什么是线膨胀系数

什么是线膨胀系数
什么是线膨胀系数

什么是线膨胀系数

一般指由于外界温度、压力(主要指温度)变化时,物体的线性尺寸随温度、压力(主要指温度)的变化率。如铁温度每升高1度,长或宽或高尺寸增加12X10^-6,即增加0.0012%。

对应地还有体膨胀系数,即物体的体积随温度的变化率。对于各向同性的物体,线膨胀系数较小时,体膨胀系数是线膨胀系数的3倍略多一点。

金属材料线膨胀系数的测量

线膨胀系数在数值上等于当温度升高1℃时固体材料单位长度的伸长量。对于不同的物质,线膨胀系数不同。一般来说,塑料的线膨胀系数较大,金属的次之,熔凝石英的较小。常见几种材料的线膨胀系数的数量级

物质在一定的温度和压力下具有一定的体积。温度变化时,物质的体积亦相应地变化。物质的体积随

温度升高而增大的现象称为热膨胀。物质的热膨胀是由于构成物质的原子间的平均距离随温度升高而增大造成的。物质的热膨胀性质与物质的结构、键型、键力、比热容、熔点等密切相关。因此,不同的物质或者组成相同结构不同的物质,具有不同的热膨胀性质,常用体积膨胀系数这一物理量来表征物质的不同热膨胀性质。固体材料在一维方向上的热膨胀伸长称为线膨胀,用线膨胀系数来描述不同物质的线膨胀特性。

物体的热膨胀性质反映了材料本身的属性,测量材料的线膨胀系数,不仅对新材料的研制具有重要意义,而且也是选用材料的重要指标之一。在工程结构设计(如桥梁、铁路轨道、电缆工程等)、机械和仪表的制造、材料的加工和焊接等过程中都必须考虑材料的热膨胀特性。材料的热膨胀特性也有许多有利方面的应用,如液体温度计、喷墨打印机等等。

在测量材料线膨胀系数的常用方法中,关键是测量材料受热膨胀后的微小长度伸长量。这一微小长度变化量用一般的长度测量仪器很难测准,一般需要采用放大测量方法、借助测微装置或仪器来测量,如光杠杆光学放大法、千分尺螺旋放大法、光学干涉法等。本实验采用非电量电测法通过霍尔位移传感器测量微小的长度变化。

【预习提示】

1.什么是线膨胀系数?测量线膨胀系数需要测量哪些相关物理量?

2.霍尔位移传感器的基本工作原理是什么?

3.什么是定标?

4.怎样设计测量数据记录表?

【实验目的】

1.掌握测量线膨胀系数的基本原理。

2.了解非电量电测法的一些基本概念和基本方法。

3.学习用霍尔位移传感器测量微小长度变化量的原理和方法。

【实验原理】

1.线膨胀系数的测量原理

固体材料在一维方向上的热膨胀伸长称为线膨胀。实验表明,在一定温度范围内,热膨胀后的长度由温度的增加量、物体的材料性质、物体原有的长度三个因素决定,可近似地表示为

[])(100t t L L t -+=α(1)

式中t L 是物体在温度为t 时的长度,0L 是物体在温度为0t 时的长度,α称为物体的线膨胀系数。由式(1)可得

)()(00000t t L L t t L L L t -?=--=α(2)

根据式(2)可知,线膨胀系数α在数值上等于当温度升高1℃时固体材料单位长度的伸长量。对于不同的物质,线膨胀系数不同。一般来说,塑料的线膨胀系数较大,金属的次之,熔凝石英的较小。常见几种材料的线膨胀系数的数量级如表1所示。

表1 常见几种材料线膨胀系数的数量级

织发生变化的温度附近,同时出现线膨胀量的突变。因此,测量线膨胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,一般情况下可以认为线膨胀系数是一常量。

由式(2)可知,若实验测定了材料在温度为0t 时的长度、温度的增加量)(0t t -和相应的长度变化量L ?,便可以求出材料在这一温度区域的线膨胀系数α。实验中测量铜棒的线膨胀系数,在温度变化不大时,如小于100℃,铜棒的长度增加量很小,所以需要比较精密的仪器来测量。实验中采用非电量电测法通过霍尔位移传感器来测量微小的长度变化。

2.霍尔位移传感器的基本结构和工作原理

根据霍尔效应可知,霍尔元件处于方向平行于霍尔元件法线方向磁感应强度为B 的磁场中,当工作电流为I 时,产生的霍尔电压H U 为

IB K U H H =(3)

式(3)中H K 为霍尔元件的灵敏度,单位一般选用mV/(mA ·T )。

霍尔位移传感器的基本结构如图1所示,霍尔元件在均匀梯度dz dB

的磁场内移动,保持工作电流I 不变,移动方向平行于磁感应强度方向即霍尔元件的法线方向,若霍尔元件相对

于参考位置的位移量为z ?,则输出的霍尔电压相对于某一参考值的变化量H U ?为

z dz dB I K U H H ?=?(4)

由式(4)可知,霍尔电压的变化量H U ?与位移z ?成正比,可以表示为

z K U H ?=?(5) 式中dz dB

I K K H =称为霍尔位移传感器的测量仪器灵敏度,常用单位是mV/mm 。因此,采

用霍尔位移传感器,通过测量霍尔电压的变化量可以测量位移量,从而实现微小长度变化量的测量。

为了实现均匀梯度的磁场,磁路设计可以采用多种形式,实验中采用图1所示的方式。用两块外形尺寸和极面磁感应强度相同的永久磁体,同极性相对放置,霍尔元件位于两磁体之间,可沿z 轴移动。在图1中A 处的磁感应强度为零,作为位移参考零点,对应的霍尔电压0=H U ;当霍尔元件相对于A 点发生位移时,磁感应强度不再为零,霍尔元件也就有相应的电压输出,静态特性输出曲线如图2所示。由图2可知,当位移小于2mm 时,输出的霍尔电压与位移之间具有良好的线性关系。

理论和实验证明,磁场梯度越大,测量灵敏度就越高;磁场梯度越均匀,线性度就越好。当磁体极面磁感应强度确定后,磁场梯度决定于磁体间隙,为获得较高的梯度,磁体间隙一般较小,实验中磁体间隙为10mm 。

霍尔元件形小体轻,霍尔效应产生的时间短,所以霍尔位移传感器具有惯性小、反应速度快等优点,广泛地应用于现代测量技术中。

图1 霍尔位移传感器结构

图2 霍尔位移传感器的静态特性

【实验器材】

1.线膨胀系数测量仪

线膨胀系数测量仪原理如图3所示。在图3(a)中,待测样品(金属棒)放置于热管S 中,S由P1、P2支架固定在底座上,T是温度计。样品的一端与F相接,另一端通过隔热材料与滑块B相连。H为霍尔元件,固定在B上,并处于由磁体D形成的梯度磁场内。E为螺旋测微装置,可推动磁体D移动,用于仪器定标。

(a)测量装置;(b)测量电路

图3 金属线膨胀系数测量仪

2.稳压电源、滑线变阻器、mA表、开关、导线、数字电压表如图3(b)所示,稳压电源、滑线变阻器、mA表、开关、导线、数字电压表等组成测量电路,测量霍尔电压。

3.蒸汽发生器

蒸汽发生器产生蒸汽,加热被测样品。

4.温度计

温度计测量被测样品温度。

【实验内容与要求】

一.必做部分

1.仪器的定标

(1)根据图3(b)连接电路,调节R,使霍尔元件的工作电流为l0mA,并在整个实验过程中保持不变。

(2)打开电压表,转动螺旋测微装置E,使电压表示数为零,此时霍尔元件处于磁感应强度B=0的中间位置,即位移的参考零点。

(3)从位移参考零点开始,分别向两端精确调节E,改变位移量。在位移-

=

2+

?范围选取10个以上测量点,记录移动的距离以及相应电压表的示数。

mm

mm

z2

~

2.蒸汽加热法测量铜棒的线膨胀系数

(1)调节E,使电压表示数为零,此时记录铜棒的初温0t(由温度计T读出)和原长0L

U。

以及电压表的示数0H

(2)通蒸汽进入热管S中加热铜棒,观察热膨胀现象。随着温度的升高,铜棒膨胀,推动滑块B,使霍尔元件H在磁场中移动,电压表的读数发生变化,动态地显示铜棒热膨胀过程。

U。

(3)待铜棒的温度稳定后,此时记录温度t及电压表读数H

3.电加热法测量铜棒的线膨胀系数

(1)调节E,使电压表示数为零,此时记录铜棒的初温0t(由温度计T读出)和原长0L

U。

以及电压表的示数0H

(2)接通电加热装置的电源,开始加热铜棒,观察热膨胀现象。随着温度的升高,铜棒膨胀,推动滑块B,使霍尔元件H在磁场中移动,电压表的读数发生变化,动态地显示铜棒热膨胀过程。

(3)调节加热电压使铜棒温度升高的速度适中,温度t每隔10℃,记录一次电压表读

U。

数H

二.选做部分—设计性内容

1.设计内容

(1)设计利用光杠杆测量固体材料线膨胀系数的实验方案。

(2)设计利用电容传感器测量固体材料线膨胀系数的实验方案。

2.设计要求

(1)阐述基本实验原理和实验方法;(2)说明基本实验步骤;(3)进行实际实验测量;(4)说明数据处理方法,给出实验结果。

【注意事项】

1.仪器的调节都有一定的范围,操作时应严格按照教师或说明书的要求进行,以免损

坏仪器。

2.霍尔元件的工作电流不要超过10mA ,电流过大容易损坏霍尔元件。工作电流要在定标和测量过程中始终保持不变。

3.电炉通电前要仔细检查,电线和蒸汽管线等要远离电炉,注意安全。

4.铜棒加热时不要用手触摸玻璃管,以免烫伤。

5.测量过程中要保持铜棒的位置不动。

【数据记录与处理】

1.根据实验内容要求设计数据表格,列表记录和处理数据。

2.作z U H ??~曲线,求出仪器灵敏度K 。

3.蒸汽加热法测量铜棒的线膨胀系数。根据实验数据由式(5)和式(2)计算出铜的线膨胀系数α,估算不确定度ασ,完整表示实验结果。

4.电加热法测量铜棒的线膨胀系数。根据实验数据,应用逐差法或最小二乘法或作图法计算出单位温度变化的电压变化量即t U H

??,由式(5)和式(2)计算出铜的线膨胀系数α,估算不确定度ασ,完整表示实验结果。

【思考与讨论】

1.测量线膨胀系数的基本原理是什么?

2.什么是霍尔效应?

3.霍尔位移传感器是如何实现位移测量的?

4.实验中为什么要先给霍尔位移传感器定标?

5.如何给霍尔位移传感器定标?

6.实验中霍尔位移传感器的工作电流为什么要保持不变?

7.本实验可以采用哪些处理数据方法计算仪器的灵敏度?各种数据处理方法对测量数据各有什么要求?

8.试分析影响本实验测量精度的主要因素。

【附录1】

TH-V 型直流数字电压表使用说明

1.供电电源220V 、50Hz ,电源进线为单相三线。

2.电压表量程0~20V 。分20mV 、200mV 、2V 、20V 等4挡,使用前应先将量程放置在与被测电压数值相应的挡级处。

3.电压读数采用21

3

位数字显示,最大示值为1999。如果出现首位显示“1”,后3位不亮,则说明已超量程,须将量程换到高一挡级。

4.量程选择20mV 或200mV 时,若仪表输入端开路,读数会无规则跳动,当输入短接时,读数方能为零。

5.仪器精度不低于0.5%。

6.使用20mV 挡时,务必先将输入短接,进行调零之后才能正确显示。

常用金属热膨胀系数部分汇总11

常用金属或合金的线胀系数 金属或合金温度T/℃线胀系数α /10E-6/℃ 金属或合金温度T/℃ 线胀系数α /10E-6/℃ 铝及铝合金 碳钢20-10010.6-12.2 106020-10020-30020-20011.3-13.0 110020-10020-40020-30012.1-13.5 201120-10020-60020-40012.9-13.9 201420-1002320-60013.5-14.3 202420-10022.820-70014.7-15.0 221820-10022.3 铬钢20-10011.2 300320-10023.220-20011.8 403220-10019.420-30012.4 500520-10023.820-40013 505020-10023.820-60013.6 505220-10023.8 铸铁20-1008.7-11.1 505620-10024.120-2008.5-11.6 508320-10023.420-30010.1-12.2 508620-10023.920-40011.5-12.7 515420-10023.920-60012.9-13.2 545620-10023.920-100017.6 606120-10023.4 1020-10011.53 606320-10023.420-20012.61 610120-1002320-30013 707520-10023.220-40013铜及铜合金20-50014.18纯铜2016.520-60014.6 磷脱氧铜20-30017.7 1520-10011.75 无氧铜20-30017.720-20012.41普通黄铜20-30020.320-30013.45低铅黄铜20-30020.220-40013.6中铅黄铜20-30020.320-50013.85高铅黄铜20-30020.320-60013.9 超高铅黄铜20-30020.5 2020-10011.16 铝青铜20-30016.420-20012.12铍青铜20-30017.8

热膨胀系数实验报告

热膨胀系数实验报告 篇一:热膨胀系数测定实验报告数据处理 由,得α(50-200C)o 其中n1=,L=72mm;解得:α(50-200C) /C oo相变起始温度T0=283C, o相变终止温度T1=295C。 篇二:物理金属线膨胀系数测量实验报告 实验(七)项目名称:金属线膨胀系数测量实验 一、实验目的 1、学习测量金属线膨胀系数的一种方法。 2、学会使用千分表。 二、实验原理 材料的线膨胀是材料受热膨胀时,在一维方向的伸长。线胀系数是选用材料的一项重要指标。特别是研制新材料,

少不了要对材料线胀系数做测定。 固体受热后其长度的增加称为线膨胀。经验表明,在一定的温度范围内,原长为L的物体,受热后其伸长量?L与其温度的增加量?t近似成正比,与原长L 亦成正比,即: ?L???L??t (1)式中的比例系数?称为固体的线膨胀系数(简称线胀系数)。大量实验表明,不同材料的线胀系数不同,塑料的线胀系数最大,金属次之,殷钢、熔融石英的线胀系数很小。殷钢和石英的这一特性在精密测量仪器中有较多的应用。 实验还发现,同一材料在不同温度区域,其线胀系数不一定相同。某些合金,在金相组织发生变化的温度附近,同时会出现线胀量的突变。另外还发现线膨胀系数与材料纯度有关,某些材料掺杂后,线膨胀系数变化很大。因此测定线胀系数也是了解材料特性的一种手段。但是,在温度变化不大的范围内,线胀系数仍可认为是一常量。

为测量线胀系数,我们将材料做成条状或杆状。由(1)式可知,测量出时杆长L、受热后温度从t1升高到t2时的伸长量?L和受热前后的温度升高量?t,则该材料在温度区域的线胀系数为:?? ?L(2) 其物理意义是固体材料在温度区域内,温度每升高一度时材料的相对伸长量,其单位为。 测量线胀系数的主要问题是如何测伸长量?L。我们先粗估算一下?L的大小,若 L?250mm,温度变化t2?t1?100C,金属的?数量级为?10?5?1,则估算出 ? 1 ?L???L??t?。对于这么微小的伸长量,用普通量具如钢尺或游标卡尺是测不准的。可采用千分表(分度值为)、读数显微镜、光杠杆放大法、光学干涉法等方法。本实验用千分表(分度值为)

金属的热膨胀系数

铜17、7X10^-6/.C 无氧铜18、6X10^-8/。C ?铝23X10^-6/。C?铁12X10^—6/.C?普通碳钢、马氏体不锈钢得热膨胀系数为1、01, 奥氏体不锈钢为1、6,单位计不住了,但有个简单得说法告诉:?普通碳钢1米1度1丝,即1米得钢温度升高1℃放大0。01mm,而?不锈钢为0.016mm。? 钢筋与混凝土具有相近得温度线膨胀系数(钢筋得温度线膨胀系数为1、2×10^(-5)/℃,t混凝土得温度线膨胀系数为1、0×10^(—5)~1、5×10^(-5)/℃), 钢质材得膨胀系数为:1、2*10^-5/℃ 长度方向增加:100mm*1、2*10^—5*(250-20)=0。276mm?宽度方向增加:200mm*1、2*10^-5*(250-20)=0。552mm △Ⅰ=a(to-t1)? a不锈钢线膨胀系数 材料温度范围?20 20-100 20-200 20-300 20-400 20-600 铝(合金) 22、0-24、0 23、4—24、8 24、0-25、9 碳钢 10、6-12、2 11、3—13 12、1-13、512、9-13、9 13、5-14、3 14、7-15 ?线膨胀系数不就是一个固定得数值,会随着温度得升高而提高,所以在应用时只作为参考,还要根据材料成份,就是否经过锻打\热处理等情况做综合考虑、 材料线膨胀系数(x0、000001/°C) 一般铸铁9、2-11、8 一般碳钢10~13 铬钢10~13 镍铬钢13-15 铁12-12、5 铜18、5 青铜17、5 黄铜18、5 铝合金23、8 金 14、2 热膨胀系数 thermal expansion coefficient 物体由于改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致得变化,即热膨胀系数表示 热α=ΔV/(V*ΔT)、 式中ΔV为所给温度变化ΔT下物体体积得改变,V为物体体积

材料热膨胀系数的测定

材料热膨胀系数的测定 1. 实验目的 1.1 掌握热机分析的基本原理、仪器结构和使用方法。 1.2 掌握热膨胀系数的概念以及测定方法。 2. 基本原理 物体的体积或长度随着温度的升高而增大的现象称为热膨胀。它是衡量材料的热稳定性好坏的一个重要指标。目前,测定材料线膨胀系数的方法很多,有示差法(或称“石英膨胀计法”)、双线法、光于涉法、重量温度计法等。在所有这些测试方法中,以示差法具有广泛的实用意义。 当物体的温度从T 1上升到T 2时,其体积也从V 1变化为V 2,则该物体在T 1一T 2的温度范围内,温度每上升一个单位。单位体积物体的平均增长量为平均体膨胀系数。从测试技术来说,测体膨胀系数较为复杂。因此,在讨论材料的热膨胀系数时,常常采用线膨胀系数,其意义是温度升高1℃时单位长度上所增加的长度,单位为cm ·cm ·℃-1 。 将试样装在装样管内用顶杆压住试样,顶杆与位移传感器接触,在加热炉中,通过精密温度控制仪按规定的升温速率加热试样到试验最终温度,并经位移传感器测量加热过程中试样的线膨胀情况.按下式计算由室温至试验温度的各温度间隔的线膨胀系数: 0 0001);(t t L L L t t --?=α 式中:0t —— 初始温度,℃; t —— 实际(恒定或变化)的试样温度,℃; 0L ——受测玻璃试样,在温度为0t 时的长度,mm ; L ——温度为t 时的试样长度,mm 。 若标称初始温度0t 为20℃;因此平均线性热膨胀系数就应表示为);C 20(t ?α。膨胀系数实际上并不是一个恒定的值,而是随温度变化的,所以上述膨胀系数都是具有在一定温度范围内的平均值的概念,因此使用时要注意它适用的温度范围。 3. 仪器与试剂 热机分析仪 XYW-500B

YBB00202003-2015 平均线热膨胀系数测定法.doc

YBB00202003-2015 平均线热膨胀系数测定法 Pingjunxianrepengzhangxishu Cedingfa Test for Coefficent of Mean Linear Thermal Expansion 本法规定了远低于转变温度的弹性固体玻璃的平均线热膨胀系数的测定方法。 本法适用于各种材料药用玻璃平均线热膨胀系数的测定。 定义 (1)平均线热膨胀系数α(t 0:t ) 在一定的温度间隔内,供试品的长度变化与温度间隔及供试品初始长度之比。用式(1)表示: ()00001:t t L L L t t --?= α 式中: t 0 —初始温度或基准温度,℃; t —供试品实际温度,℃; L 0 —试验时玻璃供试品在温度t 0的长度,mm ; L —供试品在温度t 时的长度,mm 。 本法规定标称基准温度t 0是20℃,因此平均线热膨胀系数表示为α(20℃:t )。 (2)转变温度t g 玻璃动态黏度为1012.3 Pa ·s 时的温度,该温度表示了玻璃由脆性状态向粘滞状态的转变,它相应于热膨胀曲线高温部分和低温部分两切线交点的温度。 仪器装置 (1)测量供试品的长度装置,精度为0.1%。 (2)推杆式膨胀仪(水平或垂直),能测出2×10-5L 0的供试品长度变化量(即2μm/100mm )。 测长计的接触力不应超过1.0N 。这个力通过平面与球面的接触起作用,球面当的曲率半径不应小于供试品的直径。在一些特殊的装置中需要平行平面。 承载供试品装置应确保供试品安放在稳固的位置上,在整个实验过程中供试品要与推杆轴在同一轴线上,防止有任何微小改变。 若承载供试品装置是用石英玻璃制造,见结果表示(2)中给出的注意事项。 应采用标准材料进行仪器性能试验,方法见仪器性能试验 (3)加热炉 加热炉应与膨胀仪装置相匹配,起温度上限要比预期的转变温度高50℃左右,加热炉相对于膨胀仪的工作位置在轴向和径向上应具有0.5mm 以内的重现性。 在试验温度范围内(即上限温度比最高的预期的转变温度t g 低150℃并至少为300℃),在整个供试品长度区间,炉温应能恒定在±2℃之内。 (4)炉温控制装置应符合升降速率为5℃/min ±1℃/min 控制要求。 (5)温度测量装置 在t 0和t 温度范围内,能准确测定供试品的温度,误差应小于±2℃之内。 供试品 (1)形状和尺寸

材料的热膨胀系数

热膨胀系数 物体由于温度改变而有胀缩现象。其变化能力以等压(p一定)下,单位温度变化所导致的长度量值的变化,即热膨胀系数表示。 线胀系数是指固态物质当温度改变摄氏度1度时,其某一方向上的长度的变化和它在20℃(即标准实验室环境)时的长度的比值。各物体的线胀系数不同,一般金属的线胀系数单位为1/摄氏度。 大多数情况之下,此系数为正值。也就是说温度变化与长度变化成正比,温度升高体积扩大。但是也有例外,如水在0到4摄氏度之间,会出现负膨胀。而一些陶瓷材料在温度升高情况下,几乎不发生几何特性变化,其热膨胀系数接近0。 中文名:热膨胀系数 英文名:coefficient of thermal expansion , CTE 线膨胀系数:α=ΔL/(L*ΔT) 面膨胀系数:β=ΔS/(S*ΔT) 体膨胀系数:γ=ΔV/(V*ΔT) 1. 概述 expansion thermal coefficient 热膨胀系数有线膨胀系数α、面膨胀系数β和体膨胀系数γ。 式中ΔL为所给长度变化ΔT下物体温度的改变,L为初始长度; ΔS为所给面积变化ΔT下物体温度的改变,S为初始面积; ΔV为所给体积变化ΔT下物体温度的改变,V为初始体积; 严格说来,上式只是温度变化范围不大时的微分定义式的差分近似;准确定义要求ΔV与ΔT无限微小,这也意味着,热膨胀系数在较大的温度区间内通常不是常量。 线热膨胀系数αL

δ = 热膨胀系数* 全长* 温度变化 = 10.8 * 10-6 * 100mm * 100℃ = 0.108 (mm) 3. 热膨胀系数的精密测试与测量能力溯源 为了保证材料热膨胀系数国与国之间的量值统一和互认,国际计量局长度委员会(CCL)2004年启动过材料热膨胀系数的国际比对,有十几个国家参加了这个项目的国际比对。 为应对国际比对,更为了统一与实现国内材料的热膨胀系数测量能力及热膨胀仪测量精度,经国家局批准在国家计量院(中国计量科学研究院)建立“材料热膨胀系数国家最高标准装置”,以满足量值统一及测试需求。该标准基于最小误差链原则,把相关量值直接溯源到国家基准单位,在-180度到2400度范围内提供最高达10E-8量级测量不确定度。 4. 金属膨胀系数 测定温度条件及单位:20℃,(单位10-6/K或10-6/℃) 备注:简单讲就是材料在变化1摄氏度时长度的相对变化量。 膨胀系数实际就是:1MM长的材料在变化1摄氏度时长度变化了多少NM(纳米)。 一般钢材的热膨胀系数为(10-20)×10-6 /℃,系数越大在受热后变形则越大,反之则越小。 比如:钢轨的线膨胀系数是:11.8 nm/(mm×℃),实际上就是指1mm(毫米)长的钢轨在温度变化1摄氏度时长度会变化11.8nm (纳米)。 金属名称元素符号线性热膨胀系数金属名称元素符号线性热膨胀系数铍Be 12.3 铝Al 23.2 锑Sb 10.5 铅Pb 29.3 铜Cu 17.5 镉Cd 41.0

热膨胀系数效应考虑方式

热膨胀系数效应可通过以下三种方式考虑: (1)secant coefficient of thermal expansion割线热膨胀系数(在MP命令以ALPX,ALPY,ALPZ 输入) (2)instantaneous coefficient of thermal expansion瞬时热膨胀系数(在MP命令以CTEX,CTEY,CTEZ输入) (3)thermal strain 热应变(在MP命令以THSX,THSY,THSZ输入) 当用ALPX输入多个割线热膨胀系数αse(secant coefficient of thermal expansion)时,相对某共同基准或者定义温度,程序插值这些系数值作为割线值或者平均值。例如,假设在一个测试实验室,测量的热应变开始于23 °C,在200°C,400°C,600°C,800°C和1000°C读数。当画出该应变-温度曲线时,可以使用THSX直接输入。该温度-应变曲线的割线的斜率就是相对于共同基准23 °C(T0)定义的热膨胀系数的平均值(或割线值)。 另外可以输入瞬时热膨胀系数αin(使用CTEX)。上述应变-温度曲线的切线斜率代表瞬时热膨胀系数。下图说明了割线热膨胀系数和瞬时热膨胀系数的区别。 fig 割线热膨胀系数与瞬时热膨胀系数ANSYS程序根据下式计算结构热应变: εth=αse(T)(T-T REF) T=单元计算温度 T REF=热应变为零时的温度(由TREF命令或者MP命令的REFT定义) αse(T)=温度相关的割线热膨胀系数(如ALPX),相对于定义温度T0(definition temp)(此例中,T0与TREF相同) 如果材料数据以瞬时热膨胀系数αin输入,则程序根据下式,将瞬时值转化为割线值: 其中: T n=计算割线值αse所处的温度 T0=定义αse处的定义温度(此例中,与TREF相同) αin(T)=在温度T处的瞬时热膨胀系数CTEX 如果材料特性以热应变输入,程序将根据下式将这些应变转化为割线热膨胀系数: 其中: εi th(T)=在温度T处的热应变THSX。 如果必要,THSX数据被转换以使热应变在Tn=Tref时为零。如果在Tref的数据点存在,在Tn=Tref处αse可能产生不连续。避免αse不连续的办法是确保εith的斜率在Tref两侧要匹配。 如果αse的值是基于定义温度T0与参考温度TREF相同,在secant coefficient of thermal expansion中填写热膨胀系数属性,并将参考温度设置为T0。 考虑:

金属热膨胀系数测量

金属线热膨胀系数测定 一、实验目的 1、了解千分表膨胀仪的结构和原理。 2、掌握相变对金属热膨胀系数的影响。 二、实验原理 1、线热膨胀系数的确定 当温度由T 1到T 2,相应地长度由L 1变到L 2时,材料在该温区的平均热膨胀系数为: 212111 ()L L L T T L T L α-?= = -?? (1) 平均线性膨胀系数,表示温度升高1K 时物体长度的相对增大。 当ΔT →0时,真线性膨胀系数αT 为 (2) 膨胀系数的单位为K -1。固体材料αT 不是一个常数,通常随温度升高而加大。 2、金属正常热膨胀的来源 金属固体多以晶态存在,周期排列的原子都在围绕其平衡位置做简谐振动,随温度增加,振幅加大,动能随之增加。 3、影响热膨胀的主要因素 金属热膨胀系数主要与其化学成分、晶体结构和键强度等密切相关。 ① 键强度:键强度高,热膨胀系数低;金属熔点高,键强度高,热膨胀系数低。 d 1 d T T L T L α=?

② 晶体结构: a 结构紧密的晶体热膨胀系数都较大,而比较松散的非晶态的热膨胀系 数都较小。如多晶石英与无定形石英 。 b 非等轴晶系的晶体,各晶轴方向的膨胀系数不等,如石墨等层状结构 材料,层内联系紧密,而层间联系较松散,使得层间膨胀系数较小,而层内膨胀系数较大。 ③ 相变的影响 a 一级相变:如纯金属同素异构转变时,点阵结构重排时体积突变,伴随着金属比容突变,导致线膨胀系数发生不连续变化。 b 二级相变:发生二级相变时,体积没有变化,也没有伴随热量的吸收和释放,只是热容量、热膨胀系数等物理量发生变化。如有序-无序转变时,膨胀系数在相变温区仅出现拐折。金属与合金在接近居里温度发生磁性转变,其膨胀曲线会出现明显的膨胀峰。与正常曲线相比,它具有明显的反常现象,其中Ni 和Co 具有正膨胀峰,Fe 具有负膨胀峰。 图3 有序-无序转变膨胀曲线 ④ 合金成分和组织的影响 组成合金的溶质元素对合金热膨胀有明显影响: a 由简单金属与非铁磁性金属组成的单相均匀固溶体合金的线膨胀系数 图1 一级相变时α和ΔL 随T 的变化 图2 二级相变时α和ΔL 随T 的变化

管材的线膨胀及伸缩量的计算

一、热膨胀量的计算 管道安装完毕投入运行时,常因管内介质的温度与安装时环境温度的差异而产生伸缩。 另外,由于管道本身工作温度的高低,也会引起管道的伸缩。实验证明,温度变化而引起 管道长度成比例的变化。管道温度升高,由于膨胀,长度增加;温度下降,则由于收缩, 长度缩短。温度变化1度相应的长度成比例变化量称为管材的线膨胀系数。不同材质的材 料线膨胀系数也不同。碳素钢的线膨胀系数为12×10—6 /℃,而硬质聚氯乙烯管的线膨胀 系数为80X10—6/℃,约为碳素钢的七倍。 管材受热后的线膨胀量,按下式进行计算: ()L t t L 21-=?α 式中△L ——管道热膨胀伸长量(m); ——管材的线膨胀系数(1/K)或(1/℃); t 2——管道运行时的介质温度(℃); t l ——管道安装时的温度(℃),安装在地下室或室内时取t 1=—5℃;当室外架空敷 设时,t 1应取冬季采暖室外计算温度; L ——计算管段的长度(m)。 不同材质管材的。值见表2—1。 表2—1不同材质管材的线膨胀系数 在管道工程中,碳素钢管应用最广,其伸长量的计算公式为 ()L t t L 2161012-?=?- 管道材质 线膨胀系数/(×10—6/℃) 管道材质 线膨胀系数/(×10—6/℃) 碳素钢 铸铁 中铬钢 不锈钢 镍钢 奥氏体钢 12 17 纯铜(紫铜) 黄铜 铝 聚氯乙烯 氯乙烯 玻璃 80 10 5

式中12×10—6——常用钢管的线膨胀系数(1/)。 根据式(2—2)制成管道的热伸长量△L表(见表2—2),由表中可直接查出不同温度下相应管长的热伸长量。 例有一段室内热水采暖碳素钢管道,管长70m,输送热水温度为95℃,试计算此段管道的热伸长量。 解根据钢管的热膨胀伸长量计算式(2—2) △L=12×10—6(t1—t2)L =12×10—6(95+5)×70 = 由已知管长及送水温度,直接查表2—2,也可得管道的热伸长量△L。 如果管道中通过介质的温度低于环境温度,则计算出来的是缩短量。 表2—2水和蒸汽管道的热伸长量△L表(m)

材料的热膨胀系数

https://www.360docs.net/doc/dd9973199.html,/p-50731110.html 陶粒5.83 耐火粘土砖的热膨胀系数是多少呀? (4.5-6)×10的负6次方/℃ 材料的热膨胀系数 Material 10-6 in./in.*/°F 10-5 in./in.*/°C High Low High Low 锌及其合金Zinc & its Alloysc 19.3 10.8 3.5 1.9 铅及其合金Lead & its Alloysc 16.3 14.4 2.9 2.6 镁合金Magnesium Alloysb 16 14 2.8 2.5 铝及其合金Aluminum & its Alloysc 13.7 11.7 2.5 2.1 锡及其合金Tin & its Alloysc 13 - 2.3 - 锡铝黄铜Tin & Aluminum Brassesc 11.8 10.3 2.1 1.8 黄铜或铅黄铜Plain & Leaded Brassesc 11.6 10 2.1 1.8 银Silverc 10.9 - 2 - 铬镍耐热钢Cr-Ni-Fe Superalloysd 10.5 9.2 1.9 1.7 Heat Resistant Alloys (cast)d 10.5 6.4 1.9 1.1 Nodular or Ductile Irons (cast)c 10.4 6.6 1.9 1.2 不锈钢Stainless Steels (cast)d 10.4 6.4 1.9 1.1 锡青铜Tin Bronzes (cast)c 10.3 10 1.8 1.8 奥氏体不锈钢Austenitic Stainless Steelsc 10.2 9 1.8 1.6 磷硅青铜Phosphor Silicon Bronzesc 10.2 9.6 1.8 1.7 铜Coppersc 9.8 - 1.8 - Nickel-Base Superalloysd 9.8 7.7 1.8 1.4 铝青铜Aluminum Bronzes (cast)c 9.5 9 1.7 1.6 Cobalt-Base Superalloysd 9.4 6.8 1.7 1.2 铍(青)铜Beryllium Copperc 9.3 - 1.7 - Cupro-Nickels & Nickel Silversc 9.5 9 1.7 1.6 镍及其合金Nickel & its Alloysd 9.2 6.8 1.7 1.2

热膨胀计算

摘要:通过分析热变形与热量之间的关系,提出利用平均线膨胀系数,将较复杂温度分布(如移动持续热源形成的温度分布) 情况下工件热变形量的计算简化为热量含量相同且温度均布状态下工件热变形量的计算方法,并给出了计算实例。 1 引言 在机械制造、仪器仪表等行业,由温度引起的热变形是影响机器、仪器设备精度的重要因素,热变形引起的误差通常可占总误差的1/3。在精密加工中,热变形引起的误差在加工总误差中所占比例可达40%~70%。为提高机器设备的工作精度,通常可采用温度控制和精度补偿两种途径来减小温度对精度的影响。温度控制是对关键热源部件或关键零件的温度波动范围进行精密控制(包括环境温度控制)。实现方法包括:①采用新型结构,如机床中的复合恒温构件等;②使用降温系统控制部件温升;③采用低膨胀系数材料等。这些方法都可程度不同地降低热变形程度,但成本较高。精度补偿方法是通过建立热变形数学模型,计算出热变形量与温度的关系,采用相应的软件补偿或硬件设备进行精度补偿。精度补偿法虽然成本较低,但要求建立精确且计算简便的数学模型。目前常见的数学模型大多是以温度作为主要计算因素,当形状规则的工件处于稳定、均匀的温度场中时,热变形数学模型的计算简便性可得到较好保证,但对于处于移动持续热源温度场中的工件,其温度分布函数的计算将变得相当复杂,甚至无法得出解析解,只能采用逼近的近似数值解法。例如:对精密丝杠进行磨削加工时,磨削热引起的丝杠热变形会导致丝杠螺距误差。在计算丝杠热变形量时,首先必须建立砂轮磨削热产生的移动持续热源在丝杠上形成的温度分布数学模型。再如:车削加工中产生的切削热形成一持续热源,使车刀产生较大热膨胀量(可达0.1mm),严重影响加工精度。计算车刀的热变形量时,首先需要建立持续热源在车刀刀杆中的温度分布模型,这就增加了计算的复杂性。 图1 双原子模型示意图 本文从温度、热量和热变形的定义出发,分析了热量与热变形的关系。利用该关系,可简化实际工程应用中的热变形数学模型,减小运算工作量。 2 热变形原理及计算公式 热变形原理相当复杂,目前只能在微观上给予定性解释。固体材料的热膨胀本质上可归结为点阵结构中各点平均距离随温度的升高而增大。德拜(Debye)理论认为,各原子间的热振动相互牵连制约,随着温度的升高,各质点的热振动加剧,质点间的距离增大,在宏观上表现为晶体膨胀现象。用图1所示双原子模型可解释如下:在温度T0时,原子1与原子2的间距为r0,当温度升高时,原子热运动加剧,原子间势能增加,两原子间势能U(r)增大,原子间距r=r0+x0。将U(r)在r=r0处展开成泰勒级数为U(r)=U(r0)=( dU )r0x+ 1 ( d2U )r0x2+ 1 ( d3U )r0x3+… dr 2! dr2 3! dr3 (1) 略去x3以后的高次项,则式(1)曲线如图1中实线所示。图中,线1、2、3分别代表在温度T1、T2、T3下质点振动的总能量。由图可见,当两原子平衡后,其平衡位置分别位于A、B、C处,晶体处于膨胀状态。 在实际应用中,固体材料热膨胀参数以实测的热膨胀系数来表示。热膨胀系数可分为平均线膨胀系数和热膨胀率两种。平均线膨胀系数定义为:在温度t1与t2之间,温度变化1℃时相应的试样长度相对变化均值,以αm表示(单位:×10-6/℃),计算公式为αm=(L2-L1)/[L0(t2-t1)]=(ΔL/L0)/Δt(t1

常用材料的线膨胀系数一览表

常用材料的线膨胀系数一览表 不同温度下钢材的平均线膨胀系数值如表1所示。 非金属材料的线膨胀系数如表2所示 表1不同温度下钢材的平均线膨胀系数值 在下列温度与20℃之间的平均线膨胀系数,“α”,10-6×℃-1材料 -196-150-100-50050100150200250300350400450500550600650700750800碳素钢、碳钼钢、9.1 低铬钼钢(至 Cr3Mo)9.449.8910.3910.76 11.12 11.5311.88 12.25 12.5612.90 13.24 13.5813.93 14.22 14.42 14.6214.74 14.90 15.02—铬钼钢(Cr5Mo~ 8.468.909.369.7710.16 10.52 10.9111.15 11.39 11.6611.90 12.15 12.3812.63 12.86 13.05 13.1813.35 13.48 13.58—Cr9Mo) 奥氏体不锈钢14.67 15.08 15.45 15.9716.28 16.54 16.8417.06 17.25 17.4217.61 17.79 17.9918.19 18.34 18.58 18.7118.87 18.97 19.07 19.29(Cr18-Ni9) 高铬钢(Cr13、7.748.108.448.959.299.599.9410.20 10.45 10.6710.96 11.19 11.4111.61 11.81 11.97 12.1112.21 12.32 12.41—Cr17) Cr25-Ni20 蒙纳尔 (Mone1) Ni67-Cu30 铝 灰铸铁

各种材料的热膨胀系数

常用材料的热膨胀系数 ×106 ?????????? 表常用材料的热膨胀系数 ×106 (mm/mm·℃) t/℃ -100~0 20~100 20~200 20~300 20~400 20~500 20`600 20~700 20~800 20~900 15号钢、A 3钢 A3F 、B3钢 10号钢 20号钢 45号钢 1Cr13、2Cr13 Cr17 12Cr1MoV 10CrMo910 Cr6SiMo X20CrMo WV121 1Cr18Ni9Ti 10.6 — — — 10.6 — 10.05 — — — — 16.2 — — — 11.75 11.5 11.60 11.16 11.59 10.50 10.00 9.80~ 10.63 12.50 11.50 10.80 16.60 10.60~ 12.20 12.41 12.60 12.12 12.32 11.00 10.00 11.30~ 12.35 13.60 12.00 11.20 17.00 11.30~ 13.00 17.10~ 13.45 12.78 13.09 11.50 10.50 12.30~ 13.35 13.60 11.60 17.20 12.10~ 13.50 17.60 17.90 20.90 13.60 13.00 13.38 13.71 12.00 10.50 13.00~ 13.60 14.00 12.50 11.90 17.50 12.90~ 13.90 18.00~ 13.85 13.93 14.18 12.00 11.00 12.84~ 14.15 14.40 12.10 17.90 13.14 13.20 13.90 14.60 14.38 14.67 13.80~ 14.60 14.7 13.00 12.30 18.20 13.50~ 14.30 18.60 13.31 13.50 14.81 15.08 14.20~ 14.86 18.60 14.70~ 15.00 13.54 13.80 12.93 12.50 13.50 12.48 13.56

开尔文单位和空气热膨胀计算

开尔文单位和空气热膨胀计算 1开尔文单位 绝对温标是建立在卡诺循环基础上的理想而科学的温标,将水的冰点(0℃)取为273.16 K( K称开尔文,绝对温标的单位),绝对温标的分度与摄氏温标相同。绝对零度即绝对温标的开始,是温度的最低极限,相当于-273.15℃,当达到这一温度时所有的原子和分子热运动都将停止。热力学第三定律指出,绝对零度不可能通过有限的降温过程达到,所以说绝对零度是一个只能逼近而不能达到的最低温度。以绝对零度作为计算起点的温度。即将水三相点的温度准确定义为273.16K后所得到的温度,过去也曾称为绝对温度。开尔文温度常用符号表示,其单位为开尔文,定义为水三相点温度的1/273.16,常用符号K表示。开尔文温度和人们习惯使用的摄氏温度相差一个常数273.15,即=+273.15(是摄氏温度的符号)。例如,用摄氏温度表示的水三相点温度为0.01℃,而用开尔文温度表示则为 273.16K。开尔文温度与摄氏温度的区别只是计算温度的起点不同,即零点不同,彼此相差一个常数,可以相互换算。这两者之间的区别不能够与热力学温度和国际实用温标温度之间的区别相混淆,后两者间的区别是定义上的差别。热力学温度可以表示成开尔文温度;同样,国际实用温标温度也可以表示成开尔文温度。当然,它们也都可以表示成摄氏温度。摄氏温度和开尔文温度关系为:1℃=274.15k ,0℃=273.15K。 2空气的热膨胀计算 由于LLY-56C服装压力测试仪的试验管路和气囊传感器中充斥有一定量的空气,因此气囊传感器和试验管路必然会受环境温度影响测得结果,温度热膨胀T=1/(273+气温)。假设室温为27℃,皮肤温度为33℃的环境下进行试验,温度热膨胀计算:{1/(273+27)}×(33-27)=1/50

相关文档
最新文档