金属和金属键

金属和金属键
金属和金属键

第八章说明

在人类认识的金属元素中,铁是较早被人类认识、对人类社会的发展起到重要作用的一种金属。铝则是地壳中含量最高的金属元素,铝和铝合金是当今社会使用非常广泛的金属材料。通过本章的学习,使学生认识在生产生活中有广泛应用的铁、铝等金属元素及其化合物的相关知识,了解化学在资源的利用和保护中的意义和作用,认识化学与人类社会的密切关系,培养学生运用化学知识解释或解决与化学相关的社会问题的能力,形成正确的情感态度和价值观,增强社会责任感。

在本章的教学中要通过创设贴近学生生活的问题情景组织教学,以提高学生学习本主题的兴趣。本主题还涉及氧化还原反应原理和酸、碱、盐、氧化物等物质间转化关系的应用,在教学中需要注意复习巩固相关化学原理,引导学生加深对物质转化关系和氧化还原反应原理重要应用的认识。在教学中要重视通过探究活动使学生获得知识,发展能力。

铁的学习内容主要包括物理性质、化学性质、铁合金及其用途,该主题的学习水平要求不高,除铁的化学性质在“知识与技能”上要求B级外,其余三维目标均为A级。教学时,教师不应任意拔高“知识与技能”的要求,而可突出体现“过程与方法”、“情感态度与价值观”上的要求,如通过对Fe2+和Fe3+之间相互转化规律的探究,不仅能让学生进一步认识氧化还原反应的本质,更好地理解Fe2+和Fe3+之间的相互转化规律,还能帮助学生提高提出假说、设计探究方案、获得探究结论等科学探究能力。

铝的学习内容主要包括物理性质、化学性质、铝及其合金的用途、氧化铝、氢氧化铝,该主题的学习水平总体也不高,除铝的化学性质、氧化铝、氢氧化铝在“知识与技能”上要求B级外,其余三维目标也均为A级。本学习内容的重点是铝及其化合物的化学性质,难点是氧化铝和氢氧化铝的两性。理解氢氧化铝两性需要学生综合具有电离平衡、平衡移动原理、盐类水解等观念,而这些观念恰恰是学生不易掌握的,所以教学时应循序渐进,不要将所有内容对学生和盘托出,可将一部分要求放到高三。建议在教学时,通过对氢氧化铝是否为两性氢氧化物的活动探究,让学生在获得结论的同时,学习采用类比提出假说的方法。

总之,本学习主题的特点有:(一)涉及的知识相对独立;(二)是演绎化学原理、规律的重要途径;(三)与人类生产生活密切相关。因此,对铁、铝的教和学可放在人类社会发展长河这一宏大背景中展开,也可与信手拈来的生活实例相结合,再可通过活动探究培养学生科学探究的能力。

8.1 应用广泛的金属材料——钢铁(共2课时)

第1课时由石器、青铜器到铁器金属和金属键[设计思想]

本节课是学生进入高二年级的第一课时,因此教学难度不宜太大,主要以复习旧知,激发学习兴趣为主。本课学习的主要内容是金属材料的演变历史、金属的结构与其通性的关系,以及金属的化学性质等,这节课将成为学习铁、铝的性质的基础。

由于本课是学习金属的第一课时,因此“知识与技能”维度的教学要求不高,大部分内容学生初中时已经学过,教学设计时主要考虑如何让学生在初中基础上完善这一部分的知识体系,如金属参与化学反应时一般作还原剂,金属参与反应与金属冶炼反应之间的联系等。本课通过阅读探究、实验设计等环节,来培养学生由果及因的推理能力,如知道金属的通性如何推理金属的结构,知道镁、铁、铜的活动性顺序如何设计实验来验证等。本课在设计时还考虑到了金属对人类社会产生的重大影响,教学时理论联系实际,可从利用金属的历史、金属在现代社会中的作用等方面使学生意识到这点。

一.教学目标

1.知识与技能

⑴金属键(A)

⑵金属跟非金属、酸、盐溶液反应的化学性质(B)

⑶存在金属键的代表物质(A)

2.过程与方法

⑴通过阅读教材和探究活动,注意金属晶体的微粒构成与金属通性的关系。

⑵通过比较不同金属的活动性顺序,感受科学实验的一般方法。

3.情感态度与价值观

体验金属冶炼史与社会发展的关系。

二.教学重点和难点

1.教学重点

金属跟非金属、酸、盐溶液的反应。

2.教学难点

⑴金属晶体的微粒构成。

⑵金属冶炼的方法与金属活动性之间的关系。

三.教学用品

实验用品(镁带、镁粉、铁钉、铜片、稀盐酸、CuSO 4溶液、FeSO 4溶液、表面皿、砂纸、烧杯、试管若干等),多媒体

四.教学流程

1、流程图

2、流程说明

课题引入:多媒体课件展示“五金”

(金、银、铜、铁、锡)的图片,以及提问元素周期表

中金属元素共有几种?

学生活动1:请学生给“金属”下个定义。

学生活动2:阅读教材,探究金属具有导电性、导热性、延展性与其结构的关系。 归纳小结1:金属的物理性质。

提出问题:金属原子在最外层电子排布上有哪些特点? 归纳小结2:金属的化学性质。 拓展引申:金属的冶炼。

实验设计:比较Mg 、Fe 、Cu 的活动性的差异。

实验用品有:镁带、镁粉、铁钉、铜片、稀盐酸、CuSO 4溶液、FeSO 4溶液、表

面皿、试管、砂纸、烧杯

学生活动3:分析影响金属价格的因素。

表 某些金属的交易价格

课的结束语:展示合金的优异性能的图片,并布置作业。

五.教学案例1、教学过程

2.主要板书

3.相关链接

金属性强弱和金属活动性顺序

从元素周期表中推理得出的金属性强弱跟金属活动性顺序表中的金属活泼性是两个意义不同的概念。它们有不同的量度依据。

金属性的量度依据是:根据元素的电离能,即气态原子失电子的能力。电离能越小,金属性越强。电离能又跟金属的原子半径、电子层、最外层电子数有关。

金属活动性顺序的量度依据是:根据元素的标准电极电位,电对的还原电位越小,负得越多,金属活动性顺序排在越前面。标准电极电位又跟电离能、升华热、离子水合能有关。 上海有色金属交易网址 https://www.360docs.net/doc/de10707460.html,/ 参考书目

涂光炽等.金矿—人类最早认识和利用的矿产.北京:清华大学出版社,2002 陈景等.贵金属—周期表中一族璀璨的元素.北京:清华大学出版社,2002

六.教学反思

对于本课的教学,教师可引导学生回忆初中化学中金属的化学性质和金属活动性顺序的

§8.1 应用广泛的金属材料——钢铁

一、由石器、青铜器到铁器 三、金属的化学性质

1、跟非金属反应

二、金属和金属键 Fe+S ?→??

FeS 1、金属键的定义 2Na+Cl 2??→?点燃2NaCl 2、金属晶体 2、跟水反应

3、金属的通性 2Na+2H 2O →2NaOH+H 2↑ 导电性 3、跟酸或盐溶液反应 导热性 Zn+H 2SO 4→ZnSO 4+ H 2↑

延展性 Fe+CuSO 4→FeSO 4+Cu ↓

有关知识,让学生畅谈日常生活中有关金属性质的所见所闻,这样可以较快形成课堂气氛。

对于本课的学习,教学内容中蕴藏了丰富的显性的德育教育资源,教师在设计教学时应充分地挖掘,实施教学时应恰当地体现。

金属原子簇化学

金属原子簇化学 金属原子簇(MetalClustersCompounds)指的是金属原子之间相互成键形成的多核化合物,这个定义比较老旧,不过也接近现在的定义(对于Clusters的定义,Cotton指出:“A group of the same or similar elements gathered oroccurringclosely together)。有据可查的最早的金属原子簇合物的合成是1858年的 Roussin`ssalt,即K[Fe4S3(NO)7]和K[Fe2S2(NO)4],这一全新的化合物被以其合成者的名字命名,为陆森黑盐和陆森红盐。这种盐是通过一锅法合成的。不过当时的研究尚不充分,也比较冷门,长久以来都未能搞清楚其结构。后来,卢嘉锡和林慰桢指出,黑盐阴离子是由红盐阴离子作为一个蔟单元的生成后二倍缩聚形成的。转入1935年,Brosset报道了一种钨簇合物,其阴离子为W2Cl9(3-),阳离子为K+,W—W 键长为240pm,略小于W的金属原子半径之和(W单质中W—W键为275pm)。1938年,合成了Fe2(CO)9,经测定其结构来说铁原子间距小于铁原子半径之和。后来进入二十世纪六十年代,F·A·Cotton和T·E·Haos 对金属原子簇合物的定义是:“含有直接而明显键合的两个或以上的金属原子的化合物”。美国化学文摘CA 的索引中提出,原子簇化合物是含有三个或三个以上互相键合或极大部分互相键合的金属原子的配位化合物。这个阶段,原子簇合物终于开始了重视性的研究。 如图是三种四核过渡金属簇合物的键价和结构

对金属原子簇合物的合成,在这个阶段也取得了较大的进步。如以很一般的底料,通入常见的保护气如氮气、氢气等,就可以达到一个魔幻化的合成效果。这个合成馆长也说过。以Rh4(CO)12为底物在异丙醇中转化为了两种不同保护气氛下的产物。两个产物的产率都在50%左右。 还有诸如一些含羰基的多核化合物的合成,这些化合物往往是随着核数增加相应增加电子的不定域性,呈现出各种色彩。羰基簇中的羰基一般来说可以有两种不同的方式与金属相结合:其一是CO分子以碳原子端基方式,其二是CO分子以桥基方式、面桥基方式与两个或更多个金属相联。奇异的是,在很多金属羰基簇中,羰基的位置和配位形态可以交换转化,不得不说是科学的奇妙。如下图。 如图,是五核心的金属羰基簇。(a)的金属核是Ni,(b)的金属核是Fe。黑色小球代表金属原子,白色代表羰基。灰色带线条小球代表碳原子。(a)向大家展示了一种多核镍羰基簇合物阴离子的结构。(b)则是一种铁羰基簇合物Fe5(CO)15C。 羰基簇的金属核数目不断被后人所累加上去,这种庞大的团簇分子展示出一种磅礴的美感,其结构上的完美协调和对价键轨道的巧妙运用让人无不叹为观止。下图就是七核心和八核心的羰基簇合物。

金属键和金属晶体结构理论

金属键和金属晶体结构理论 在高中化学课本“金属键”一节中,简略地讲了金属键的自由电子理论和金属晶体的圆球密堆积结构。在本节中将介绍这两种理论的有关史实,并对理论本身进一步加以阐述。 一、金属键理论及其对金属通性的解释 一切金属元素的单质,或多或少具有下述通性:有金属光泽、不透明,有良好的导热性与导电性、有延性和展性,熔点较高(除汞外在常温下都是晶体),等等。这些性质是金属晶体内部结构的外在表现。 金属元素一般比较容易失去其价电子变为正离子,在金属单质中不可能有一部分原子变成负离子而形成离子键。由于X射线衍射法测定金属晶体结构的结果可知,其中每个金属原子与周围8到12个同等(或接近同等)距离的其它金属原子相紧邻,只有少数价电子的金属原子不可能形成8到12个共价键。金属晶体中的化学键应该属于别的键型。 1916年,荷兰理论物理学家洛伦兹(Lorentz.H.A.1853-1928)提出金属“自由电子理论”,可定性地阐明金属的一些特征性质。这个理论认为,在金属晶体中金属原子失去其价电子成为正离子,正离子如刚性球体排列在晶体中,电离下来的电子可在整个晶体范围内在正离子堆积的空隙中“自由”地运行,称为自由电子。正离子之间固然相互排斥,但可在晶体中自由运行的电子能吸引晶体中所有的正离子,把它们紧紧地“结合”在一起。这就是金属键的自由电子理论模型。 根据上述模型可以看出金属键没有方向性和饱和性。这个模型可定性地解释金属的机械性能和其它通性。金属键是在一块晶体的整个范围内起作用的,因此要断开金属比较困难。但由于金属键没有方向性,原子排列方式简单,重复周期短(这是由于正离子堆积得很紧密),因此在两层正离子之间比较容易产生滑动,在滑动过程中自由电子的流动性能帮助克服势能障碍。滑动过程中,各层之间始终保持着金属键的作用,金属虽然发生了形变,但不至断裂。因此,金属一般有较好的延性、展性和可塑性。 由于自由电子几乎可以吸收所有波长的可见光,随即又发射出来,因而使金属具有通常所说的金属光泽。自由电子的这种吸光性能,使光线无法穿透金属。因此,金属一般是不透明的,除非是经特殊加工制成的极薄的箔片。关于金属的良好导电和导热性能,高中化学课本中已用自由电子模型作了解释。 上面介绍的是最早提出的经典自由电子理论。1930年前后,由于将量子力学方法应用于研究金属的结构,这一理论已获得了广泛的发展。在金属的物理性质中有一种最有趣的性质是,包括碱金属在内的许多金属呈现出小量的顺磁性,这种顺磁性的大小近似地与温度无关。泡利曾在1927年对这一现象进行探讨,正是这一探讨开辟了现代金属电子理论的发展。它的基本概念是:在金属中存在着一组连续或部分连续的“自由”电子能级。在绝对零度时,电子(其数目为N个)通常成对地占据N/2个最稳定的能级。按照泡利不相容原理的要求,每一对电子的自旋方向是相反的;这样,在外加磁场中,这些电子的自旋磁矩就不能有效地取向。 当温度比较高时,其中有一些配对的电子对被破坏了,电子对中的一个电子被提升到比较高的能级。未配对的电子的自旋磁矩能有效地取向,所以使金属具有顺磁性。(前一节中介绍价键理论的局限性时已指出,顺磁性物质一般是具有自旋未配对电子的物质。)未配对电子的数目随着温度的升高而增多;然而,每个未配对电子的自旋对顺磁磁化率的贡献是随着温度的升高而减小的。对这二种相反的效应进行定量讨论,解释了所观察到的顺磁性近似地与温度无关。 索末菲与其他许多研究工作者,从1928年到30年代广泛地发展了金属的量子力学理论,建立起现代金属键和固体理论──能带理论,可以应用分子轨道理论去加以理解。(可参看大学《结构化学》教材有关部分) 二、等径圆球密堆积模型和金属单质的三种典型结构 在高中化学课本“金属键”一节中,讲到金属晶体内原子的排列,好象许多硬球一层一层地紧密地堆积在一起,形成晶体。课本中还画出了示意图。所谓等径圆球紧密堆积,就是要把许多直径相同的圆球堆积起来做到留下的空隙为最小。

《金属键金属晶体》参考教案

专题3微粒间作用力与物理性质 第一单元金属键金属晶体 [教学目标] 1.了解金属晶体模型和金属键的本质 2.认识金属键与金属物理性质的辨证关系 3.能正确分析金属键的强弱 4.结合问题讨论并深化金属的物理性质的共性 5.认识合金及其广泛应用 [课时安排] 3课时 第一课时 [学习内容] 金属键的概念及金属的物理性质 【引入】同学们我们的世界是五彩缤纷的,是什么组成了我们的世界呢? 学生回答:物质 讲述:对!我们的自然世界是有物质组成的,翻开我们的化学课本的最后一页我们可以看到一张化学元素周期表,不论冬天美丽的雪花,公路上漂亮的汽车。包括你自己的身体都是有这些元素的一种或几种构成的。那么我们现在就来认识一下占周期表中大多数的金属。 【板书】§3-1-1 金属键与金属特性 大家都知道晶体有固定的几何外形、有确定的熔点,水、干冰等都属于分子晶体,靠范德华力结合在一起,金刚石、金刚砂等都是原子晶体,靠共价键相互结合,那么我们所熟悉的铁、铝等金属是不是晶体呢?它们又是靠什么作用结合在一起的呢? 【展示】几种金属的应用的图片,有金属导线(铜或铝)、铁丝、镀铜金属片等,并将铁丝随意弯曲,引导观察铜的金属光泽。叙述应用部分包括电工架设金属高压电线,家用铁锅炒菜,锻压机把钢锭压成钢板等。 【讨论】请一位同学归纳,其他同学补充。 1、金属有哪些物理共性? 2、金属原子的外层电子结构、原子半径和电离能?金属单质中金属原子之间怎

样结合的? 【板书】一、金属共同的物理性质 容易导电、导热、有延展性、有金属光泽等。 二、金属键 【动画演示并讲解】金属原子的电离能低,容易失去电子而形成阳离子和自由电子,阳离子整体共同整体吸引自由电子而结合在一起。这种金属离子与自由电子之间的较强作用就叫做金属键。金属晶体的组成粒子:金属阳离子和自由电子。金属离子通过吸引自由电子联系在一起, 形成金属晶体.经典的金属键理论把金属键形象地描绘成从金属原子上“脱落”下来的大量自由电子,金属原子则“浸泡”在“自由电子”的“海洋”之中。金属键的形象说法: “失去电子的金属离子浸在自由电子的海洋中”. 金属键的特征是成键电子可以在金属中自由流动,使得金属呈现出特有的属性在金属单质的晶体中,原子之间以金属键相互结合。金属键是一种遍布整个晶体的离域化学键。这种键既没有方向性也没有饱和性, 【板书】1.构成微粒:金属阳离子和自由电子 2.金属键:金属阳离子和自由电子之间的较强的相互作用 3、成键特征:自由电子被许多金属离子所共有;无方向性、饱和性【板书】三、金属键对金属通性的解释 【学生分组讨论】如何应用金属键理论来解释金属的特性?请一位同学归纳,其他同学补充。 【板书】1.金属导电性的解释 在金属晶体中,充满着自由电子,而自由电子的运动是没有一定方向的,但在外加电场的条件下自由电子就会发生定向移动,因而形成电流,所以金属容易导电。 【强调】:金属受热后,金属晶体中离子的振动加剧,阻碍着自由电子的运动。所以温度升高导电性下降。 2. 金属导热性的解释 金属容易导热,是由于自由电子在热的作用下与金属原子频繁碰撞从而把能量从温度高的部分传到温度低的部分,从而使整块金属达到相同的温度。

高中化学 专题3 第1单元 金属键 金属晶体 第1课时 金属键与金属特性教案 苏教版选修3

第1课时金属键与金属特性 [核心素养发展目标] 1.了解金属键的概念,理解金属键的本质和特征,能利用金属键解释金属单质的某些性质,促进宏观辨识与微观探析的学科核心素养的发展。2.能结合原子半径、原子化热解释、比较金属单质性质的差异,促进证据推理与模型认知的学科核心素养的发展。 一、金属键 1.概念:指金属离子与自由电子之间强烈的相互作用。 2.成键微粒:金属阳离子和自由电子。 3.特征:没有方向性和饱和性。 4.存在:存在于金属单质和合金中。 自由电子不是专属于某个特定的金属阳离子,即每个金属阳离子均可享有所有的自由电子,但都不可能独占某个或某几个自由电子,电子在整块金属中自由运动。 例1下列关于金属键的叙述中,不正确的是( ) A.金属键是金属阳离子和自由电子这两种带异性电荷的微粒间的强烈相互作用,其实质与离子键类似,也是一种电性作用 B.金属键可以看作是许多原子共用许多电子所形成的强烈的相互作用,有方向性和饱和性C.金属键是带异性电荷的金属阳离子和自由电子间的强烈的相互作用,故金属键无饱和性和方向性 D.构成金属键的自由电子在整个金属内部的三维空间中做自由运动 答案 B 解析从基本构成微粒的性质看,金属键与离子键的实质类似,都属于电性作用,特征都是无方向性和饱和性;自由电子是由金属原子提供的,并且在整个金属内部的三维空间内运动,为整个金属的所有阳离子所共有,从这个角度看,金属键无方向性和饱和性。 例2下列物质中只含有阳离子的物质是( ) A.氯化钠B.金刚石 C.金属铝D.氯气 答案 C 解析氯化钠是离子化合物,既含阳离子又含阴离子;金属铝中含有阳离子和自由电子;金刚石由原子组成,氯气由分子组成,都不含阳离子,故C正确。 易误提醒

金属和金属键

第三章金属及其化合物 第一节金属的化学性质 4Na+O2=2Na2O 2Na+O2Na2O2 (淡黄色) 2Na O+2H O====4NaOH+O↑2Na O+2CO====2Na CO+O↑ 铁与水蒸气 [铝及其氧化物的反应 2Al + 2NaOH + 2H2O === 2NaAlO2 + 3H2↑ 2Al + 6HCl === 2AlCl3 + 3H2↑ Al2O3+NaOH=NaAlO2+H2O Al2O3+6HCl=AlCl3+3H2O 离子方程式:2Al + 2OH -+ 2H2O === 2AlO2 -+ 3H2↑Al2O3+OH-=AlO2-+H2O Al2O3+6H+=Al3++3H2O 课堂练习] 1.钠与水反应时产生的各种现象如下: ①钠浮在水面上;②钠沉在水底;③钠熔化成小球;④小球迅速游动逐渐减小,最后消失;⑤发出嘶嘶的声音;⑥滴入酚酞后溶液显红色。其中正确的一组是(D) A.①②③④⑤B.全部C.①②③⑤⑥D.①③④⑤⑥ 2.取一小块金属钠,放在燃烧匙里加热,下列实验现象正确的描述是(C) ①金属先熔化;②在空气中燃烧,放出黄色火花;③燃烧后得白色固体;④燃烧时火焰为黄色;⑤燃烧后生成浅黄色固体物质 A.①②B.①②③C.①④⑤D.④⑤ 3.相同质量的钠在下列情况下产生氢气最多的是(D ) A.放在足量水中B.放在足量盐酸中 C.放在足量CuSO4溶液中D.用刺有小孔的铝,包好放入足量水底中 4.将一小块金属钠久置于空气中,有下列现象:①生成白色粉末;②变暗;③生成白色固体;④发生潮解变为液体,这些现象的先后顺序是(C ) A.①②③④B.④③②①C.②③④①D.①③④② [课堂练习]向一金属铝的易拉罐内充满CO2,然后向罐内注入足量NaOH溶液,立即用胶布严封罐口,过一段时间后,罐壁内凹而瘪,再过一段时间后,瘪了的罐壁重新鼓起,解释上述变化的实验现象: (1)罐壁内凹而瘪的原因:反应方程式: (2)罐壁重新鼓起的原因:反应方程式:

金属和金属键

第八章说明 在人类认识的金属元素中,铁是较早被人类认识、对人类社会的发展起到重要作用的一种金属。铝则是地壳中含量最高的金属元素,铝和铝合金是当今社会使用非常广泛的金属材料。通过本章的学习,使学生认识在生产生活中有广泛应用的铁、铝等金属元素及其化合物的相关知识,了解化学在资源的利用和保护中的意义和作用,认识化学与人类社会的密切关系,培养学生运用化学知识解释或解决与化学相关的社会问题的能力,形成正确的情感态度和价值观,增强社会责任感。 在本章的教学中要通过创设贴近学生生活的问题情景组织教学,以提高学生学习本主题的兴趣。本主题还涉及氧化还原反应原理和酸、碱、盐、氧化物等物质间转化关系的应用,在教学中需要注意复习巩固相关化学原理,引导学生加深对物质转化关系和氧化还原反应原理重要应用的认识。在教学中要重视通过探究活动使学生获得知识,发展能力。 铁的学习内容主要包括物理性质、化学性质、铁合金及其用途,该主题的学习水平要求不高,除铁的化学性质在“知识与技能”上要求B级外,其余三维目标均为A级。教学时,教师不应任意拔高“知识与技能”的要求,而可突出体现“过程与方法”、“情感态度与价值观”上的要求,如通过对Fe2+和Fe3+之间相互转化规律的探究,不仅能让学生进一步认识氧化还原反应的本质,更好地理解Fe2+和Fe3+之间的相互转化规律,还能帮助学生提高提出假说、设计探究方案、获得探究结论等科学探究能力。 铝的学习内容主要包括物理性质、化学性质、铝及其合金的用途、氧化铝、氢氧化铝,该主题的学习水平总体也不高,除铝的化学性质、氧化铝、氢氧化铝在“知识与技能”上要求B级外,其余三维目标也均为A级。本学习内容的重点是铝及其化合物的化学性质,难点是氧化铝和氢氧化铝的两性。理解氢氧化铝两性需要学生综合具有电离平衡、平衡移动原理、盐类水解等观念,而这些观念恰恰是学生不易掌握的,所以教学时应循序渐进,不要将所有内容对学生和盘托出,可将一部分要求放到高三。建议在教学时,通过对氢氧化铝是否为两性氢氧化物的活动探究,让学生在获得结论的同时,学习采用类比提出假说的方法。 总之,本学习主题的特点有:(一)涉及的知识相对独立;(二)是演绎化学原理、规律的重要途径;(三)与人类生产生活密切相关。因此,对铁、铝的教和学可放在人类社会发展长河这一宏大背景中展开,也可与信手拈来的生活实例相结合,再可通过活动探究培养学生科学探究的能力。

高中化学专题3.1金属键与金属特性教案

专题3微粒间作用力与物质性质

【典型例题】 1.金属晶体的形成是因为晶体中存在() A.金属离子间的相互作用 B.金属原子间的相互作用 C.金属离子与自由电子间的相互作用 D.金属原子与自由电子间的相互作用 2.金属能导电的原因是() A.金属晶体中金属阳离子与自由电子间的相互作用较弱 B.金属晶体中的自由电子在外加电场作用下可发生定向移动 C.金属晶体中的金属阳离子在外加电场作用下可发生定向移动 D.金属晶体在外加电场作用下可失去电子 3.下列叙述正确的是() A.任何晶体中,若含有阳离子也一定含有阴离子 B.原子晶体中只含有共价键 C.离子晶体中只含有离子键,不含有共价键 D.分子晶体中只存在分子间作用力,不含有其他化学键 【课后练习】 1.下列叙述中,可以肯定是一种主族金属元素的是() A.原子最外层有3个电子的一种金属 B.熔点低于100℃的一种金属 C.次外电子层上有8个电子的一种金属 D.除最外层,原子的其他电子层电子数目均达饱和的一种金属 2.金属晶体的形成是因为晶体中主要存在() A.金属离子之间的相互作用B.金属原子之间的作用 C.金属离子与自由电子间的相互作用D.金属原子与自由电子间的相互作用 3.金属的下列性质中与金属晶体结构无关的是() A.导电性B.化学反应中易失去电子 C.延展性D.硬度 4.在金属晶体中,自由电子与金属离子的碰撞中有能量传递,可以用此来解释的金属的物理性质是()

A.延展性B.导电性 C.导热性D.硬度5.金属的下列性质中,不能用金属晶体结构加以解释的是()A.易导电 B.易导热 C.有延展性D.易锈蚀 6.试比较下列金属熔点的高低,并解释之。 (1)Na、Mg、Al (2)Li、Na、K、Rb、Cs

相关文档
最新文档