分子实验14蛋白质纯化剖析

分子实验14蛋白质纯化剖析
分子实验14蛋白质纯化剖析

蛋白质纯化

一、亲和层析

1、绪论

亲和层析是基于待分离物质,如蛋白质、多肽、糖蛋白和核酸等生物分子,与固定化在载体上的配基分子之间的专一性相互作用的一种色谱学方法。通常是在载体(无机或有机介质)表面先键合一段间隔臂,再连接上配基。间隔臂的作用是减少待纯化蛋白质(或其他生物大分子)与其相适应配基结合时的空间位阻。这种固相化的配基将只能与其有生物特异亲和性的蛋白质分子相互作用而吸附,没有这种作用的其他生物分子不被吸附而流出层析柱,然后,改变流动相条件将吸附的蛋白质洗脱下来,于是达到分离纯化的目的。

2、材料

AKTA TM层析仪,电脑,分部收集器

缓冲液贮槽

层析柱、HiTrap chelating HP 1ml和5ml

偶联试剂,Ni2+

洗柱缓冲液1M NaOH

纯化缓冲液Binding Buffer: 20mM Tris-HCl, 0.5M NaCl, 5mM imidazole

6M guanidine hydrochloride, 1mM 2-mercaptoethanol

pH8.0

Washing Buffer: 20mM Tris-HCl, 0.5M NaCl, 20mM imidazole

6M urea 1mM 2-mercaptoethanol pH8.0

Refolding Buffer: 20mM Tris-HCl, 0.5M NaCl, 20mM imidazole

1mM 2-mercaptoethanol pH8.0

Elution Buffer: 20mM Tris-HCl, 0.5M NaCl,500mM imidazole

1mM 2-mercaptoethanol pH8.0

洗Ni缓冲液:20mM Sodium phosphate, 0.5M NaCl, 0.05M EDTA pH7.4

3、操作步骤(以纯化N-terminal (His)6-tagged recombinant protein produced in E. Coli为例

1、亲和层析柱连AKTA TM层析仪

2、用5-10柱体积的去离子水走柱,去除保存在柱子中的20%的酒精

3、走0.1M NiSO4入柱,至层析柱变蓝

4、走10柱体积的去离子水平衡层析柱

5、用Binding Buffer平衡层析柱

纯化:

1、将已准备好的样用AKTA TM层析仪进柱

2、用10柱体积的Binding Buffer平衡柱子

3、走10柱体积的Washing Buffer

4、复性:走线性梯度,共30柱体积,Washing Buffer 0%→Refolding Buffer 100%

5、用Elution Buffer 将目的蛋白洗脱下来,并收集样品

层析柱的再生和保存:

1、走10柱体积的去离子水去除层析柱中的Buffer

2、走10柱体积的洗NiBuffer洗掉Ni离子

3、用10柱体积的去离子水平衡

4、走1M NaOH入层析柱,并浸泡2h,去除层析柱中沉积的蛋白和其它杂质

5、走10柱体积的去离子水和PH为7.0的缓冲液平衡层析柱,直到层析柱中性

为止。

6、用20%的乙醇保存层析柱

1、讨论

在亲和层析中常出现的一些问题以及解决方法

1、注意任何时都不得使层析柱流干或进气泡,并且不要超过树脂所能承受的压

力。

2、避免偶联试剂,缓冲液和乙醇三者混合在一起,易产生沉淀,可用NaOH浸

泡的方法去除。

3、一般5-10次纯化后才用NaOH彻底清洗层析柱。

4、所有上柱的样品和缓冲液都须过0.2uM滤膜,防止堵塞。

二、凝胶过滤层析

1、概述

凝胶过滤层析是一项重要的蛋白质纯化技术,又称为大小排阻、凝胶排阻、分子筛或凝胶过滤层析。

原理:凝胶过滤层析是再装填有多孔性材料的色谱柱中进行的,是根据蛋白质分子大小不同而达到分离效果。凝胶过滤填料中含有大量微孔,只允许缓冲液及小分子量蛋白质通过,而大分子蛋白质及一些蛋白复合物则被阻挡在外。因此,高分子量的蛋白质在填料颗粒间隙中流动,比低分子量蛋白质更早地被洗脱下来。最大的蛋白质分子最早流出柱子,因为它们在到达柱底前经过的体积最小。中等大小的蛋白质可以进入填料分子中较大的孔内,因此他们晚一些到达柱底,而小蛋白质可以进入所有填料得孔内,有最大的通过体积,故最后到达柱底。2、材料

1、凝胶过滤缓冲液:根据纯化的样品选择

2、部分常见的凝胶过滤色谱填料

3、仪器

凝胶过滤层析柱

装柱配套用具或凝胶储槽

缓冲液储槽

AKTA

电脑

分部收集器

3、步骤

1.如果凝胶过滤的介质是干粉,则需在凝胶过滤缓冲液中完全溶胀。切勿用磁力搅拌器搅拌。让凝胶颗粒自然降。对预溶胀的凝胶,先用大量缓

冲液洗去防腐剂,重悬于等体积的凝胶缓冲液,倾入细颈过滤瓶中,在

使用前进行脱气。

2.装柱:装柱前取3/4体积的凝胶和1/4体积的缓冲液制成凝胶浆。先将缓冲液加入层析柱,当有缓冲液流出时关闭柱的出口。沿柱子一侧或沿

一根玻璃棒倾入凝胶浆,必须一次完成,否则柱床不均一。当凝胶装到

柱底之后,打开柱底出口以加快装柱进程,随之加入更多的缓冲液。将

层析柱与AKTA湘连接,用几倍柱床体积的缓冲液洗涤层析柱,以使

其稳定和平衡。

3.样品上柱及洗脱

(1)样品应高度浓缩(10-20mg/ml),体积应尽量小(适当的上养量为柱床体积的1%-5%)上样前样品需用0。22um的滤膜过滤。

(2)样品上柱:层析柱经平衡后,将平衡液流至柱床表面以下1-2mm 时,关闭出口,用加样气将样品加至柱床表面,并打开出口,

使样品渗入胶内。样品加完后,用小体积的洗脱液洗表面1-2

次,再连接AKTA.

(3)洗脱:缓冲液流经层析柱进行洗脱,目的蛋白洗出时收集。

(4)层析柱的再生和保存:通常用稀的氢氧化钠或非离子型去垢剂清洗可去除大部分的结合物质。用20%酒精保存或在缓冲液中

加入0。02%叠氮钠可防止微生物生长。

4、在试验中应注意的问题

1、防止凝胶中有气泡。

2、蠕动泵控制层析柱的流速,使用泵的压力不要超过凝胶的耐受程度。

3、任何时候都不得使层析柱缓冲液流干,这样就不能进行正常层析分离

了。

三、离子交换层析

1、引言

离子交换层析的目的是利用蛋白质表面的荷电基因与带相反电荷的不溶性基质结合,更确切地说,先用蛋白质偶极离子置换基质官能团上的平衡离子如氯离子或钠离子,然后蛋白质本身又随着平衡离子比例的增加而被置换下来。这通常是通过增加洗脱液中的离子浓度来实现的,比如,用递增的盐浓度梯度进行洗脱。另一种方法是,也可以用pH梯度洗脱,使被吸咐的蛋白质表面的净电荷减少。在特定的缓冲液、pH和离子强度的初始条件下,可以控制待分离蛋白表面的净电荷与基质相互作用。

离子交换剂分为两大类,即阳离子交换剂和阴离子交换剂。阳离子交换剂是在不溶性载体上结合有中性pH下向负电的官能团。这类树脂适用于分离等电点在中性以上的蛋白质。阴离子交换剂本身带碱性基因,在其pK以下荷正电,而阳离子交换剂则带酸性基因,在其pk以上荷负电。应根据被吸附的蛋白质的性质来选择弱的或强的离子交换剂。

2、材料

AKTA层析仪

层析柱

分部收集器

树脂:阴离子交换树指用于处理净电荷为负的蛋白质;阳离子交换树脂用于处理净电荷为正的蛋白质

3、步骤

1、高子交换层析中溶液pH值的选择

1)在九个EP管中各放入1ml阴性离子交换树脂(如DEAE sepharose CL-6B)2)用10ml 0.5mol/L, pH值为5.0的缓冲液润洗一号EP管后;加入10mmol/L NaCl 的缓冲液平衡树脂,二号管以pH 值为5.5的缓冲液同法处理;以后各EP管所用缓冲液pH值依次增加0.5个单位。

3)去掉多余缓冲液,保证各EP管中缓冲液高出树脂量为1ml。

4)向各EP管中加入100ul蛋白质溶液。

5)混匀EP管中物质,放置几分钟。

6)检测上清液中是否存在目的蛋白。

离子交换层析的最佳实验条件围绕蛋白质性质而制定,还要顾及到不要使溶液pH值与蛋白质等电点相差太远。选择条件时,正式洗脱后均须用浓度更大的NaCl溶液再次洗脱以判断洗脱效果,蛋白质活性必须进行测定。对一些与阴性离子交换树脂无反应的特殊蛋白质,可用阳性离子交换树脂,重复试验。

2、洗脱条件的选择

自适的反荷离子可以大大简化蛋白质的纯化,缓冲体系选定后,就该进行反荷离子的选择试验了。

以下是一个实例:

1)用含50mmol/L Tris缓冲液(pH值为7.9),10mmol/L NaCl的溶液平衡10m(DEAE Sepharose CL-6B离子交换树脂)

2)在九个EP管中各加入500ul离子交换树脂

3)用含0.1mol/L NaCl, 50mmol/L Tris缓冲液(pH值为7.9)的溶液10ml润洗二号树脂十次,使树脂与0.1mol/L的NaCl平衡。

4)同法处理三至九号树脂,但润洗液中NaCl浓度由三至九号依次为:0.2mol/L;

0.3mol/L, 0.4mol/L, 0.5mol/L, 0.6mol/L,0.8mol/L, 1.0mol/L

5)去掉多余溶液,保证各管中溶液高出树脂量为500ul

6)向各试管中加入100ul蛋白质溶液

7)混匀EP管中物质,放置几分钟

8)检测上清液中是否存在目的蛋白

随着溶液中NaCl浓度的增加,上清液中将会出现蛋白质。若溶液中NaCl 浓度在0.1mol/L这样低的水平时上清液就含有蛋白质,就需要改变pH值以提高蛋白质与树脂的结合力了。若目的蛋白在NaCl浓度仅低于合适的洗脱液的洗柱溶液中仍吸附在树脂上,则此溶液可用于洗柱以除去与树脂结合能力较弱的杂蛋白。例如当目的蛋白质在0.5mol/L NaCl溶液中被洗脱时,0.3mol/L的NaCl溶液很可能适于洗柱。

3、层析柱的填装

1)层析柱的填装

(1)在烧杯中用样品缓冲液浸洗树脂,至pH值与原样品缓冲液相同。

(2)将树脂真空抽气1h以除去其中的小气泡。

(3)层析柱中加入少量样品缓冲液,打开层析柱出口,导出少量上样缓冲液以赶出层析柱底部的空气。

(4)摇匀树脂,用一根玻璃棒将其导入层析柱,不要带入气泡。

(5)打开层析柱出口,在树脂堆积时加入更多的样品缓冲液

(6)可用AKTA层析仪压柱,用样品缓冲液最终润洗树脂,使其PH值和离子强度最终达到实验要求,并将树脂洗到基线水平。

2)样品上柱

(1)样品溶液首先要通过离心分离或用0.45um孔径滤纸过滤而成为澄清溶液(2)溶解蛋白质的样品缓冲液离子强度最好低于50mmol/L

(3)进样:可用AKTA层析仪直接进,也可用手工上柱的方法样品进柱

3)目的蛋白的洗脱

蛋白质的洗脱分为步进洗脱和梯度洗脱

(1)步进洗脱

将洗脱液面与树脂床面平齐后,通过加入不同浓度的洗脱液中的NaCl进行洗脱。

(2)梯度洗脱

梯度式洗脱的洗柱缓冲液总用量应为树脂床体积的5-10倍,离子强度较低

的洗脱液逐渐向离子强度较高的洗脱液递进,可进梯度仪控制。

3、离子交换树脂的再生和储存

(1)高浓度的NaCl溶液(如1-2mol/L的NaCl溶液)可使大部分树脂再生(2)油脂等少数与树脂紧密结合的物质可用低浓度的碱溶液(如0.1mol/L的NaOH溶液)或去垢洗去

(3)离子交换树脂可在20%的乙醇中保存

4、在实验室中应注意的问题

1、对一般层析,柱高只需为柱直径的2倍,高精度层析时柱高应为柱直径的4-5

倍,并且装时必须一次性完成,否则会严重影响蛋白质分离的精度和重现性。

2、树脂的形态应使层析时液相流动速度适中,让蛋白质有足够的时间吸附在树

指上。

蛋白质分离纯化的步骤

蛋白质分离纯化的一般程序可分为以下几个步骤: (一)材料的预处理及细胞破碎 分离提纯某一种蛋白质时,首先要把蛋白质从组织或细胞中释放出来并保持原来的天然状态,不丧失活性。所以要采用适当的方法将组织和细胞破碎。常用的破碎组织细胞的方法有: 1. 机械破碎法 这种方法是利用机械力的剪切作用,使细胞破碎。常用设备有,高速组织捣碎机、匀浆器、研钵等。 2. 渗透破碎法 这种方法是在低渗条件使细胞溶胀而破碎。 3. 反复冻融法 生物组织经冻结后,细胞内液结冰膨胀而使细胞胀破。这种方法简单方便,但要注意那些对温度变化敏感的蛋白质不宜采用此法。 4. 超声波法 使用超声波震荡器使细胞膜上所受张力不均而使细胞破碎。 5. 酶法 如用溶菌酶破坏微生物细胞等。 (二)蛋白质的抽提 通常选择适当的缓冲液溶剂把蛋白质提取出来。抽提所用缓冲液的pH、离子强度、组成成分等条件的选择应根据欲制备的蛋白质的性质而定。如膜蛋白的抽提,抽提缓冲液中一般要加入表面活性剂(十二烷基磺酸钠、tritonX-100 等),使膜结构破坏,利于蛋白质与膜分离。在抽提过程中,应注意温度,避免剧烈搅拌等,以防止蛋白质的变性。(三)蛋白质粗制品的获得选用适当的方法将所要的蛋白质与其它杂蛋白分离开来。比较方便的有效方法是根据蛋白质溶解度的差异进行的分离。常用的有下列几种方法: 1.等电点沉淀法不同蛋白质的等电点不同,可用等电点沉淀法使它们相互分离。 2.盐析法 不同蛋白质盐析所需要的盐饱和度不同,所以可通过调节盐浓度将目的蛋白沉淀析出。被盐析沉淀下来的蛋白质仍保持其天然性质,并能再度溶解而不变性。 3.有机溶剂沉淀法 中性有机溶剂如乙醇、丙酮,它们的介电常数比水低。能使大多数球状蛋白质在水溶液中的溶解度降低,进而从溶液中沉淀出来,因此可用来沉淀蛋白质。此外,有机溶剂会破坏蛋白质表面的水化层,促使蛋白质分子变得不稳定而析出。由于有机溶剂会使蛋白质变性,使用该法时,要注意在低温下操作,选择合适的有机溶剂浓度。 (四)样品的进一步分离纯化

质粒DNA的提取和纯化实验报告

质粒DNA的提取和纯化实验报告

实验一、质粒DNA的提取和纯化 一、实验目的: 1、学习并掌握碱裂解法小量制备质粒DNA的方法。 2、初步了解DNA纯化的原理。 二、实验原理 1、细菌质粒是一类双链、闭环的DNA,大小范围从1kb至200kb以上不等。各种质粒都是存在于细胞质中、独立于细胞染色体之外的自主复制的遗传成份,通常情况下可持续稳定地处于染色体外的游离状态,但在一定条件下也会可逆地整合到寄主染色体上,随着染色体的复制而复制,并通过细胞分裂传递到后代。 2、质粒已成为目前最常用的基因克隆的载体分子,重要的条件是可获得大量纯化的质粒DNA分子。目前已有许多方法可用于质粒DNA的提取,本实验采用碱裂解法提取质粒DNA。 3、碱裂解法是一种应用最为广泛的制备质粒DNA的方法,其基本原理为:当菌体在NaOH和SDS溶液中裂解时,蛋白质与DNA发生变性,当加入中和液后,质粒DNA分子能够迅速复性,呈溶解状态,离心时留在上清中;蛋白质与染色体DNA不变性而呈絮状,离心时可沉淀下来。 4、纯化质粒DNA的方法通常是利用了质粒DNA相对较小及共价闭环两个性质。例如,氯化铯-溴化乙锭梯度平衡离心、离子交换层析、凝胶过滤层析、聚乙二醇分级沉淀等方法,但这些方法相对昂贵或费时。对于小量制备的质粒DNA,经过苯酚、氯仿抽提,RNA酶消化和乙醇沉淀等简单步骤去除残余蛋白质和RNA,所得纯化的质粒DNA已可满足细菌转化、DNA片段的分离和酶切、常规亚克隆及探针标记等要求,故在分子生物学实验室中常用。 三、实验步骤 1、挑取单菌落接种到含Amp的LB液体培养基试管内(3.5ml/管) 2、将试管放入恒温震荡培养箱中,37℃,200r/min培养12-16h。 3、将菌落转入1.5ml离心管中(尽量倒满)1200r/min,离心30s(沉淀菌体) 4、重复一次第三步的过程 5、弃掉上清液并扣干,加入预冷的Solution1 100微升,剧烈震荡打散菌体

蛋白的纯化

第二部分:蛋白的纯化 如何区分蛋白表达在上清还是包涵体? 破碎细胞后离心分别收集上清和沉淀,表达的蛋白可能分布在上清中也有可能分布在沉淀中,还有可能是二者中都有分布。 根据我们实验室的经验,超声碎菌之后,如果菌液比较清亮,沉淀比较少,那表达的蛋白基本上是可溶的。但如果超声完之后,菌液是浑浊的,而且当离心之后,离下的沉淀比较多,而且沉淀的颜色也比较白,那基本上就是包涵体了。包涵体是基因重组蛋白在大肠杆菌中高水平表达时所形成的无活性的蛋白质聚集体,难溶于氺,可溶于变性剂如尿素,盐酸胍等,其实,包涵体也就是我们常说的不可溶蛋白。对于后者,可将上清和沉淀分别跑一个PAGE,看看上清中的量能达到多少,对于某些蛋白来说,一部分是以包涵体形式表达,一部分是以可溶的形式表达,而且量也不少,可以满足后续实验的需要,这个时候最好是纯可溶的,因为包涵体即使最后复性,活性也不太可信。 对于沉淀跑SDS-PAGE,如何处理,用什么使其溶解,还有在大肠杆菌中表达的蛋白,在提取过程中,使用什么蛋白提取缓冲液。 沉淀用Buffer B重悬,(组成:8M尿素+10mMTRIS base+100mM NaH2PO4,用NaOH调节pH到8.0),1克沉淀(湿重)加5ml Buffer B,使其充分溶解(可以放在微量震荡器上震荡20min),然后室温下12000转离心20min,留上清,弃沉淀。 取10ul上清加入10ul 2xSDS上样缓冲液,就可以跑PAGE了。 无论是纯可溶蛋白还是包涵体,在菌体裂解这一步我用的都是Lysis Buffer(组成:10mM 咪唑+300mM NaCl+50mM NaH2PO4,用NaOH调节pH到8.0)每克菌体(湿重)加2-5ml Lysis Buffer,充分悬起后,加入溶菌酶4度作用半小时就可以超声破碎了。 包涵体,简单的说就是翻译的蛋白没有正确折叠而聚集在一起形成的,主要的是疏水作用。实际上就是很多个蛋白分子,这些蛋白并不是交联在一起的,用高浓度的尿素和盐酸胍可以使他们变性,解聚。 电泳检测的话,可以用SDS-PAGE检测,在上样之前,需要用上样缓冲液处理样品,处理后,包涵体也就解聚了,每个蛋白分子与SDS结合,形成了可溶物。 包涵体是不容易破碎的,超声可以破碎菌体释放里面的包涵体,但是不能破碎包涵体;但如果用水煮的话,包涵体会变性,会有一部分可溶于水,所以你跑的上清中有可能有包涵体存在,也有可能没有包涵体; 建议: 还是先将菌体超声破碎,然后离心,取沉淀和上清再跑一次电泳,如果沉淀上清中都有你要的蛋白,说明表达的结果是部分可溶;如果仅上清有就是可溶性表达;如果仅沉淀中有,就是完全包涵体了。不过,一般情况下,应该是第一者的可能性大。

蛋白表达纯化实验步骤

蛋白表达纯化实验步骤(待改进) 1、取适当相应蛋白高表达的动物组织提total-RNA。 2、设计蛋白表达引物。引物要去除信号肽,要加上适当的酶切位点和保护碱基。 3、RT-PCR,KOD酶扩增获取目的基因c DNA. 4、双酶切,将cDNA.克隆入PET28/32等表达载体。 5、转化到DH5α感受态细菌中扩增,提质粒。 6、将质粒转化入表达菌株,挑菌检测并保种。表达菌株如Bl21(DE3)、Rosetta gami(DE3)、Bl21 codon(DE3)等。 7、蛋白的诱导表达。 1)将表达菌株在3ml LB培养基中摇至OD=0.6左右,加入IPTG,浓度梯度从25μM 到1m M。37度诱导过夜(一般3h以上即有大量表达)。 2)SDS-PAGE电泳检测目的蛋白的表达。注:目的蛋白包涵体表达量一般会达到菌体 蛋白的50%以上,在胶上可以看到明显的粗大的条带。 3)将有表达的菌株10%甘油保种,保存1ml左右就足够了,并记录IPTG浓度范围。 甘油是用0.22μm过滤除菌的,储存浓度一般是30%-60%,使用时自己计算用量。 4)用上述IPTG浓度范围的最低值诱导10ml表达菌,18度,低转速(140-180rpm), 诱导过夜作为包涵体检测样品。 注意:1.如果表达的蛋白对菌体有毒性,可以在加IPTG之前的培养基中加入1%的葡萄糖用来抑制本底表达。葡萄糖会随着细菌的繁殖消耗殆尽,不会影响后面的表达。2. 保种可以取一部分分成50μl一管,每次用一管,避免反复冻融。 8、包涵体检测。方案见附件2 9、如有上清表达,则扩大摇菌。 1)取保种的表达菌株先摇10ml,37度,300rpm摇至OD>=1.5,约5h左右,视菌种

蛋白质的分离纯化和表征

蛋白质的分离纯化和表征 第一节蛋白质的酸碱性质 各个解离基团的pK 值与游离氨基酸的不完全相同。等电点要用等电聚焦等方法测定。 第二节蛋白质分子的大小与形状

一、根据化学组成测定最低相对分子质量 假定某种微量成分只有一个,测出其百分含量后,可用比例式算出最低相对分子质量。 若测出两种微量成分的百分含量,分别用比例式算出的最低相对分子质量不相同时,可计算两个最低相对分子质量近似的最小公倍数。 例题:一种纯酶含亮氨酸(Mr 131)1.65%,含异亮氨酸(Mr131)2.48%,求最低相对分子质量。 解:按照Leu 的百分含量计算,最低Mr X1: X1=(100′ 131)/1.65=7939.4。 按照Ile 的百分含量计算最低Mr X2: X2=(100′ 131)/2.48=5282.3。 由于X1 和X2 数字差异较大,提示这种酶含Leu 和Ile 不止1 个,为了估算Leu 和Ile 的个数,首先计算: X1/X2=7939.4/5282.3≈1.5。 这种酶含任何氨基酸的个数均应是整数,说明该酶至少含有2 个Leu,3 个Ile,其最低相对分子质量为: 7939.4 ′2 =15878.8或5282.3×3=15846.9。 二、渗透压法测定相对分子质量 三、沉降分析法测定相对分子质量

基本原理: (一)离心力(centrifugal force,Fc) 当一个粒子(生物大分子或细胞器)在高速旋转下受到离心力作用时,此离心力“Fc”由下式定义: F=m·a=m·ω2 r a—粒子旋转的加速度,m—沉降粒子的有效质量,ω—粒子旋转的角速度,r—粒子的旋转半径(cm)。 (二)相对离心力(relative centrifugal force,RCF) 由于各种离心机转子的半径或者离心管至旋转轴中心的距离不同,离心力而受变化,因此在文献中常用“相对离心力”或“数字×g”表示离心力,只要RCF 值不变,一个样品可以在不同的离心机上获得相同的结果。 RCF 就是实际离心场转化为重力加速度的倍数。

基础生化实验-蛋白质纯化

蛋白质纯化

一、目的: 利用金属亲和性管柱(metal affinity column)来大量纯化带有affinity tag的基因重组蛋白。 二、原理: 由于六个Histidine 所组成的His Tag (metal affinity tag)可与Ni2+ bind,所以利用基因重组技术在表现的蛋白质加上His Tag,再以金属亲和性管柱 (Ni-NTA) (此His- tag序列可与带二价正电的阳离子相螯和)及liquid chromatography来大量纯化蛋白质。 三、试剂与器材: 1.loading(binding) buffer (10mM imidazole,0.3M NaCl,50Mm Tris-HCl Ph7) ?细菌回溶成为蛋白质的载体以保持活性 2.wash buffer (20mM imidazole,0.3M NaCl,50Mm Tris-HCl,Ph7) 3.elution buffer (20mM EDTA,0.3M NaCl,50Mm Tris-HCl,Ph7) 上课补充: ?蛋白质很脆弱,需要在特殊的buffer里。

四、仪器与设备: FPLC(速液相色谱仪) 五、步骤: 1.将管柱架在铁架上,把亲和性胶体悬浮装填于管柱内。 2.以2~3倍CV loading buffer清洗管柱后,注入蛋白质样本。 3.以wash buffer梳洗,2到3倍column体积。 4.用wash buffer和elution buffer进行线性梳洗,并收集流出液体,以 FPLC UV monitor上的OD280数据读取样品流出与否,并观察冲离液之 曲 线图。 上课补充: ?胞内型分泌需要用超音波破菌,因为会放热所以要放在冰中使用。 ?线性梳洗为加入elution buffer会有颜色变化会把镍离子跟imidazole冲 洗掉,剩下胶体溶液。 ?其中imidazole和Histidine类似也会和镍离子结合所以会竞争,可拿来 洗涤蛋白质。(可详见问题一及补充资料2) 六、问题:

蛋白质纯化的方法选择

蛋白质纯化的方法选择 随着分子生物学的发展,越来越多的科研人员熟练掌握了分子生物学的各种试验技术,并研制成套试剂盒,使基因克隆表达变得越来越容易。但分子生物学的上游工作往往并非是最终目的,分子克隆与表达的关键是要拿到纯的表达产物,以研究其生物学作用,或者大量生产出可用于疾病治疗的生物制品。相对与上游工作来说,分子克隆的下游工作显得更难,蛋白纯化工作非常复杂,除了要保证纯度外,蛋白产品还必须保持其生物学活性。纯化工艺必须能够每次都能产生相同数量和质量的蛋白,重复性良好。这就要求应用适应性非常强的方法而不是用能得到纯蛋白的最好方法去纯化蛋白。在实验室条件下的好方法却可能在大规模生产应用中失败,因为后者要求规模化,且在每日的应用中要有很好的重复性。本文综述了蛋白质纯化的基本原则和各种蛋白纯化技术的原理、优点及局限性,以期对蛋白纯化的方法选择及整体方案的制定提供一定的指导。 1、蛋白纯化的一般原则 蛋白纯化要利用不同蛋白间内在的相似性与差异,利用各种蛋白间的相似性来除去非蛋白物质的污染,而利用各蛋白质的差异将目的蛋白从其他蛋白中纯化出来。每种蛋白间的大小、形状、电荷、疏水性、溶解度和生物学活性都会有差异,利用这些差异可将蛋白从混合物如大肠杆菌裂解物中提取出来得到重组蛋白。蛋白的纯化大致分为粗分离阶段和精细纯化阶段二个阶段。粗分离阶段主要将目的蛋白和其他细胞成分如DNA、RNA等分开,由于此时样本体积大、成分杂,要求所用的树脂高容量、高流速,颗粒大、粒径分布宽.并可以迅速将蛋白与污染物分开,防止目的蛋白被降解。精细纯化阶段则需要更高的分辨率,此阶段是要把目的蛋白与那些大小及理化性质接近的蛋白区分开来,要用更小的树脂颗粒以提高分辨率,常用离子交换柱和疏水柱,应用时要综合考虑树脂的选择性和柱效两个因素。选择性树脂与目的蛋白结合的特异性,柱效则是指各蛋白成分逐个从树脂上集中洗脱的能力,洗脱峰越窄,柱效越好。仅有好的选择性,洗脱峰太宽,蛋白照样不能有效分离。 2、各种蛋白纯化方法及其优、缺点 2.1 蛋白沉淀蛋白能溶于水是因为其表面有亲水性氨基酸,在蛋白质的等电点处若溶液的离子强度特别高或者特别低,蛋白则倾向于从溶液中析出。硫酸铵是沉淀蛋白最常用的盐,因为它在冷的缓冲液中溶解性好,冷的缓冲液有利于保持目的蛋白的活性。硫酸铵分馏常用作试验室蛋白纯化的第一步,它可以初步粗提蛋白质,去除非蛋白成分。蛋白质在硫酸铵沉淀中较稳定,可以短期在这种状态下保存中间产物,当前蛋白质纯化多采用这种办法进行粗分离翻。在规模化生产上硫酸铵沉淀方法仍存在一些问题,硫酸铵对不锈钢器具的腐蚀性很强。其他的盐如硫酸钠不存在这种问题,但其纯化效果不如硫酸铵。除了盐析外蛋白还可以用多聚物如PEG和防冻剂沉淀出来,PEG是一种惰性物质,同硫酸铵一样对蛋白有稳定效果,在缓慢搅拌下逐渐提高冷的蛋白溶液中的PEG浓度,蛋白沉淀可通过离心或过滤获得,蛋白可在这种状态下长期保存而不损坏。蛋白沉淀对蛋白纯化来说并不是多么好的方法,因为它只能达到几倍的纯化效果,而我们在达到目的前需要上千倍的纯化。其好处是可以把蛋白从混杂有蛋白酶和其他有害杂质的培养基及细胞裂解物中解脱出来。 2.2 缓冲液的更换虽然更换缓冲液不能提高蛋白纯度,但它却在蛋白纯化方案中起着极其重要的作用。不同的蛋白纯化方法需要不同pH及不同离子强度的缓冲液。假如你用硫酸铵将蛋白沉淀出来,毫无疑问蛋白是处在高盐环境中,需要想办法脱盐,可用的方法有利用半透膜透析,通过勤换透析液体去除盐分,此法尚可,但需几个小时,通常要过夜,也难以用于大规模纯化中。新型的设备将透析膜夹在两个板中间,板的一侧加缓冲液,另一侧加需脱盐的蛋白溶液,并在蛋白溶液一侧通过泵加压,可以使两侧溶液在数小时内达到平衡,若增加对蛋白溶液的压力,还可迫使水分和盐更多通过透析膜进入透析液达到对蛋白浓缩的目的。也有出售的脱盐柱,柱内的填料是小孔径的颗粒,蛋白分子不能进入孔内,先于高浓度盐离子从柱中流出,从而使二者分离。蛋白纯化的每一步都会造成目的蛋白的丢失,缓冲液平衡的步骤尤甚。蛋白会结合在任何它能接触的表面上,剪切力、起泡沫和离子强度的快速变化很容易让蛋白失活。 2.3 离子交换色谱这是在所有的蛋白纯化与浓缩方法中最有效方法。基于蛋白与离子交换树脂间的相互电荷作用,通过选择不同的缓冲液,同一种蛋白既可以和阴离子交换树脂(能结合带负电荷的分子)结合,也可以和阳离子交换树脂结合。树脂所用的带电基团有四种:二乙基氨基乙基用于弱的阴离子交换树脂;羧甲基用于弱的阳离子交换树脂;季铵用于强阴离子交换树脂;甲基磺酸酯用于强阳离子交换树脂。蛋白质由氨基酸组成,氨基酸在不同的pH环境中所带总电荷不同。大多数蛋白在生理pH(pH6~8)下带负电荷,需用阴离子交换柱纯化,极端的pH下蛋白会变性失活.应尽量避免。由于在某个特定的pH下不同的蛋白所带电荷数不同,与树脂的结合力也不同,随着缓冲液中盐浓度的增加或pH的变化,蛋白按结合力的强弱被依次洗脱。在工业化生产中更多地是改变盐浓度而不是去改变pH值,因为前者更容易控制。在实验室中几乎总是用盐浓度梯度去洗脱离子交换柱,利用泵的辅助可以使流入柱的缓冲液中盐浓度平稳地上升,当离子强度能够中和蛋白的电荷时,蛋白就被从柱上洗脱下来。但在工业生产中盐浓度很难精确控制,所以常用分步洗脱而不足连续升高的盐梯度。与排阻层析相比,离子交换特异性更好,有更多的参数可以调整以获得最优的纯化效果,树脂也比较便宜。值得一提的是,即便是用最精确控制的条件,仅用离子交换单一的方法也得不到纯的蛋白,还需要其他的纯化步骤。

血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验报告

血清清蛋白、γ-球蛋白的分离、纯化与鉴 定实验报告 生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心 实验名称实验日期合作者评分 XX 血清清蛋白、γ-球蛋白的分离、纯化与鉴定实验地点指导老师教师签名李某某批改日期 20XX-06-03 格式要求:正文请统一用:小四号,宋体,倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出 现多行、多页空白现象。一、实验目的 1、掌握盐析法、凝胶层析法、离子交换层析法分离蛋白质的原理和基本方法。 2、掌握醋酸纤维素薄膜电泳法的原理和基本方法。 3、了解柱层析技术。 二、实验原理 1、粗提: 蛋白质分子能稳定存在于水溶液中是因为有两个稳定

因素:表面的电荷和水化膜。当维持蛋白质的稳定因素破坏时,蛋白质分子可相互聚集沉淀而析出。盐在水溶液中电离所形成的正负离子可吸引水分子,从而夺取蛋白质分子上的水化膜,还可中和部分电荷使蛋白质分子聚集而沉淀,从而达到盐析沉淀蛋白质的目的。于血清中各种蛋白质颗粒大小、所带电荷多少及亲水程度不同,因此,利用不同浓度的硫酸铵溶液分段盐析,便可将血清中清蛋白和球蛋白从溶液中沉淀出来,达到初步分离清蛋白、球蛋白的目的。 2、脱盐 凝胶层析法利用蛋白质与无机盐类之间分子量的差异。当溶液通过凝胶柱时,溶液中分子量较大的蛋白质因为不能通过网孔进入凝胶颗粒,沿着凝胶颗粒间的间隙流动。 所以流程较短,向前移动速度较快,最先流出层析柱。而盐的分子量较小,可通过网孔进入凝胶颗粒,所以流程长,向前移动速度较慢,较晚流出层析柱。从而可达到去盐的目的。 3、纯化 离子交换是溶液中的离子和交换剂上的离子进行可逆的的交换过程。带正电荷的交换剂称为阴离子交换剂;带负电荷的交换剂称为阳离子交换剂。本实验采用的DEAE纤维素是一种阴离子交换剂,溶液中带负电荷的离子可与其进行交换结合,带正电荷的离子则不能,这样便可达到分离纯化

微机模拟蛋白质纯化实验

微机模拟蛋白质纯化实验 学号:1025004555 姓名:王圣强专业:生物工程 一、实验目的: 1. 了解模拟生化干实验的方法和意义,掌握用protein软件提纯蛋白质的方法。 2. 进一步熟悉层析、热变性、盐析等常用生化分离方法的原理和应用。 二、实验原理: “Protein”软件有36个任务,即36组待分离纯化的蛋白。任务要求利用软件提供的几种实验技术,提纯每一个目的蛋白,最终达到单向电泳一条带,双向电泳一个点,而且使用的人时和经费(根据提取步骤计算得到)不得超过一个特定值。在每个任务开始时,软件给出目的蛋白的一些性质,如热稳定的温度范围和pH稳定范围等,利用这些信息,可以使实验少走弯路。“Protein”提供的分离纯化方法有七种:①热变性;②硫铵沉淀;③排阻层析(凝胶色谱);④离子交换层析;⑤吸附层析;⑥聚焦层析;⑦制备电泳。 在“Protein”所提供的各种分离纯化方法中,热变性法和盐析法是比较好的粗提方法,在提纯的早期使用效果较好。层析是各种方法中最强有力的方法,制备电泳虽然纯化倍数高,但是回收率低。在各种层析方法中,又以离子交换层析最为有效和易于使用,并且耗费的人时和经费也较少。排阻层析和聚焦层析耗费较大,但在某些特定情况下,这两种方法是不可替代的。“Protein”提供了四种电泳方法:即,SDS-PAGE、PAGE、等电聚焦电泳和双向电泳。这些电泳方法不但可以用以检测样品的纯度,而且也给出了样品的一些信息,如分子量、等电点等,这些信息对于后续提纯有重要的参考价值,等电聚焦电泳和PAGE还可以用于制备。 本实验要求完成实验软件中三种酶的分离纯化。 三、实验步骤: 实验中为了比较在样品性质不同情况下,如何有效分离,以及各种方法的优劣,拟分离如下三种样品: 1. pH稳定范围较大的蛋白(Windows 1号酶) 2. 酸性条件下稳定的蛋白(Windows 3号酶) 3. 碱性条件下稳定的蛋白(Windows 36号酶) 1.pH稳定范围较大的蛋白(Windows 1号酶) 1号酶在50度下稳定,稳定范围2-11(稳定范围较大)

蛋白质的分离纯化方法(参考资料)

蛋白质的分离纯化方法 2.1根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 2.2 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

实验报告血红蛋白doc

实验报告血红蛋白 篇一:生化实验报告实验5 血红蛋白凝胶过滤 实验报告 课程名称:生化实验B实验日期: 班级:姓名学号: 血红蛋白凝胶过滤 一、背景及目的 血红蛋白是高等生物体内负责运载氧的一种蛋白质。存在于脊椎动物、某些无脊椎动物血液和豆科植物根瘤中。人体内的血红蛋白由两个α亚基和两个β亚基组成。每个亚基均成球状,内部有一个血红素。血红素上的亚铁离子可以可逆的与氧分子结合,起到运输氧气的作用。当携带氧气时,血红蛋白呈鲜红色,无氧时为暗红色。 凝胶过滤法又称凝胶排阻层析或分子筛层析,主要是根据蛋白质的大小和形状,即蛋白质的质量进行分离和纯化。层析柱中的填料是某些惰性的多孔网状结构物质,多是交联的聚糖(如葡聚糖或琼脂糖)类物质,使蛋白质混合物中的物质按分子大小的不同进行分离。一般是大分子先流出来,小分子后流出来。凝胶过滤的突出优点是层析所用的凝胶属于惰性载体,不带电荷,吸附力弱,操作条件比较温和,可在相当广的温度范围下进行,不需要有机溶剂,并且对分离成分理化性质的保持有独到之处。对于高分子物质有很好的

分离效果。 影响分离效果的因素主要有以下几点:1.基质的(本文来自:小草范文网:实验报告血红蛋白)颗粒大小、均匀度 2.筛孔直径和床体积的大小 3.洗脱液的流速 4.样品的种类等, 5.缓冲液的pH 6.而最直接的影响是 Kav 值的差异性, Kav 值差异性大,分离效果好; Kav 值差异性小,则分离效果很差,或根本不能分开。 影响凝胶过滤的因素主要有: 1、层析柱的选择:长的层析柱分辨率要比短的高,但层析柱长度不能过长。 2、加样量:加样过多,会造成洗脱峰的重叠;加样过少,提纯后各组分量少、浓度较低。 3、凝胶柱的鉴定:凝胶柱填装后用肉眼观察应均匀、无纹路、无气泡。 4、洗脱速度:洗脱速度应保持适中。 目前凝胶过滤技术的应用主要是以下几点: 1、脱盐 2、用于分离提纯 3、测定高分子物质的分子量 4、高分子溶液的浓缩 5、蛋白质的复性 二、实验原理 层析法是基于不同物质在流动相和固定相之间的分配系数不同而将混合组分分离的技术。当流动相(液体或气体)

蛋白质分离与纯化教学设计课题

蛋白质分离与纯化教学设计 一、教学背景分析 【教材分析】 “蛋白质的分离与纯化”实验是《高中生物》选修1生物技术实践 5.3血红蛋白的提取与分离中的容。本节课的主要容包括蛋白质的提取、分离纯化等基本知识,主要要求学生掌握凝胶电泳的实验原理以及操作方法。“血红蛋白分离与纯化”实验不仅是学习血红蛋白的提取、分离纯化方法,而且也是进一步掌握蛋白质的组成、结构和功能的基础。 【学情分析】 到目前为止,学生已经学习了蛋白质的相关知识,对蛋白质有了一定的了解,“蛋白质的分离与纯化”实验目的是使学生体验从复杂细胞混合物体系中提取和纯化生物大分子的基本原理、过程和方法,虽然操作难度较大,但原理清晰,动手机会较多,学习兴趣很高。学生有必修“生命活动的主要承担者——蛋白质”的基础,在一定程度上掌握了蛋白质的组成、结构和功能等基础知识,学生在进行实验前还是能大概了解影响蛋白质分离纯化的因素的,再者经过老师的指导,实验能取得良好的结果的。 二、教学目标 【知识目标】 1.了解从血液中提取蛋白质的原理与方法。 2.说出凝胶电泳的基本原理与方法。 【能力目标】 运用凝胶电泳对蛋白质进行分离纯化。 【情感态度与价值观目标】 1.培养学生科学实验的观点。 2.初步形成科学的思维方式,发展科学素养和人文精神。 三、教学重难点

【教学重点】 从血液中提取蛋白质;凝胶电泳分离纯化蛋白质。 【教学难点】 样品预处理,色谱柱的装柱,纯化分离操作。 四、实验实施准备 【教师准备】 1.分组。学生按学科能力的强中弱平均分组,各组尽量平衡,各组自行分工,并由实验员统一安排实验过程。 2.实验材料:血液 仪器:试管、胶头滴管、烧杯、玻璃棒、离心机、研磨器、透析袋、电泳仪等。 试剂:20mmol/L磷酸缓冲液(pH为8.6)、蒸馏水、聚丙烯酸铵、生理盐水、5%醋酸水溶液等。 【学生准备】 1.预习实验“蛋白质分离纯化”,了解蛋白质的相关信息。 2.进行分组。 五、教学方法 【教法】分析评价法、任务驱动法、直观演示法 【学法】自主学习法、合作交流法 六、教学媒体 黑板、多媒体 七、课时安排 两个课时(80min) 一个课时用来讲述理论部分知识:样品处理与色谱柱分离纯化蛋白质的原理与方法; 另一课时用来进行实验。

生化血清蛋白分离提纯实验报告

生物化学实验报告 姓名: 学号: 专业年级: 组别: 生物化学与分子生物学实验教学中心

实验名称血清清蛋白、γ蛋白分离提纯与纯度鉴定 实验日期2018-12-27实验地点 合作者指导老师 评分教师签名批改日期 格式要求:正文请统一用:小四号,宋体,1.5倍行距;数字、英文用Times New Roman;标题用:四号,黑体,加粗。需强调的地方请用蓝颜色标出。不得出现多行、多页空白现象。 一、实验目的 1.掌握盐析法分离蛋白质的原理和基本方法 2.掌握凝胶层析法分离蛋白质的原理和基本方法 3.掌握离子交换层析法分离蛋白质的原理和基本方法 4.掌握醋酸纤维素薄膜电泳法的原理和基本方法 5.了解柱层析技术 二、实验原理 蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。 不同蛋白质的分子量、溶解度及等电点等都有所不同。利用这些性质的差别,可分离纯化各种蛋白质。 三、材料与方法:以流程图示意 材料:人混合血清、葡聚糖凝胶G-25(Sephadex G-25)层析柱、二乙基氨基乙基(DEAE)、纤维素离子交换层析柱、饱和硫酸铵溶液、各不同浓度的醋酸铵缓冲溶液、20%磺基水杨酸溶液、1%BaCl2溶液 器材:层析柱、电泳仪、电泳槽等

操作方法:

取浓度最高的一管做纯度鉴定。 2管均作纯度鉴定 最后DEAE-纤维柱先用6ml 1.5mol/L NaCl-0.3mol/LNH4AC溶液流洗,再用10ml 0.02mol/L NH4AC 缓冲液流洗再生平衡。 醋酸纤维素薄膜电泳:

点样(粗面)→电泳→染色和漂洗 注意: ①点样线尽量点得细窄而均匀 ②电泳时薄膜粗面朝下、点样端置阴极端、两端紧贴在滤纸盐桥上,膜应轻轻拉平,切勿使点样处与电泳槽接触 ③电泳完毕后,关闭电源,将膜取出,直接浸于染色液中5min。取出膜,尽量沥净染色液,移入漂洗液中浸洗脱色(一般更换2次),至背景颜色脱净为止。取出膜,用滤纸吸干即可。 四、结果与讨论:①结果:实验数据、现象、图谱;②讨论:以结果为基础的逻辑推论,并得出结论。 从上到下分别为血清、清蛋白一、清蛋白二、球蛋白。 从上图可以看出,此次实验结果不太理想,血清电泳结果只有两条带,推测原因有 ①血清点样时量不足 ②点样时手法不恰当

微机模拟蛋白质纯化实验

微机模拟蛋白质纯化实验 学号: 1035130150 :睿 班级:生命科学学院 10级生物工程 : 1059508633qq. 一、实验目的: 1. 了解模拟生化干实验的方法和意义,掌握用protein 软件提纯蛋白质的方法。 2. 进一步熟悉层析、热变性、盐析等常用生化分离方法 的原理和应用。 二、实验原理: 1:“Protein”软件有36个任务,即36组待分离纯化的蛋白。任务要求利用软件提供的几种实验技术,提纯每一个目的蛋白,最终达到单向电泳一条带,双向电泳一个点,而且使用的人时和经费(根据提取步骤计算得到)不得超过一个特定值。在每个任务开始时,软件给出目的蛋白的一些性质,如热稳定的温度围和pH稳定围等,利用这些信息,可以使实验少走弯路。 2:“Protein”提供的分离纯化方法有七种:①热变性; ②硫铵沉淀;③排阻层析(凝胶色谱);④离子交换层析; ⑤吸附层析;⑥聚焦层析;⑦制备电泳。 3:在“Protein”所提供的各种分离纯化方法中,热变

性法和盐析法是比较好的粗提方法,在提纯的早期使用效果较好。层析是各种方法中最强有力的方法,制备电泳虽然纯化倍数高,但是回收率低。在各种层析方法中,又以离子交换层析最为有效和易于使用,并且耗费的人时和经费也较少。排阻层析和聚焦层析耗费较大,但在某些特定情况下,这两种方法是不可替代的。 4:“Protein”提供了四种电泳方法:即,SDS-PAGE、PAGE、等电聚焦电泳和双向电泳。这些电泳方法不但可以用以检测样品的纯度,而且也给出了样品的一些信息,如分子量、等电点等,这些信息对于后续提纯有重要的参考价值,等电聚焦电泳和PAGE还可以用于制备。 三、实验要求: 完成实验软件中三种酶的分离纯化。 四、实验步骤: 实验中为了比较在样品性质不同情况下,如何有效分离,以及各种方法的优劣,拟分离如下三种样品: 1. pH稳定围较大的1号蛋白 2. 碱性条件下稳定的36号蛋白 3. 酸性条件下稳定的3号蛋白 1:酸性条件下稳定的3号蛋白 3号酶在62℃以下稳定,稳定pH围3.8~5.8(酸性条件)。

生化实验报告模版

生物化学实验报告 姓名:郭玥 学号: 3120100021 专业年级: 2012级护理本科 组别:第8实验室 生物化学与分子生物学实验教学中心

【实验报告第一部分(预习报告内容):①实验原理、②实验材料(包括实验样品、主要试剂、主要仪器与器材)、③实验步骤(包括实验流程、操作步骤和注意事项);评分(满分30分):XX】 实验目的:1、掌握盐析法分离蛋白质的原理和基本方法 2、掌握凝胶层析法分离蛋白质的原理和基本方法 3、掌握离子交换层析法分离蛋白质的原理和基本方法 4、掌握醋酸纤维素薄膜电泳法的原理和基本方法 5、了解柱层析技术 实验原理:1、蛋白质的分离和纯化是研究蛋白质化学及其生物学功能的重要手段。 2、不同蛋白质的分子量、溶解度及等电点等都有所不同。利用这些性质的差别, 可分离纯化各种蛋白质。 3、盐析法:盐析法是在蛋白质溶液中,加入无机盐至一定浓度或达饱和状态,可 使蛋白质在水中溶解度降低,从而分离出来。蛋白质溶液中加入中性盐后,由 于中性盐与水分子的亲和力大于蛋白质,致使蛋白质分子周围的水化膜减弱乃 至消失。中性盐加入蛋白质溶液后由于离子强度发生改变,蛋白质表面的电荷 大量被中和,更加导致蛋白质溶解度降低,蛋白质分子之间聚集而沉淀。

4、离子交换层析:离子交换层析是指流动相中的离子和固定相上的离子进行可逆 的交换,利用化合物的电荷性质及电荷量不同进行分离。 5、醋酸纤维素薄膜电泳原理:血清中各种蛋白质的等电点不同,一般都低于pH7.4。 它们在pH8.6的缓冲液中均解离带负电荷,在电场中向正极移动。由于血清中 各种蛋白质分子大小、形状及所带的电荷量不同,因而在醋酸纤维素薄膜上电 泳的速度也不同。因此可以将它们分离为清蛋白(Albumin)、α1-球蛋白、α 2-球蛋白、β-球蛋白、γ-球蛋白5条区带。 实验材料:人混合血清葡聚糖凝胶(G-25)层析柱 DEAE纤维离子交换层析柱饱和硫酸铵溶液 醋酸铵缓冲溶液 20%磺基水杨酸 1%BaCl 溶液氨基黑染色液 2 漂洗液 pH8.6巴比妥缓冲溶液 电泳仪、电泳槽 实验流程:盐析(粗分离)→葡聚糖凝胶层析(脱盐)→DEAE纤维素离子交换层析(纯化)→醋酸纤维素薄膜电泳(纯度鉴定) 实验步骤: (一)盐析+凝胶柱层析除盐:

分离纯化蛋白质的方法及原理

(二)利用溶解度差别 影响蛋白质溶解度的外部因素有:1、溶液的pH;2、离子强度;3、介电常数;4、温度。但在同一的特定外部条件下,不同蛋白质具有不同的溶解度。 1、等电点沉淀:原理:蛋白质处于等电点时,其净电荷为零,由于相邻蛋白质分子之间没有静电斥力而趋于聚集沉淀。因此在其他条件相同时,他的溶解度达到最低点。在等电点之上或者之下时,蛋白质分子携带同种符号的净电荷而互相排斥,阻止了单个分子聚集成沉淀,因此溶解度较大。不同蛋白质具有不同的等电点,利用蛋白质在等电点时的溶解度最低的原理,可以把蛋白质混合物分开。当pH被调到蛋白质混合物中其中一种蛋白质的等电点时,这种蛋白质大部分和全部被沉淀下来,那些等电点高于或低于该pH的蛋白质则仍留在溶液中。这样沉淀出来的蛋白质保持着天然的构象,能重新溶解于适当的pH和一定浓度的盐溶液中。 5、盐析与盐溶:原理:低浓度时,中性盐可以增加蛋白质溶解度这种现象称为盐溶.盐溶作用主要是由于蛋白质分子吸附某种盐类离子后,带电层使蛋白质分子彼此排斥,而蛋白质与水分子之间的相互作用却加强,因而溶解度增高。球蛋白溶液在透析过程中往往沉淀析出,这就是因为透析除去了盐类离子,使蛋白质分子之间的相互吸引增加,引起蛋白质分子的凝集并沉淀。当溶液的离子强度增加到一定程度时,蛋白质溶解程度开始下降。当离子强度增加到足够高时,例如饱和或半饱和程度,很多蛋白质可以从水中沉淀出来,这种现象称为盐析。盐析作用主要是由于大量中性盐的加入使水的活度降低,原来溶液中的大部分甚至全部的自由水转变为盐离子的水化水。此时那些被迫与蛋白质表面的疏水集团接触并掩盖他们的水分子成为下一步最自由的可利用的水分子,因此被移去以溶剂化盐离子,留下暴露出来的疏水基团。蛋白质疏水表面进一步暴露,由于疏水作用蛋白质聚集而沉淀。 盐析沉淀的蛋白质保持着他的天然构象,能再溶解。盐析的中性盐以硫酸铵为最佳,在水中的溶解度很高,而溶解度的温度系数较低。 3、有机溶剂分级分离法:与水互溶的有机溶剂(甲醇、乙醇和丙酮等)能使蛋白质在水中的溶解度显著降低。在室温下有机溶剂会引起蛋白质变性,如果预先将有机溶剂冷却到-40°C以下,然后在不断搅拌下逐滴加入有机溶剂,以防局部浓度过高,那么变性可以得到很大程度缓解。蛋白质在有机溶剂中的溶解度也随温度、pH和离子强度而变化。在一定温度、pH和离子强度条件下,引起蛋白质沉淀的有机溶剂的浓度不同,因此控制有机溶剂浓度也可以分

蛋白质分离纯化技术实验讲义教材

实验一蛋白质含量分析(Bradford检测法) 一、实验目的 1、制作蛋白质浓度标准曲线; 2、测定未知蛋白质浓度样品的吸光度,根据标准曲线讣算出蛋白质的浓度。 二、实验原理 Bradford法(考马斯亮蓝法)测左蛋白质浓度是1976年由Bradford建立的,是最常用的蛋白质快速定量方法。该方法根据蛋白质与染料相结合的原理设计,考马斯亮蓝G-250 (CBB G-250)在游离状态下呈红色,最大光吸收在488nm:当它在酸性溶液中与蛋白质结合后变为青色,蛋白质-染料结合物在595nm波长下有最大光吸收,且光吸收值与蛋白质含量成正比,因此可用于蛋白质含量的泄量测左。蛋白质与考马斯亮蓝结合在2min左右的时间内达到平衡,完成反应十分迅速,其结合物在室温下lh内保持稳泄。 Bradford法的突出优点是:灵敏度髙:测左快速、简便,只需加一种试剂;干扰物质少。此法的缺点是:仍有一些物质干扰此法的测左,主要的干扰物有去污剂、Triton X-100. SDS 和 0.1N 的 NaOH9 三、试剂与器材 1、试剂: lmg/ml牛血淸蛋白(BSA)母液:考马斯亮蓝G-250;无水乙醇:85%磷酸;MiliQ水。 2、器材: 滤纸;烧杯;漏斗:可见分光光度计:试管。 四、实验方法 1、考马斯亮蓝G-25O染料的配宜 称100 mg考马斯亮蓝G-250,溶于47.5 ml无水乙醇后,再加入100 ml 85%的磷酸,加 MiliQ水泄容至1L,过滤备用。 2、标准蛋白溶液的稀释 取10支试管,按表中顺序排列,分別加入考马斯亮蓝溶液、水和样品。 每加完一管,立即振荡混匀(注意不要太剧烈,以免产生大量气泡而难于消除)。未知样品的编号为8、9、10号管。 3、加完试剂2-5min后,即可用比色皿,在分光光度计上测泄各样品在595nm处的吸光值 OD595o 注意:不可使用石英比色皿(因不易洗去染色),可用塑料或玻璃比色皿,使用后立即用少量95%的乙醇冲洗,塑料比色皿不可用乙醇或丙酮长时间浸泡。 4、标准曲线制作 以标准蛋白的量(mg)为横坐标,吸光值OD595为纵坐标作图,即得一条标准曲线。由此标准曲线,求得趋势线以及公式(y=ax+b,其中y为吸光度值OD595, x为蛋白质的量,a和b为常量)并给出疋值,R?值越接近1证明曲线越接近实际结果,根据此公式及未知样品的吸光度值,计算每管中加入的未知蛋白的量,进而推算其浓度。 5、本实验采用的未知样品为麦曲中糖化酶分离纯化实验所得的粗酶液样品。

蛋白质的分离纯化方法

蛋白质的分离纯化方法 根据分子大小不同进行分离纯化 蛋白质是一种大分子物质,并且不同蛋白质的分子大小不同,因此可以利用一些较简单的方法使蛋白 质和小分子物质分开,并使蛋白质混合物也得到分离。根据蛋白质分子大小不同进行分离的方法主要有透析、超滤、离心和凝胶过滤等。透析和超滤是分离蛋白质时常用的方法。透析是将待分离的混合物放入半透膜制成的透析袋中,再浸入透析液进行分离。超滤是利用离心力或压力强行使水和其它小分子通过半透膜,而蛋白质被截留在半透膜上的过程。这两种方法都可以将蛋白质大分子与以无机盐为主的小分子分开。它们经常和盐析、盐溶方法联合使用,在进行盐析或盐溶后可以利用这两种方法除去引入的无机盐。由于超滤过程中,滤膜表面容易被吸附的蛋白质堵塞,以致超滤速度减慢,截流物质的分子量也越来越小。所以在使用超滤方法时要选择合适的滤膜,也可以选择切向流过滤得到更理想的效果离心也是经常和其它方法联合使用的一种分离蛋白质的方法。当蛋白质和杂质的溶解度不同时可以利用离心的方法将它们分开。例如,在从大米渣中提取蛋白质的实验中,加入纤维素酶和α-淀粉酶进行预处理后,再用离心的方法将有 用物质与分解掉的杂质进行初步分离[3]。使蛋白质在具有密度梯度的介质中离心的方法称为密度梯度(区带)离心。常用的密度梯度有蔗糖梯度、聚蔗糖梯度和其它合成材料的密度梯度。可以根据所需密度和渗透压的范围选择合适的密度梯度。密度梯度离心曾用于纯化苏云金芽孢杆菌伴孢晶体蛋白,得到的产品纯度高但产量偏低。蒋辰等[6]通过比较不同密度梯度介质的分离效果,利用溴化钠密度梯度得到了高纯度的苏云金芽孢杆菌伴孢晶体蛋白。凝胶过滤也称凝胶渗透层析,是根据蛋白质分子大小不同分离蛋白质最有效的方法之一。凝胶过滤的原理是当不同蛋白质流经凝胶层析柱时,比凝胶珠孔径大的分子不能进入珠内网状结构,而被排阻在凝胶珠之外,随着溶剂在凝胶珠之间的空隙向下运动并最先流出柱外;反之,比凝胶珠孔径小的分子后流出柱外。目前常用的凝胶有交联葡聚糖凝胶、聚丙烯酰胺凝胶和琼脂糖凝胶等。在甘露糖蛋白提纯的过程中使用凝胶过滤方法可以得到很好的效果,纯度鉴定证明产品为分子量约为32 kDa、成分是多糖∶蛋白质(88∶12)、多糖为甘露糖的单一均匀糖蛋白[1]。凝胶过滤在抗凝血蛋白的提取过程中也被用来除去大多数杂蛋白及小分子的杂质[7]。 根据溶解度不同进行分离纯化 影响蛋白质溶解度的外部条件有很多,比如溶液的pH值、离子强度、介电常数和温度等。但在同一条件下,不同的蛋白质因其分子结构的不同而有不同的溶解度,根据蛋白质分子结构的特点,适当地改变外部条件,就可以选择性地控制蛋白质混合物中某一成分的溶解度,达到分离纯化蛋白质的目的。常用的方法有等电点沉淀和pH值调节、蛋白质的盐溶和盐析、有机溶剂法、双水相萃取法、反胶团萃取法等。 等电点沉淀和pH值调节是最常用的方法。每种蛋白质都有自己的等电点,而且在等电点时溶解度最

相关文档
最新文档