代现有的现场总线技术成为统一的工业网络标准?这就回到了本文开篇的话题。在这个问题上,除去各公司利益代言人从公司市场利益出发的商业宣传不算,就是自动化行业专家们也是智者见智,仁者见仁,看法不尽相同。笔者从事现场总技术研发工作,习惯从技术方面将以太网与现场总线技术进行比较,从而得出几点看法。

4. 以太网与现场总线技术的比较

(1) 物理层

现场总线

A. 传输介质:多数采用屏蔽双绞电缆(RS-485)、光纤、同轴电缆,以解决长线传输、数据传输速率和电磁干扰等问题。也有无线传输方案,以适应不同场合需要。

B. 插件:各种防护等级工业级的接插件。

C.线供电及本质安全:如IEC61158-2,用于流程控制及要求防爆功能的场合。

D. 编码:异步 NRZ、位同步曼彻斯特编码等。

E. 传输速率:9.6k~12M

以太网

A. 传输介质:UTP3类线、UTP5类线、屏蔽双绞电缆、光纤、同轴电缆, 无线传输的解决方案。

B. 插件:RJ45、AUI、BNC

C. 总线供电及本质安全:无。

D. 编码:同步、曼彻斯特编码。

E. 传输速率:10M、100M

(2) 介质访问控制方式

现场总线:现场总线的介质访问控制方式要满足工业控制网络的要求,即通信的实时性和确定性。确定性指站点每次得到网络服务间隔和时间是确定的;实时性指网络分配给站点的服务时间和间隔可以保证站点完成它确定的任务。

目前现场总线技术采用的介质访问控制方式主要有:令牌、主从、生产者/客户

(producer/consumer)

以太网

CSMA/CD(载波监听多路访问/冲突检测)是以太网(或IEEE802.3)采用的介质访问控制方式,如果不是这样就不是以太网(或IEEE802.3);比如采用令牌调度方式,应是基于IEEE 802.4令牌总线网。

根据CSMA/CD(载波监听多路访问/冲突检测)机理,它不能满足工业网络通信的实时性和确定性要求。由于以太网与CSMA/CD具有对等的技术内涵,可以说以太网不是传统工业网络要求的实时性和确定性网络。

(3)传输效率:不同网络对报文长度有一个限制。在网络报文中,除了有效传输数据之外,还有一些作为同步、地址、校验等附加字段。有效数据字段与附加字段之比反映的网络有效数据传输的效率,或者说反映一次有效数据传输的代价。通常报文格式如下: <报文格式>传输效率=有效数据长/[全部附加字段长+有效数据长]

以太网全部附加字段长=26字节最大有效数据长=1500字节最小有效数据长=1字节(小于46时填0)最大传输效率=1500/(1500+26)=98.3%最小传输效率=1/(1+26+45)=1.39% 现场总线PROFIBUS全部附加字段长=11字节最大有效数据长=244字节最小有效数据长

(3) 现场设备信息规范及功能规范

现场设备信息格式及功能描述规范称为”行规”(Profile), 行规可有效实现各种现场设备应用层互联。

例:PROFIBUS行规:

▼NC/RC行规 (机器人、数控行规)

▼各种速度驱动器的行规

▼操作员控制和过程监视 (HMI) 行规

▼对编码器的行规

▼控制器间通信的行规

▼楼宇自动化的行规

▼低压开关装置的行规

▼温度、压力、液位、流量变送器和定位器等行规

3. 以太网在自动化领域能走多远

以太网在工厂自动化管理层和车间监控层已得到广泛应用和用户认可,在设备层对实时性没有严格要求场合也有许多应用;如果以太网希望走的更远,能够全面进入工厂底层成为设备连接的主要网络技术,那么,以太网必须作出技术改进。

(1) 改进物理层

A. 传输介质应能提供多种工业级护套和铠装电缆、光纤等.

B. 各种防护等级工业级的接插件。

C. 应该具有总线供电及本质安全的解决方案, 用于流程控制及要求防爆功能的场

合。

(2) 如何满足实时性和确定性要求? 提高带宽、减少碰撞是最直接的办法,有一定效果;但“尽量的快”和“一定快”是不同的。近年来,以太网在CSMA/CD技术基础上也有一些改进,如应用智能集线器、交换机技术等,但没有从机理上保证通信的实时性和确定性。

如何进一步解决这个问题?无非有软件为主和硬件为主的两种思路;硬件方案是设计新型智能网络交换设备,希望不要一味走增加带宽的老路;软件解决方案是在一定带宽资源基础上,由软件调度实现实时、确定性通信功能。

需要指出的是,以太网技术存在上述缺憾,不意味着以太网就不能在现场层应用,事实上以太网在很多对时间要求不是非常苛刻的现场层,已有很多成功应用范例。(3) 成本:以太网进入现场层,单站点成本是必需考虑的因素;与目前现场总线(PROFIBUS、DeviceNet、ControlNet)产品竞争。

4. 以太网能否取代现场总线技术成为统一的工业网络标准

(1)预测未来是最艰难的事;现场总线是专为工业现场层设备通信设计,是为自动化量体裁衣的技术。以太网设计初衷是办公网,用于数据处理。从技术比较出发似乎很容易得出结论。但技术发展受社会政治、经济影响,市场因素很大程度左右技术走向,回顾计算机发展历史,这种先例不胜枚举。因此,以太网在工厂自动化车间监控层及管理层将成为主要应用技术,特别是采用TCP/IP协议可与互连网Internet连接, 是未来eManufactory的技术基础。在设备层,在没有严格的时间要求条件下,以太网也可以有部分市场。在以太网能够真正解决实时性和确定性问题之前,大部分现场层仍然会首选现场总线技术。

(2)一体化与多元化并存:面对这样一个多种工业总线技术并存的现状,我们应该有一个豁达的心态。哲学家告诉我们,一体化与多元化是一对互为依存的矛盾,将长时间共存与竞争;以太网反映了人们要求技术标准化、一体化的愿望,而现实是不能用一种技术覆盖各行业所有不同需求。IEC61158的发展历程就给了我们一个深刻的启示,我们必须学会面对一个多种工业总线技术竞争和共存的现实世界。

4. 可能的解决方案

在面对具体问题时如何作出选择呢?我认为,就事论事是明智之举。简单地说,你的项目最适合使用什么技术就采用什么技术。

(1)车间级生产信息集成更适合使用以太网理由如下:

A. 多数加工设备具有RS-232接口:如条码机, 专用工设备;

B. 实时性, 确定性, 可靠性要求不高;

C. 与上层网络的信息规范和软件接口兼容

(2) 设备级控制优先选用现场总线技术理由如下:

A. 实时性, 确定性, 可靠性要求;

B. 专用性: 如需要严格同步的运动控制采用Sercos、PROFIBUS-DPV2;

C. 可靠性:工业级的传输层增强系统可靠性;

D. 现场总线技术种类、产品繁多,能够提供各种成本的解决方案。

(3)其它:根据技术要求,就事论事的选择你的解决方案。

工业以太网与现场总线的优缺点 整理

工业以太网与现场总线的优缺点 1 引言 用于办公室和商业的以太网伴随着现场总线大战硝烟已悄悄地进入了控制领域,近年来以太网更是走向前台,发展迅速,颇引人注目。究其原因,主要由于工业自动化系统正向分布化、智能化的实时控制方面发展,其中通信已成为关键,用户对统一的通信协议和网络的要求日益迫切。另一方面,Intranet/Internet等信息技术的飞速发展,要求企业从现场控制层到管理层能实现全面的无缝信息集成,并提供一个开放的基础构架,而目前的现场总线尚不能满足这些要求。 现场总线的出现确实给工业自动化带来一场深层次的革命,但多种现场总线互不兼容,不同公司的控制器之间不能实现高速的实时数据传输,信息网络存在协议上的鸿沟,导致“自动化孤岛”现象的出现,促使人们开始寻求新的出路并关注到以太网。同时现场总线的传输速率也远远不如工业以太网传输速率快。 2 以太网与工业以太网 2.1 什么是以太网与工业以太网 以太网是当今现有局域网采用的最通用的通信协议标准。该标准定义了在局域网(LAN)中采用的电缆类型和信号处理方法。以太网在互联设备之间以10~100Mbps的速率传送信息包,双绞线电缆型号为10 Base T。以太网由于其低成本、高可靠性以及10Mbps的速率而成为应用最为广泛的以太网技术。直扩的无线以太网可达11Mbps,许多制造供应商提供的产品都能采用通用的软件协议进行通信,开放性好。 普通以太网应用到工业控制系统,这种网络叫工业以太网。 2.2 以太网具有的优点 (1)具有相当高的数据传输速率(目前已达到100Mbps),能提供足够的带宽; (2)由于具有相同的通信协议,Ethernet和TCP/IP很容易集成到IT(信息技术)世界; (3)能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架;

工业以太网简介

工业以太网简介: 工业以太网就是基于IEEE 802、3 (Ethernet)得强大得区域与单元网络。利用工业以太网,SIMATIC NET 提供了一个无缝集成到新得多媒体世界得途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供得广泛应用不但已经进入今天得办公室领域,而且还可以应用于生产与过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工与自适应得100M波特率快速以太网(Fast Ethernet,符合IEEE 802、3u 得标准)也已成功运行多年。采用何种性能得以太网取决于用户得需要。通用得兼容性允许用户无缝升级到新技术。 为用户带来得利益 :市场占有率高达80%,以太网毫无疑问就是当今LAN(局域网)领域中首屈一指得网络。以太网优越得性能,为您得应用带来巨大得利益: 通过简单得连接方式快速装配。 通过不断得开发提供了持续得兼容性,因而保证了投资得安全。 通过交换技术提供实际上没有限制得通讯性能。 各种各样联网应用,例如办公室环境与生产应用环境得联网。 通过接入WAN(广域网)可实现公司之间得通讯,例如,ISDN 或Internet 得接入。 SIMATIC NET基于经过现场应用验证得技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷得工业环境,包括有高强度电磁干扰得区域。 工业以太网络得构成 :一个典型得工业以太网络环境,有以下三类网络器件: ◆网络部件 连接部件: ?FC 快速连接插座 ?ELS(工业以太网电气交换机) ?ESM(工业以太网电气交换机) ?SM(工业以太网光纤交换机) ?MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线与光纤 ◆ SIMATIC PLC控制器上得工业以太网通讯外理器。用于将SIMATIC PLC连接到工 业以太网。 ◆ PG/PC 上得工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能:为了应用于严酷得工业环境,确保工业应用得安全可靠,SIMATIC NET 为以太网技术补充了不少重要得性能: ?工业以太网技术上与IEEE802、3/802、3u兼容,使用ISO与TCP/IP 通讯协议?10/100M 自适应传输速率 ?冗余24VDC 供电 ?简单得机柜导轨安装 ?方便得构成星型、线型与环型拓扑结构 ?高速冗余得安全网络,最大网络重构时间为0、3 秒 ?用于严酷环境得网络元件,通过EMC 测试 ?通过带有RJ45 技术、工业级得Sub-D 连接技术与安装专用屏蔽电缆得Fast Connect连接技术,确保现场电缆安装工作得快速进行 ?简单高效得信号装置不断地监视网络元件 ?符合SNMP(简单得网络管理协议) ?可使用基于web 得网络管理 ?使用VB/VC 或组态软件即可监控管理网络。 工业以太网冗余原理

工业以太网的意义和应用分析

以太网技术在工业控制领域的应用及意义 随着计算机和网络技术的飞速发展,在企业网络不同层次间传送的数据信息己变得越来越复杂,工业网络在开放性、互连性、带宽等方面提出了更高的要求。现场总线技术适应了工业网络的发展趋势,用数字通信代替传统的模拟信号传输,大量地减少了仪表之间的连接电缆、接线端口等,降低了系统的硬件成本,被誉为自动化领域的计算机局域网。 现场总线的出现,对于实现面向设备的自动化系统起到了巨大的推动作用,但现场总线这类专用实时通信网络具有成本高、速度低和支持应用有限等缺陷,以及总线通信协议的多样性使得不同总线产品不能直接互连、互用和互可操作等,无法达到全开放的要求,因此现场总线在工业网络中的进一步发展受到了限制。 随着Internet技术的不断发展,以太网己成为事实上的工业标准,TCP/IP 的简单实用已为广大用户所接受,基于TCP/IP协议的以太网可以满足工业网络各个层次的需求。目前不仅在办公自动化领域,而且在各个企业的上层网络也都广泛使用以太网技术。由于它技术成熟,连接电缆和接口设备价格较低,带宽也在飞速增加,特别是快速Ethernet与交换式Ethernet的出现,使人们转向希望以物美价廉的以太网设备取代工业网络中相对昂贵的专用总线设备。 Ethernet通信机制 Ethernet是IEEE802. 3所支持的局域网标准,最早由Xerox开发,后经数字仪器公司、Intel公司和Xerox联合扩展,成为Ethernet标准。Ethernet采用星形或总线形结构,传输速率为10Mb/s,100 Mb/s,1000 Mb/s或是更高,传输介质可采用双绞线、光纤、同轴电缆等,网络机制从早期的共享式发展到目前盛行的交换式,工作方式从单工发展到全双工。 在OSI/ISO 7层协议中,Ethernet本身只定义了物理层和数据链路层,作为一个完整的通信系统,它需要高层协议的支持。自从APARNET将TCP/IP和Ethernet捆绑在一起之后,Ethernet便采用TCP/IP作为其高层协议,TCP用来保证传输的可靠性,IP则用来确定信息传递路线。 Ethernet的介质访问控制层协议采用CSMA/CD,其工作原理如下:某节点要

工业以太网总述

为用户带来的利益 ----市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益: 通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。 各种各样联网应用,例如办公室环境和生产应用环境的联网。 公司之间的通讯

通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 ----SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 ----一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC 快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质: 普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯处理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC 上的工业以太网通讯处理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能

----为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC NET 为以太网技术补充了不少重要的性能: 工业以太网技术上与IEEE802.3/802.3u兼容,使用ISO和TCP/IP 通讯协议 10/100M 自适应传输速率 冗余24VDC 供电 简单的机柜导轨安装 方便的构成星型、线型和环型拓扑结构 高速冗余的安全网络,最大网络重构时间为0.3 秒 用于严酷环境的网络元件,通过EMC 测试 通过带有RJ45 技术、工业级的Sub-D 连接技术和安装专用屏蔽电缆的Fast Connect连接技术,确保现场电缆安装工作的快速进行 简单高效的信号装置不断地监视网络元件 符合SNMP(简单的网络管理协议) 可使用基于web 的网络管理 使用VB/VC 或组态软件即可监控管理网络 工业以太网的技术特点 工业以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显:

工业以太环网设计方案

工业以太环网设计方案 1.1概述 掌石沟煤业是基本实现机械化生产,具有复杂生产系统的矿井,为提高矿井的生产效率,对矿井综采工作面、顺槽胶带、主运输系统、通风机房、井下变电所等环节实施统一操作、集中监控、统一调度。各矿综合自动化系统,根据管控一体化思想,以三层网络为基础,结合自动化、信息、计算机、网络、通讯的新理论和技术,采用世界先进的自动化产品、网络产品和工业控制软件、数据库软件,将煤矿生产、管理的各个环节,统一在一个网络平台上,形成一个统一、完整的有机整体,使其在系统结构、网络通讯、自动化覆盖范围方面处于同类矿井的领先水平。 1.1.1设计综述 掌石沟煤业综合自动化控制网络系统的建设应遵循数字化、高速化、智能化、标准化、安全可靠、易扩充升级的原则进行设计,同时充分考虑公司综合自动化系统总体规划和综合自动化系统网络建设的现状。 对于掌石沟煤业工业综合自动化平台网络系统,在井上和井下设置的高速以太环网,主链路采用千兆光纤。在核心层采用千兆工业以太网技术,通过千兆链路将各环网的交换设备连接到网络系统的核心层次,同时具备高冗余性能。 各环网结点主要是连接结点交换机附近的工业设备,以达到控制和信息采集的目的信息层:建设信息管理网,采用标准TCP/IP协议和以太网技术。实现矿区各个管理部门的网络连接,实现人、财、物以及工程项目管理的综合自动化,能对煤炭的生产状况进行实时监视,为管理决策提供依据。

控制层:建设综合自动化控制网,采用工业以太环网+现场工业总线来实现,实现 将井上和井下区域控制器和设备监控站所采集的信息和控制信号传送给有关系统。 设备层:在设备控制层主要是煤矿各专业控制子系统。 1.2控制层网络设备的技术与产品选型 本方案将采用基于以太网TCP/IP的工业以太网技术,传输介质采用层绞式矿用阻燃型光缆,网络结构采用基于光纤工业以太网的环形架构。 1.2.1技术选择 现代煤矿的生产监控管理系统中往往使用到多家厂商提供的多种不同类型的设备,为 了达到方便管理,保证系统运行稳定的目的,必须选择一个开放的通信平台,并将各种不同类型设备的通信统一到这一标准通信平台之上。为保证良好的兼容性和可扩充性,建议使用以太网TCP/IP技术作为整个系统的通信标准。如有其他类型的通信格式,如RS232 RS485或其他专用通信接口等等,均可通过协议网关转换为以太网信息包,在IP网络上进行传送。以太网TCP/IP技术具有以下的优势: 随着企业的发展、各种新技术的应用,可以预见,对网络的带宽要求也会越来越高, 比如基于网络的视频监控传输应用和井下设备信息数据采集等都需要进行大量数据的传输。 以太网技术具有相当高的数据传输速率(目前已有成功案例应用于井下工业环境下的以太 网交换机),能提供足够的带宽; 能在同一总线上运行不同的传输协议,从而能建立企业的公共网络平台或基础构架; 支持交互式和开放的数据存取技术;沿用多年,已为众多的技术人员所熟悉,市场上能提供广泛的设置、维护和诊断工具,成为事实上的统一标准;

工业以太网的特色技术及其应用选择

工业以太网的特色技术及其应用选择 发布时间:2007-05-15 浏览次数:105 | 我要说几句 | ?? 用户解决方案2012优秀论文合订本 ?? NIDays2012产品演示资料套件 ?? 《提高测量精度的七大技巧》资源包 ?? LabVIEW 2012评估版软件 关键词:工业以太网实时特色技术 编者按:工业以太网成为自动化领域业界的技术热点已有时日,其技术本身尚在发展之中,还没有走向成熟,还存在许多有待解决的问题。究竟什么是工业以太网,它有哪些特色技术,如何应用与选择适合自己需求的工业以太网技术与产品,依然是今天人们所关心的问题。 一什么是工业以太网 工业以太网技术,是以太网或者说是互联网系列技术延伸到工业应用环境的产物。前者源于后者又不同于后者。以太网技术原本不是为工业应用环境准备的。经过对工业应用环境适应性的改造,通信实时性改进,并添加了一些控制应用功能后,形成了工业以太网的技术主体。因此,工业以太网是一系列技术的综称。 二工业以太网涉及企业网络的各个层次

企业网络系统按其功能划分,一般称为以下三个层次:企业资源规划层(Enterprise Resource Plan NI ng, ERP)、制造执行层(Manufacturing Excurtion System, MES)和现场控制层(Field Control System,FCS)。通过各层之间的网络连接与信息交换,构成完整的企业信息系统。( 见图1) 图中的ERP与MES功能层属于采用以太网技术构成信息网络。这个层次的工业以太网,其核心技术依然是信息网络中原本的以太网以及互联网系列技术。工业以太网在该层次的特色技术是对其实行的工业环境适应性改造。而现场控制层FCS中,基于普通以太网技术的控制网络、实时以太网则属于该层次中工业以太网的特色技术范畴。可以把工业以太网在该层的特色技术看作是一种现场总线技术。除了工业环境适应性改造的内容之外,通信实时性、时间发布与同步、控制应用的功能与规范,则成为工业以太网在该层次的技术核心。

工业以太网的构成及重要性能介绍

工业以太网的构成及重要性能介绍 西门子就逐步地把以太网的概念引入到工业控制领域,到今天,西门子SCALANCE系列工业以太网交换机产品,已经在冶金、烟草、汽车、煤矿、造船、地铁、电力、风电、交通、石化、水处理等多个行业的多个项目中得到了成功的应用,产品线也日臻完善。 工业以太网简介 工业以太网是基于IEEE 802.3(Ethernet)的强大的区域和单元网络。利用工业以太网,SIMATIC NET提供了一个无缝集成到新的多媒体世界的途径。 企业内部互联网(Intranet),外部互联网(Extranet),以及国际互联网(Internet) 提供的广泛应用不但已经进入今天的办公室领域,而且还可以应用于生产和过程自动化。继10M波特率以太网成功运行之后,具有交换功能,全双工和自适应的100M波特率快速以太网(Fast Ethernet,符合IEEE 802.3u的标准)也已成功运行多年。采用何种性能的以太网取决于用户的需要。通用的兼容性允许用户无缝升级到新技术。 为用户带来的利益 市场占有率高达80%,以太网毫无疑问是当今LAN(局域网)领域中首屈一指的网络。以太网优越的性能,为您的应用带来巨大的利益:通过简单的连接方式快速装配。 通过不断的开发提供了持续的兼容性,因而保证了投资的安全。 通过交换技术提供实际上没有限制的通讯性能。

各种各样联网应用,例如办公室环境和生产应用环境的联网。 通过接入WAN(广域网)可实现公司之间的通讯,例如,ISDN 或Internet 的接入。 SIMATIC NET基于经过现场应用验证的技术,SIMATIC NET已供应多于400,000个节点,遍布世界各地,用于严酷的工业环境,包括有高强度电磁干扰的区域。 工业以太网络的构成 一个典型的工业以太网络环境,有以下三类网络器件: 网络部件 连接部件: FC快速连接插座 ELS(工业以太网电气交换机) ESM(工业以太网电气交换机) SM(工业以太网光纤交换机) MC TP11(工业以太网光纤电气转换模块) 通信介质:普通双绞线,工业屏蔽双绞线和光纤 SIMATIC PLC控制器上的工业以太网通讯外理器。用于将SIMATIC PLC连接到工业以太网。 PG/PC上的工业以太网通讯外理器。用于将PG/PC连接到工业以太网。 工业以太网重要性能 为了应用于严酷的工业环境,确保工业应用的安全可靠,SIMATIC

工业以太网技术全面解析

工业以太网技术全面解析 高性能、工厂设备和IT系统集成,以及工业物联网的需求驱动促进了工业以太网的增长。在实时工业以太网中,EPA、EtherCAT、RTEX、Ethernet Powerlink、PROFINET、Ethernet/IP、SERCOS III是主要的竞争者。下面对它们进行简单比较。Ethernet/IP Ethernet/IP是2000年3月由Control Net International和ODV A( Open DevicenetVendors Association共同开发的工业以太网标准。 实现实时性的方法 Ethernet/IP实现实时性的方法是在TCP/IP层之上增加了用于实时数据交换和运行实时应用的CIP协议(Common Industrial Protocol )。 Ethernet/IP在物理层和数据链路层采用标准的以太网技术,在网络层和传输层使用IP协议和TCP、UDP协议来传输数据。UDP是一种非面向连接的协议,它能够工作在单播和多播的方式,只提供设备间发送数据报的能力。对于实时性很高的I/O数据、运动控制数据和功能行安全数据,使用UDP/IP协议来发送。而TCP是一种可靠的、面向连接的协议。对于实时性要求不是很高的数据(如参数设置、组态和诊断等)采用TCP/IP协议来发送。Ethernet/IP采用生产者/消费者数据交换模式。生产者向网络中发送有唯一标识符的数据包。消费者根据需要通过标识符从网络中接收需要的数据。这样数据源只需一次性地把数据传到网上,其它节点有选择地接收数据,这样提高了通信的效率。 Ethernet/IP是在CIP这个协议的控制下实现非实时数据和实时数据的传输。CIP是一个提供工业设备端到端的面向对象的协议,且独立于物理层及数据链路层,这使得不同供应商提供的设备能够很好的交互。另外,为了获得更好的时钟同步性能,2003年ODV A将 IEEE 15888引入Ethernet/IP,并制定了CIPsync标准以提高Ethernet/IP的时钟同步精度。 EPA EPA是在“863”计划的支持下,由浙江大学、清华大学、浙江中控技术公司、大连理工大学、中科院自动化所等单位联合制定,是用于工业测量和控制系统的实时以太网标准。

各种工业以太网的区别

各种工业以太网的区别其实就是协议的区别,其中最主要的还是应用层协议的区别。 都是以太网通讯,只是每个公司的叫法不一样,西门子用PROFINET、AB用Ethernet IP、施耐德的MODBUS TCP/IP。 取个例子,以太网就像高速公路,Ethernet/IP、Profinet、Modbus TCP/IP分别像高速公路上的宝马、奔驰、奥迪车,都可以从一个城市把物品运送到另一城市。但是每个车上安装的零件无法和另一车上的零件进行更换。 EtherCAT(以太网控制自动化技术)是一个以以太网为基础的开放架构的现场总线系统,EterCAT名称中的CAT为ControlAutomation Technology(控制自动化技术)首字母的缩写。最初由德国倍福自动化有限公司(Beckhoff AutomationGmbH)研发。EtherCAT为系统的实时性能和拓扑的灵活性树立了新的标准,同时,它还符合甚至降低了现场总线的使用成本。EtherCAT的特点还包括高精度设备同步,可选线缆冗余,和功能性安全协议(SIL3)。 Ethernet/IP是一个面向工业自动化应用的工业应用层协议。它建立在标准UDP/IP与TCP/IP 协议之上,利用固定的以太网硬件和软件,为配置、访问和控制工业自动化设备定义了一个应用层协议西蒙公司开发 Ethernt/IP属于ODVA组织,Rockwell只是其中一个推广力度比较大的公司而已。施耐德也是ODVA组织的成员,施耐德所有PLC都可以支持Ethernt/IP协议。Ethernt/IP协议是十大总线之一,和Controlnet、Devicenet一起称为CIP总线。可以实现协议间路由,但是需要Rslinx 软件进行配置。通讯时需要设置RPI参数,没有任何客户端的反馈信息,因此不管现场客户端是否收到数据,数据一致由服务器不断的发,缺少相应的检测。 PROFINET由PROFIBUS国际组织(PROFIBUS International,PI)推出,是新一代基于工业以太网技术的自动化总线标准。作为一项战略性的技术创新,PROFINET为自动化通信领域提供了一个完整的网络解决方案,囊括了诸如实时以太网、运动控制、分布式自动化、故障安全以及网络安全等当前自动化领域的热点话题,并且,作为跨供应商的技术,可以完全兼容工业以太网和现有的现场总线(如PROFIBUS)技术,保护现有投资。 PROFINET是适用于不同需求的完整解决方案,其功能包括8个主要的模块,依次为实时通信、分布式现场设备、运动控制、分布式自动化、网络安装、IT标准和信息安全、故障安全和过程自动化。 MODBUS/TCP是简单的、中立厂商的用于管理和控制自动化设备的MODBUS系列通讯协议的派生产品。显而易见,它覆盖了使用TCP/IP协议的“Intranet”和“Internet”环境中MODBUS 报文的用途。协议的最通用用途是为诸如PLC’s,I/O模块,以及连接其它简单域总线或I/O 模块的网关服务的。 MODBUS/TCP协议是作为一种(实际的)自动化标准发行的。既然MODBUS已经广为人知,该规范只将别处没有收录的少量信息列入其中。然而,本规范力图阐明MODBUS中哪种功能对于普通自动化设备的互用性有价值,哪些部分是MODBUS作为可编程的协议交替用于PLC’s的“多余部分”。 它通过将配套报文类型“一致性等级”,区别那些普遍适用的和可选的,特别是那些适用于特殊设备如PLC’s的报文。 Modbus TCP/IP由Modbus IDA组织提出,有施耐德旗下的Modicon公司主推,在目前施耐德所有PLC产品中都支持,同时也支持Ethernet/IP协议,Modbus TCP/IP是免费的、全开放协议,可以用VB等高级编程语言调用winsock控件即可实现与PLC的数据通讯,因此,很

六种工业以太网比较

六种工业以太网比较 Company number:【0089WT-8898YT-W8CCB-BUUT-202108】

六种工业以太网比较 摘要:当前,工业以太网技术是控制领域中的研究热点。所谓工业以太网,一般来讲是指技术上与商用以太网(即标准)兼容,但在产品设计时,在材质的选用、产品的强度、适用性以及实时性、可互操作性、可靠性、抗干扰性和本质安全等方面能满足工业现场的需要。随着互联网技术的发展与普及推广,Ethernet技术也得到了迅速的发展,Ethernet传输速率的提高和Ethernet交换技术的发展,给解决Ethernet通信的非确定性问题带来了希望,并使Ethernet全面应用于工业控制领域成为可能。目前,几种典型的工业以太网有HSE、PROFInet、Modbus/TCP、EtherNet/IP、Powerlink、EPA六种。本文通过对这六种工业以太网比较,以便更好的应用于系统集成。 关键词:工业以太网、HSE、PROFInet、Modbus、EtherNet、Powerlink、EPA 与传统控制网络相比,工业以太网具有应用广泛、为所有的编程语言所持、软硬件资源丰富、易于与Internet连接、可实现办公自动化网络与工业控制网络的无缝连接等诸多优点。由于这些优点,特别是与信息传输技术的无缝集成以及传统技术无法比拟的传输宽带,以太网得到了工业界的认可。 1.HSE(高速以太网) HSE(High Speed Ethernet Fieldbus)由现场总线基金会组织(FF)制定,是对FF-H1的高速网段的解决方案,它与H1现场总线整合构成信息集成开放的体系结构。 FF HSE的1-4层由现有的以太网、TCP/IP和IEEE标准所定义,HSE和H1使用同样的用户层,现场总线信息规范(FMS)在H1中定义了服务接口,现场设备访问代理(FDA)为HSE提供接口。用户层规定功能模块、设备描述(DD)、功能文件(CF)以及系统管理(SM)。HSE网络遵循标准的以太网规范,并根据过程控制的需要适当

SIMOTION 工业以太网通信入门要点

1.SIMOTION工业以太网网络介质 西门子工业以太网网络通常使用的物理传输介质为屏蔽双绞线(FC TP)、工业屏蔽双绞线(ITP)和光纤。 1.1 屏蔽双绞线(Fast Connection Twist Pair) FC TP快速连接双绞线用于将DTE快速连接到工业以太网上,配合西门子FC TP RJ45接头使用,连接方式如图1所示: 图1:FC TP电缆与TP RJ45接头 将双绞线按照TP RJ45接头标示的颜色插入连接孔中,快捷、方便地将DTE设备连接到工业以太网上。使用FC双绞线从DTE到交换机最长通信距离为100米(DTE到DTE)。也可以使用普通RJ45接头,为了保证数据传输的可靠性,在无干扰情况下最长通信距离为5米。 RJ-45连接有两种连接方式,交叉连接(如图2所示)和直通连接(如图3所示)。交叉连接用于网卡之间的连接或集线器之间的连接;直通线用于网卡与集线器之间或网卡与交换机之间的连接。Siemens交换机由于采用了自适应技术,可以自动检测线序,故通过交换机可以选择任意一种电缆进行连接。 图2 交叉线连接

图3 直通线连接 SIMOTION 带有RJ45接头,建议使用西门子FC TP和FC TP RJ45接头。 1.2 工业屏蔽双绞线(Industrial Twisted Pair) 屏蔽双绞线如图4所示,它有白/蓝和白/橙两对双绞屏蔽线。外部包有屏蔽层和绝缘层,用于连接有ITP 端口的以太网设备。通过ITP电缆连接的两个设备的最远距离为100米。 图4 ITP电缆结构图 连接ITP电缆的连接头有两种,即9 针或15 针的Sub-D 接头,如图所示5、6:

工业网络与通信

工业网络与通信 一工业网络通信基础 工业网络是指安装在工业生产环境中的一种全数字化、双向、多站的通信系统。具体有以下三种类型: (1)专用、封闭型工业网络:该网络规范是由各公司自行研制,往往是针对某一特定应用领域而设,效率也是最高。但在相互连接时就显得各项指标参差不齐,推广与维护都难以协调。专用型工业网络有三个发展方向:①走向封闭系统,以保证市场占有率。②走向开放型,使它成为标准。③设计专用的Gateway与开放型网络连接。 (2)开放型工业网络:除了一些较简单的标准是无条件开放外,大部分是有条件开放,或仅对成员开放。生产商必须成为该组织的成员,产品需经过该组织的测试、认证,方可在该工业网络系统中使用。 (3)标准工业网络:符合国际标准IEC61158、IEC62026、ISO11519或欧洲标准EN50170的工业网络,它们都会遵循ISO/OSI7层参考模型。工业网络大都只使用物理层、数据链路层和应用层。一般工业网络的制定是根据现有的通信界面,或是自己设计通信IC,然后再依据应用领域设定数据传输格式。例如,DeviceNet的物理层与数据链路层是以CANbus为基础,再增加适用于一般I/O点应用的应用层规范。 目前IEC61158认可的八种工业现场总线标准分别是:Fieldbus Type1、Profibus、ControlNet、P-NET、Foundation Fieldbus、SwiftNet、WorldFIP和Interbus。 1 工业数据通信的技术组成和系统组成 2 工业数据通信的传输过程

二工业网络物理机构 1 网络的传输媒介 有线传输介质:双绞线、同轴电缆和光纤。 无线传输介质:无线电、微波、卫星、移动通信等各种通信介质。 2 工业通信网络的拓扑形式 工业网络中的拓扑形式就是节点的互连形式。常见的是:总线型、环形、星形和树形等。 (1)总线型:通过一条总线电缆作为传输介质,各节点通过接口接入总线。是工业通信网络中最常用的一种拓扑形式。 (2)星形与树形:在星形拓扑中,每个节点通过点对点连接到中央节点,任何节点之间

SIMOTION 工业以太网通信入门

1.S I M O T I O N工业以太网网络介质西门子工业以太网网络通常使用的物理传输介质为屏蔽双绞线(FCTP)、工业屏蔽双绞线(ITP)和光纤。 1.1屏蔽双绞线(FastConnectionTwistPair) FCTP快速连接双绞线用于将DTE快速连接到工业以太网上,配合西门子FCTPRJ45接头使用,连接方式如图1所示: 图1:FCTP电缆与TPRJ45接头 将双绞线按照TPRJ45接头标示的颜色插入连接孔中,快捷、方便地将DTE设备连接到工业以太网上。使用FC双绞线从DTE到交换机最长通信距离为100米(DTE到DTE)。也可以使用普通RJ45接头,为了保证数据传输的可靠性,在无干扰情况下最长通信距离为5米。 RJ-45连接有两种连接方式,交叉连接(如图2所示)和直通连接(如图3所示)。交叉连接用于网卡之间的连接或集线器之间的连接;直通线用于网卡与集线器之间或网卡与交换机之间的连接。Siemens交换机由于采用了自适应技术,可以自动检测线序,故通过交换机可以选择任意一种电缆进行连接。 图2交叉线连接

图3直通线连接 SIMOTION带有RJ45接头,建议使用西门子FCTP和FCTPRJ45接头。 1.2工业屏蔽双绞线(IndustrialTwistedPair) 屏蔽双绞线如图4所示,它有白/蓝和白/橙两对双绞屏蔽线。外部包有屏蔽层和绝缘层,用于连接有ITP 端口的以太网设备。通过ITP电缆连接的两个设备的最远距离为100米。 图4ITP电缆结构图 连接ITP电缆的连接头有两种,即9针或15针的Sub-D接头,如图所示5、6:

????? 图5Sub-D9针接头????????????????????????????????????????????????图6Sub-D15针接头 使用Sub-D接头进行连接的网络连接牢固,不易松动。其连线方法及9/15接头的转换可以查阅西门子手册。同样ITP电缆也会有交叉连接的情况,可以直接定购ITPXP标准电缆。 SIMOTION只有RJ45以太网接口,通常不使用工业双绞线ITP。 1.3光纤 按光在光纤中的传输模式不同,光纤可分为单模光纤和多模光纤。 多模光纤:中心玻璃芯较粗(50或62.5μm),可传多种模式的光。但其模间色散较大,这就限制了传输数字信号的频率,而且随距离的增加会更加严重。例如:600MB/KM的光纤在2KM时则只有300MB的带宽了。因此,多模光纤传输的距离就比较近,一般只有几公里。 单模光纤:中心玻璃芯较细(芯径一般为9或10μm),只能传一种模式的光。因此,其模间色散很小,适用于远程通讯,但其色度色散起主要作用,这样单模光纤对光源的谱宽和稳定性有较高的要求,即谱宽要窄,稳定性要好。 光纤技术只允许点对点的连接,即一个发送装置只对应一个接收装置。因而两个站点之间需要有发送和接收两根光纤进行连接。所有SIMATICNET标准的光缆都是两根光纤。光纤的连接头有很多种如图7所示:

工业以太网网络规划原则

工业以太网网络规划原则 不管“工业 4.0”还是“工业互联网”其技术本质都是自动化与信息化的深度融合。在融合的过程中网络会不断地增长。不断增长的网络复杂度为工业控制网络的设计方法提出了新的挑战。 目前实际工业应用的网络一般由控制工程师成设计,网络性能主要由控制工程师经验决定。但是随着网络复杂度增加,这难以保持高效与可靠。在大规模网络中,如何确定网络性能的瓶颈变得非常的棘手。并且,小规模网络中获取的网络设计经验未必适用于大规模网络。控制工程师设计工业控制网络需要保障网络 QoS 性能,避免工业控制网络的性能成为工业自动化系统性能的瓶颈。 工业以太网技术具有价格低廉、稳定可靠、通信速率高、软硬件产品丰富、应用广泛以及支持技术成熟等优点,已成为最受欢迎的通信网络之一。近些年来,随着网络技术的发展,以太网进入了控制领域,形成了新型的以太网控制网络技术。这主要是由于工业自动化系统向分布化、智能化控制方面发展,开放的、透明的通讯协议是必然的要求。以太网技术引入工业控制领域,其技术优势非常明显。工业以太网制造现在信息的强大性跟控制的快捷性,能够实现快速的串联跟控制,为现代工业制造实现真正意义上的“E网到底”奠定了良好的基础。工业以太网已经被业内认为是未来控制网络的最佳解决方案,

也是当前现场总线中的主流技术(如下图1是工业以太网在工业控制系统的各个层级的应用)。 图1、工业以太网在自动化系统各个层级的应用 在上图中虽然从网络的网络上在自动化系统的各个层级都可以是以太网,但在各个层级上的以太网上运行的协议并不相同,这是由于控制系统的应用决定的。在控制系统的各个层级对传输的数据量、响应时间、传输的频次等的要求如下图2所示。

几种典型工业以太网技术比较

几种典型工业以太网技术比较

1 工业以太网总览 表1给出了常见的几种工业以太网及其管理组织。 表1-1 常见工业以太网及其管理组织列表 上述各种工业以太网管理组织的标识如图1所示。 图1-1 工业以太网管理组织标识 根据从站设备的实现方式,可将工业以太网分为三种类型: (1)类型A ——通用硬件、标准TCP/IP协议 Modbus/TCP、Ethernet/IP、PROFInet/CbA(版本1)采用这种方式。使用标准TCP /IP协议和通用以太网控制器,结构如图1-2所示。这种方式下,所有的实时数据(如过程数据)和非实时数据(如参数配置数据)均通过TCP/IP 协议传输。其优点是成本低廉,实现方便,完全兼容通用以太网。在具体实现中,某些产品可能更改/优化了TCP/IP协议以获得更好的性能,但其实时性始终受到底层结构的限制。

通用以太网控制器IP TCP/UDP IT 应用 HTTP SNMP FTP … 图1-2 工业以太网类型A 结构 (2)类型B —— 通用硬件、自定义实时数据传输协议 Ethernet Powerlink 、PROFInet/RT (版本2)采用这种方式。采用通用以太网控制器,但不使用TCP/IP 协议来传输实时数据,而是定义了一种专用的包含实时层的实时数据传输协议,用来传输对实时性要求很高的数据,结构如图1-3所示。TCP/IP 协议栈可能依然存在,用来传输非实时数据,但是其对以太网的读取受到实时层(Timing-Layer )的限制,以提高实时性能。这种结构的优点是实时性较强,硬件与通用以太网兼容。 通用以太网控制器 IT 应用 HTTP SNMP FTP … 图1-3 工业以太网类型B 结构 (3)类型C —— 专用硬件、自定义实时数据传输协议 EtherCAT 、SERCOS-III 、PROFInet/IRT (版本3)采用这种方式。这种方式在类型B 的基础上底层使用专有以太网控制器(至少在从站侧),以进一步

S7-300之间的以太网通信

S7-300PLC之间的工业以太网通信 在生产现场,用户还会遇到S7-300的PLC组成小型的局域网实现互相通信的情况。为了解决这个问题,我们先采用2台CPU 315-2PN/DP通过建立S7连接来说明两台S7-300PLC 的工业以太网的组网技术。 1.西门子工业以太网通信方式简介 工业以太网的通信主要利用第二层(ISO)和第四层(TCP)的协议。以下是西门子以太网的几种通信方式。 (1)ISOTransport (ISO传输协议) ISO传输协议支持基于ISO的发送和接收,使得设备在工业以太网上的通信非常容易,该服务支持大数据量的数据传输(最大8KB)。ISO数据接收有通信方确认,通过功能块可以看到确认信息。用于SIMA TIC S5和SIMATIC S7的工业以太网连接。 (2)ISO-on-TCP ISO-on-TCP支持第四层TCP/IP协议的开放数据通信。用于支持SIMA TIC S7和PC以及非西门子支持的TCP/IP以太网系统。ISO-on-TCP符合TCP/IP,但相对于标准的TCP/IP,还附加了RFC 1006协议,RFC 1006是一个标准协议,该协议描述了如何将ISO映射到TCP 上去。 (3)UDP UDP(User Datagram Protocol, 用户数据报协议),属于第四层协议,提供了S5兼容通信协议,适用于简单的、交叉网络的数据传输,没有数据确认报文,不检测数据传输的正确性。UDP支持基于UDP的发送和接收,使得设备(例如PC或非西门子公司设备)在工业以太网上的通信非常容易。该协议支持较大数据量的数据传输(最大2KB),数据可以通过工业以太网上或TCP/IP网络(拨号网络或因特网)传输。通过UDP,SIMATIC S7 通过建立UDP连接,提供了发送/接收通信功能,与TCP不同,UDP实际上并没有在通信双方建立一个固定的连接。 (4)TCP/IP TCP/IP 中传输控制协议,支持第四层TCP/IP协议的开放数据通信。提供了数据流通信号,但并不将数据封装成消息块,因而用户并不接收到每一个任务的确认信号。TCP支持面向TCP/IP的Socket。 TCP支持给与TCP/IP的发送和接收,使得设备(例如PC和非西门子设备)在工业以太网上的通信非常容易。该协议支持大数据量的数据传输(最大8KB),数据可以通过工业以太网或TCP/IP网络(拨号网络或因特网)传输。通过TCP,SIMATIC S7 可以通过建立TCP连接来发送/接收数据。 2.S7 通信 S7通信(S7 Communication) 集成在每一个SIMA TIC S7/M7和C7的系统中,属于OSI 参考模型第7层应用层的协议,它独立于各个网络,可以应用于多种网络(MPI 、PROFIBUS、工业以太网)。S7通信通过不断地重复接收数据来保证网络报文的正确。在SIMA TIC S7中,通过组态建立S7连接来实现S7通信,在PC上,S7通信需要通过SAPI-S7接口函数或OPC (过程控制用对象链接与嵌入)来实现。 3.网络组建 本例由于采用两台S7-300PLC的,且由于CPU是CPU 315-2PN/DP,可以直接用双绞线连接,也可以用SIMA TIC NET Industrial Ethernet Switch进行连接。 3.1软硬件配置

(完整word)Ethernet/IP协议简介

目录 1.现场总线控制技术与工业以太网2.工业以太网实时性问题3.Ethernet/IP协议简介4.Ethernet/I P通信适配器硬件设计与实现 5.EtherNet/IP 工业以太网优缺点及发展前景

Ethernet/IP协议简介 1 现场总线控制技术与工业以太网 20世纪90年代以后随着现场总线控制技术的逐渐成熟,智能化与功能自治性的现场设备的广泛应用,嵌入式控制器、智能现场测控仪表和传感器等方便地接入了现场总线。 现场总线控制系统(FCS)是顺应智能现场仪表而发展起来的。它的初衷是用数字通讯代替4--20mA模拟传输技术,但随着现场总线技术与智能仪表管控一体化(仪表调校、控制组态、诊断、报警、记录)的发展,在控制领域内引起了一场前所未有的革命。 控制专家们纷纷预言:FCS将成为21世纪控制系统的主流。然而在控制界对FCS进行概念炒作的时候,却注意到它的发展在某些方面的不协调,其主要表现在迄今为止现场总线的通讯标准尚未统一:8种现场总线经过14年的纷争,最后IEC的现场总线标准化组织经投票,通过以下这8种现场总线成为IEC61158现场总线标准,即:FF H1,Control Net,ProfiBus,InterBus,P.Net,World FIP,Swift Net,FF之高速EtherNet即HSE。这8种现场总线互不兼容,这也使得各厂商的仪表设备难以在不同的FCS中兼容。此外,FCS的传输速率也不尽人意,以基金会现场总线(FF)正在制定的国际标准为例,它采用了ISO的参考模型中的3层(物理层、数据链路层和应用层)和极具特色的用户层,其低速总线H1的传输速度为31.25kbps,高速总线H2的传输速度为1 Mbps或2.5Mbps,这在有些场合下仍无法满足实时控制的要求。又如广泛用于汽车行业的Can总线 系统,其最高的传输速率为1 Mbps/40米;这些现场总线受通讯距离制约较大。由于上述原因,使FCS在工业控制中的推广应用受到了一定的限制。 以太网具有传输速度高、低耗、易于安装和兼容性好等方面的优势,由于它支持几乎所有流行的网络协议,所以在商业系统中被广泛采用。但是传统以太网采用总线式拓朴结构和多路存取载波侦听碰撞检测(CSMA/CD)通讯方式,在实时性要求较高的场合下,重要数据的传输过程会产生传输延滞,这被称为以太网的“不确定性”。研究表明:商业以太网在工业应用中的传输延滞在2~30ms之间,这是影响以太网长期无法进入过程控制领域的重要原因之一。因此对以太网的研

西门子工业以太网通讯网络仿真

西门子工业以太网通讯网络仿真 1 序言工业以太网提供了针对制造业控制网络的数据传输的以太网标准。该技术基于工业标准,利用了交换以太网结构,有很高的网络安全性、可操作 性和实效性,最大限度地满足了用户和生产厂商的需求。工业以太网以其特有 的低成本、高实效、高扩展性及高智能的魅力,吸引着越来越多的制造业厂商。 2 工业以太网的特点工业以太网是专为工业应用专门设计的,它遵循国际标准ieee802.3(ethernet)的开。放形式,多供应商的高性能的区域和网络单元。工业以太网一般用于对时间要求不太严格、需要传送大量数据的通信场合。将以 太网高速传送技术引入到工业控制领域,使得企业内部互联网、外部互联网和 国际互联网提供的技术和广泛的应用已经进入生产和过程自动化中。这种应用推动了自动化技术和互联网技术的结合。 以太网的市场占有率已经超过80%,在当今局域网中首屈一指。以太网有如下特点:◆可以采用冗余的网络拓扑结构,可靠性高; ◆通过交换技术可以提供实际上没有限制的通信性能; ◆灵活性好,现有设备可以不收影响地扩张; ◆在不但发展过程中有良好的向下兼容性; ◆易于实现管理信息系统和工业控制网络的联网,即管理控制网络的一体化。 以太网支持的广域开放型网络模型,可以采用多种传输媒体。西门子公司在 工业以太网领域有着非常丰富的经验和领先的解决方案。其中simatic net 工业以太网基于经过现场验证的技术,符合ieee802.3 标准并提供10mbit/s 以及100mbit/s 快速以太网技术。经过多年的实践,simatic net 工业以太网的应用已多于400000 个节点,偏布世界各地,用于严酷的工业环境,并包括有高强度

相关文档
最新文档