伺服系统的分类

伺服系统的分类
伺服系统的分类

伺服系统的分类主轴驱动系统→主轴的旋转运动

进给驱动系统→进给轴直线运动

直流驱动系统

交流驱动系统

伺服系统(组成)伺服电机(M)

驱动信号控制转换电路

电力电子驱动放大模块

电流调解单元,速度调解单元

相信的检测装置

数控机床的伺服系统是指以机床移动部件的位移和速度作为控制系统,它是执行CNC装置所发出命令的执行机构。

因为电动机拖着一个重量很重的工作台,而且摩擦力随着季节、新旧程度、润滑状态等因素而变化,控制了一个稳定速度,精确定位,可以想象其难度之大

位置环也称为外环,其输入信号是计算机给出的指令和位置检测器反馈的位置信号。这个反馈是负反馈,也就是说与指令信号相位相反。指令信号是相位置环送去加数,而反馈信号是送去减数。

位置环的输出就是速度环的输入

位置检测器可以是光电编码器、旋转变压器,也可能是光栅尺、感应同步器或磁栅尺等。但是,它的作用就是检测位置的,有时可能是直接检测位置的,有时可能是直接检测位置,但也有时是间接检测位置

机床进给伺服系统

高精度

快响应

宽调速范围

低速大转矩

对主轴传动提出下述要求:

1、主传动电动机应有(2.2~250)KW的功率范围;

2、要有大的无级调速范围,如能在1:100~1000范围内进行恒转矩速度和1:10的恒功率

调速

3、要求主传动有四项限的驱动能力

4、为了满足螺纹车削,要求主轴能与进给实行同步控制

5、在加工中心上为了自动换刀,要求主轴能进行高精度定向停位控制,甚至要求主轴具有

角度控制功能等。

主轴驱动变速目前主要有两种形式:一是主轴电动机带齿轮换挡,目的在于降低主轴转速,增大传动比,放大主轴功率以适应切削的需要;二是主轴电动机通过同步齿形带或皮带驱动主轴,该类主轴电动机又称宽域电动机或强切削电动机,具有恒功率宽的特点

FANUC公司主轴驱动系统主要采用交流主轴驱动系统

S H P 三个系列(1.5~37、1.5~22、3.7~37KW)

SIEMENS 公司主轴驱动系统直流主轴电机1GG5、1GF5

交流主轴电机1PH5、1PH6

主轴伺服系统的故障形式及诊断方法故障形式

诊断方法

速度调节器的输入作为电流调节器的给定信号来控制电动机的电流和转矩。其优点在于:可

以根据速度指令的模拟电压信号与实际转速反馈点压的差值及时控制电动几的转矩,在速度差值大时,电动机转矩大,速度变化快,以便尽快的使电动机的转速达到给定值;而当转速接近给定值时,又能使电动机的转矩自动的减小,这样可以避免过大的超调,使转速接近给定值,保证转速稳态无静差。电流环的作用是,当系统受到外来的干扰时,能迅速地做出抑制干扰的响应,保证系统具有最佳的加速和制动的时间特性。另外,双闭环调速系统以速度调节器的输出作为电流调节器的输入给定值,速度调节器的输出限幅值就限定了电流环中的电流

速度环:控制电机的电流及转矩

电流环:抑制干扰

(1)控制模块(N1)包括两片80186,五片EPROM。完成电网端逆变器的触发脉冲控制、矢量换计算以及对变频进行PWN调节

(2)I/O模块(U1)通过U/f 变换器为N1组件处理各种I/O模拟信号

(3)电源模块(G01)和中央控制模块(G02)除供给控制电路所需的各种电源,在G02上还输出各种继电器信号至数控系统进行控制。

(4)选件(S10)配置主轴定位电路板或C轴进给控制电路板。通过内装轴端编码器(18000脉冲/r)或外装轴端编码器(1024脉冲/r或9000脉冲/r)对主轴进行定位或C轴控制)

U/F变换器:电压/频率变换器

所谓“通用”包含着两方面的含义:一是可以和通用的笼型异步电动机配套应用;二是具有多种可供选择的功能,应用于各种不同性质的负载。

变频控制的故障诊断

(1)过电压主要有两种情况:①电源电压过高。变频器一般允许电源电压向上波动的范围是+10%,超过此范围时,就进行保护。②降速过快。如果将减速时间设定得太短,在再生制动过程中制动电阻来不及将能量放掉,致使直流回路电压过高,形成高电压。

(2)欠电压

电源方面:①电源电压低于额定值电压的10%。②电源缺相

主电路方面:①整流器件损坏。如果六个整流二极管中有部件损坏,整流后的电压将下降。②限流电阻R0未“切出”电路。如果延时触点KA未动作、触点接触不良或晶闸管VT未导通,是电阻R0长时间接入电路,将导致直流侧欠电压。

(3)过电流

非短路性过电流:①电动几严重过载。②电动机加速过快

短路性过电流:①负载侧短路。②负载侧接地。③变频器逆变桥同一桥臂的上下两晶体管同时导通,形成“直流”。因为变频器在运行时,同一桥臂上下两晶体管总是处于交替道统状态,在交替导通状态,在交替导通的过场中,必须保证只有在一个晶体管完全截止后,另一个晶体管才开始导通。如果由于某种原因,如环境温度过高等,使器件参数反正漂移,就可以能导致直通。

1、故障形式

(1)超程

(2)过载

(3)窜动

(4)爬行

(5)振动

(6)伺服电动机不转

(7)位置误差

(8)漂移

(9)回参考点故障

2、故障定为

由于伺服系统是由位置环速度环组成的,当伺服系统出现故障时,为了快速定位故障的部位,可以采用如下两种方法:

(1)模块交换法

(2)外接参考电压法

交流伺服电动机常见的故障有:

(1)接线故障由于接线不当,在使用一段时间后就可能出现一些故障,主要为插座脱焊,端子接线松开引起接触不良

(2)转子位置检测装置故障当霍尔开关或光点脉冲编码器发生故障时,会引起电动机失控,进给有振动

(3)电磁制动故障带电磁制动的伺服电动机,当电磁制动器出现故障时,会出现得电不松开,失电不制动的现象

交流伺服电动机故障判断的方法有:

(1)万用表或电桥测量电枢绕组的直流电阻,检测是否断路,并用兆欧表查绝缘是否良好

(2)将电动机与机械装置分离,用手转动电动机转子,正常情况下感觉有阻力,转一个角度后手放开,转子有返回现象;如果用手转动转子时能连续转几圈

并自由停下,该电动机已损坏;如果用手转不动或转动后无返回,电动机机

械不凡可能有故障。

进给驱动的任务是:驱动装置接受数控系统的速度控制等信号,拖动伺服电动机带动滚珠丝杠实现工作台、刀架或主轴箱的直线位移。驱动装置在结构上有①模块式②单元式,如图4-25为三菱MR-J2驱动装置简图,整个装置集电源、控制和功率驱动为一体,组成一个单元

在驱动方式上有:①直流PWM和晶闸管驱动方式。②交流同步电动几变频控制方式。③步进电动机驱动方式。由于进给驱动装置在伺服系统中进行的是速度环控制,故进给驱动装置也称速度控制单元

引起过热报警的原因有:①机床切削条件苛刻及机床摩擦力矩增大,引起主回路中的过载继电器动作。②切削时伺服电动机电流太大或变压器本身故障,引起伺服变压器热控开关动作③伺服电动机电枢内部短路或绝缘不良、电动机永久磁钢去磁或脱落及电动几制动器不良,引起电动机内的热控开关动作。

3、无报警显示的故障

(1)机床失控速度反馈信号为正反馈信号,多发生在维修调试过程中,通常是电缆信号先连接错误所致

(2)机床振动

①与位置控制有关的系统参数设定错误,如指令倍率CRM和检测倍率DMR的

设定错误等

②检查机床振动周期,如机床振动周期随进给速度变化,特别是快速移动时,伴

有大的冲击,多为测速装置有故障

(3)定为精度低

(4)电动机运行时噪声过大

(5)伺服电动机不转

1、光栅

光栅有两种形式,一是透射光栅,即在一条透明玻璃片上刻有一系列等间隔密集线纹;二是反射光栅,即在长条形金属镜面上制成全反射或漫反射间隔相等的密集线纹。光栅输出信号有:两个相位信号输出,用于辨向;一个零标志信号,用于机床回参考点的控制。对光栅尺的维护要注意:

(1)防污

光栅尺由于直接安装于工作台和机床床身上,因此,极易受到冷却液的污染,从而造成信号丢失,影响位置控制精度

(1)冷却液在使用过程中会产生轻微结晶,这种结晶在扫描头上形成一层薄膜且透光性差,不易清除故在选择用冷却液时要慎用。

(2)加工过程中,冷却液的压力不要太大,流量不要过大,一面形成大量的水雾进入光栅

(3)光栅最好通入低压压缩空气(),以免扫描头运动时形成的负压把污物吸入光栅。压缩空气必须净化,滤芯应保持清洁并定期更换。

(4)光栅上的污物可以用脱脂棉醮无水酒精轻轻擦除

2)防振

光栅拆装时要用静力,不能用硬物敲击,以免引起光学元件损坏。

2、光点脉冲编码器

光点脉冲编码器是在一个圆盘的边缘上开有间距相等的缝隙,在其两边分别装有光源和光敏元件。当圆盘转动时,光线的明暗变化,经过、光敏元件变成点信号的强弱,从而得到脉冲信号。编码器的输出信号:两个相位信号输出,用于辨向;

一个零标志信号(又称一转信号),用于机床回参考点的控制。另外还有+5V电源接地端。编码器的维护主要注意两个问题:

(1)防振和防污由于编码器是精密测量元件,使用环境或拆装时要与光栅一样注意防振和防污问题。污染容易造成信号丢失,振动容易使编码器内的紧

固件松动脱落,造成内部电源短路。

(2)连接松动脉冲编码器用语位置检测时的两种安装形式,一种是与伺服电动机同轴安装,称内装式编码器,日西门子1FT5、1FT6伺服电动机上的

ROD320编码器,另一种是编码器安装于传动链末端,称为外装式编码器,

当传动链较长时,这种安装方式可以减小传动链雷击误差对位置检测精度

的影响。不管是那种安装方式,都要注意编码器连接松动问题。由于连接

松动,往往会影响位置控制精度。另外,在有些交流伺服电动机中,内装

式编码器除了位置检测外,同时还具有测速和交流伺服电动机转子位置检

测的作用,如三菱HA系列交流伺服电动机中的编码器(ROTARY

ENCODER OSE253S)。因此,编码器连接松动还会引起进给运动的不稳定,

影响交流伺服电动机的换向控制,从而引起机床的振动

3. 感应同步器

感应同步器是一种电磁感应式的高精度位移检测元件,它是由定尺和滑尺两部分

组成且相对平行安装,定尺和滑尺上的绕组均为矩形绕组,其中定尺绕组是连续

的,滑尺上分布着两个励磁绕组,即正弦绕组,分别接入交流电。对感应同步器

的维护应主意:①安装时,必须保持定尺和滑尺相对平行,且定尺固定螺栓不得

超过尺面,调整间隙在0.09~0.15mm为宜。②不要损坏定尺表面耐切削液涂层和

滑尺表面一层带绝缘层的铝铂,否则会腐蚀厚度较小的电解铜箔。③接线时分清

滑尺的正弦绕组和余弦绕组,其阻值基本相同,这两个绕组必须分别接入励磁电

压。

4、旋转变压器

旋转变压器输出电压与转子的角位移有固定的函数关系,可用作角度检测元件,一般用于精度要求不高或大型机床的粗测以中测绕组,转子上也有相等匝数的争先绕组和余弦绕组,但转子和定子的绕组阻值却不同,一般钉子绕组值稍大,有时补偿绕组自行短接或接入一个阻抗。②由于结构上与绕线转子异步电动机相似,因此,炭刷磨损到一定程度后要更换。

5、磁栅尺

磁栅是又磁性标尺、磁头和检测电路三部分组成。磁性标尺是在非导磁材料,如不利、不锈钢等材料的基本上,覆盖上一曾厚的磁性材料,形成一层均匀有规则的磁性膜。对磁栅尺的维护硬注意:①不能将磁性膜刮坏,防止铁屑和油污落在磁性标尺和磁头上,要用脱脂棉醮酒精轻轻地擦其表面。②不能用力拆装和撞击磁性标尺和磁头,否则会使磁性减弱或使磁场紊乱。③接线时要分清磁头上激磁绕组和输出绕组,前者摇在磁路截面尺寸较小的横臂上,后者绕在磁路截面尺寸较大的竖杆上

(1)功能性故障主要指工件加工精度方面的故障,表现在加工精度不稳定,加工误差大,运动方向误差大,工件表面粗糙。

(2)动作型故障主要指机床各执行部件动作故障,如主轴不转动,液压变速不灵魂,工件或刀具夹不紧或松不开,刀架刀库转位定位不太准等

(3)结构型故障主要指主轴发热,主轴箱噪声大、切削时产生振动等

(4)使用型故障主要指因使用和操作不当引起的故障,如又过载引起的机件损坏、撞车等。

1)主轴润滑

为了保证主轴有良好的润滑,减少摩擦发热,同时又能把主轴组件的热量带走,通常采用循环式润滑系统

(1)油气润滑方式这种润滑方式近似于油雾润滑方式,所不同的是,油气润滑是定时定量地把油雾送进轴承空隙中,这样既实现了油雾润滑,又不致于油雾太多而污染周围的空气;后者则是连续供给油雾

(2)喷注润滑方式

2)防泄露

在密封件中,被密封的介质往往是以穿漏、渗透或扩散的形式越界泄漏到密封

连接处彼侧

1)软件报警(CRT显示)故障

(1)进给伺服系统出错报警故障这类故障的起因,大多是速度控制单元方面的故障引起的,或是主控制印制线路板与位置控制或伺服信号有关部分的故障

(2)检测元件(测速发电机、旋转变压器或脉冲编码器等)或检测信号方面引起的故障

引起原因有:

①电动机力线断线。如果伺服电源刚接通,尚未接到任何指令时,就发生这种报

警,则由于断线而造成故障可能性最大。

②伺服单元印制线路板上设定错误,如将检测单元脉冲编码器设定成了测速机等

③没有速度反馈电压或时有时断,这可用显示器来测量速度反馈信号来判断,这

类故障除检测元件本身存在故障外,多数是由于连接电缆不良或接触不良引起的

(3)过热报警故障这里所述的过热是指伺服单元、变压器及伺服电机等的过热。引起的原因有:

①机床切削条件苛刻及机床摩擦力矩过大,引起主贿赂中的过热继电器动作

②切削时,伺服电机电流太大或变压器本身故障,引起伺服变压器热控开关动作

③伺服惦记电枢内部短路或绝缘不良、惦记永久磁钢去磁或脱落及电机制动器不

良,引起电机过热控开关动作

(4)电机过载引起过载的原因有

①机床负荷异常,引起电机电流过额定值。这可以用检查电动机电流来判断。此

时需要变更切削条件,减轻机床负荷

②印制电路板设定错误、亦即应确定电动机过载的设定是否正确。

③印制线路板不良。

④对于交流伺服来说,没有脉冲编码器反馈信号也会引起电机过载报警。

(5)速度单元断路器断开报警引起报警的原因是:

①干扰。有时速度单元受外界的干扰影响,断路器自动断开。此时只要关断电源

后,复位一次自动断路器再合闸,单元又可自动运行。

②机床负荷异常。这可用示波器检查机床在快速进给时的电动机电流是否超过额

定值来判断机床负荷是否有异常

③速度控制单元内整流用二极管模块不好

④印制电路板不好或印制板与速度控制单元之间的连接不好

(6)伺服单元过电流报警引起该报警主要原因是:

①晶体管模块不好。这时可用万用表检查晶体管模块集电极和发射极之间的阻

值。如果只有数欧姆,则表示该模块已被击穿短路

②电动机动力线连接错误

③电动机线圈内部短路

④印制线路板有故障

(7)伺服系统过压报警其原因是:

①交流输入电源电压过高

②伺服电动机线圈有故障

③印制线路板有故障

④负载惯量过大。因此可采取加大加减速时间常数的办法来消除本报警

(8)电动机在生放电的电流过大报警引起本报警的原因是:

①再生放电用晶体管不良,或印制线路板不良。如有些原因引起的报警,则只要

伺服单元一接通就会出现这个报警

②印制线路板设定不对

③加/减速频率过高

(9)速度单元的电源电压太低报警引起本报警的原因是:

①输入交流电压过低。

②伺服变压器和印制线路连接不良

③如果不是上述二原因,则是印制线路板不良。

④如果电路中有+5V电源,它的熔丝断也引起报警

刀库与换刀机械手的维护要点

(1)严禁把超重、超长的到装入刀库,防止在机械手换刀时掉刀或刀具于工件、夹具等发生碰撞

(2)顺序选刀方式必须主要刀具放置在刀库中的顺序要正确。其他选刀方式也要注意所换刀具是否与所需刀具一致,防止换错刀具导致事故发生

(3)用手动方式往刀库上装刀时,要确保装到位、装牢靠。检查刀座上的锁紧是否可靠。(4)经常检查刀库的回零位是否正确,检查机床主轴回换刀点位置是否到位,病即使调整,否则不能完成换刀动作。

(5)要注意保持刀具刀柄和刀套的清洁

(6)开机时,应先使刀库和机械手空运行,检查各部分工作是否正常,特别是各行程开关和电磁阀能否正常动作。检查机械手液压系统的压力是否正常,刀具在机械手上锁紧是否可靠,发现不正常十应及时处理。

2、刀库的故障

1)刀库不能转动或转动不到位

刀库不能转动的可能原因有:

(1)连接电动机轴与蜗杆轴的连轴器松动

(2)变频器故障,硬查变频器的输入、输出电压正常与否

(3)PLC无控制输出,可能是接口板中的继电器失效

(4)机械连接过紧或黄油粘涩

(5)电网电压过低(不应低于370V)

刀库转动不到位的可能原因有:电极转动故障,传动机构误差

2)刀套不能夹紧刀具

可能原因是刀套上的调整螺母松动,或弹簧太松,造成卡紧力不足;刀具超

3)刀套随时下不到位

可能原因是装置调整不当或加工误差过大而造成拨叉位置不正确;因限位开

关安装不准或调整不当而造成反馈信号错误。

4)刀套不能拆卸或停留一段私见才能拆卸

应检查操纵刀套90度拆卸的气阀是否松动,气压足不足,刀套的转动轴锈蚀

3、换刀机械手故障

(1)刀具夹不紧可能原因有风泵气压不足,增压漏气,刀具啊紧气压漏气,刀具松开弹簧上的螺冒松动。分析主轴拉不紧刀具的原因是:

①主轴拉刀蝶簧变形或损坏

②拉力液压缸动作不到位

③拉钉与刀柄夹头间的螺纹联结松动。经检查,发现拉钉与刀柄夹头的螺纹

联结松动,刀柄夹头随着刀具的插拨发生旋转,后退了约1.5mm.该台机床的拉钉与刀柄夹头间无任何联结防松的碎紧措施。在插拨刀具时,若刀具中心与主轴锥孔中心稍有偏差,刀柄夹头与刀柄间就会存在一个偏心摩擦。刀柄夹头在这种摩擦和冲击的共同作用下,时间一长,螺纹松动退丝,出现主轴拉不住刀的现象。若将主轴拉钉和刀柄夹头的螺纹联结用螺纹锁固密封胶锁固及锁紧螺母锁紧后,故障消除。

(2)

永磁交流伺服系统研究背景意义及现状

永磁交流伺服系统研究背景意义及现状 1研究背景及意义 伺服系统是使物体的位置、方位、状态等输出被控量能够跟随输入目标或给定值任意变化的自动控制系统,是控制理论、电力电子技术、电机技术、微电子技术、检测技术等学科相互发展融合的产物,是自动化学科及工业生产领域重要的分支。在机械制造行业、冶金工业,交通运输以及军事上都得到了广泛的应用。 伺服系统强调对控制命令的快速跟踪和响应,所以伺服控制系统可以认为是随动控制系统,既可以是转速的随动控制,也可以是位置的随动控制。在广义的角度上看,电动机的调速系统也可以认为是伺服控制的一种,只不过在调速系统中,强调的被调量是电动机的转速,更加有效的实现功率变换。而伺服系统则强调忠实跟踪给定信号,即按控制器发出的控制命令而动作,并产生足够的力或力矩,使被驱动的机械获得期望的运动速度和位姿。 伺服系统的发展经历了由液压伺服到电气伺服的过程。在电气伺服系统中,按驱动装置的执行元件电动机类型来分,通常分为直流伺服系统和交流伺服系统两大类。六十年代以后,特别是七十年代以来,随着电力电子学、微电子学、传感技术、永磁技术和控制理论的惊人发展,尤其是先进控制策略的成功应用,交流伺服系统的研究和应用取得了举世瞩目的发展,己具备良好的技术性能,其动、静态特性已完全可与直流伺服系统相媲美,交流伺服系统取代直流伺服系统己成定局。其中交流永磁同步电机 (PMSM)又以其结构简单、气隙磁密高、功率密度大、转动惯量小的优点,成为研究的热点。和直流电机相比,交流永磁同步电机没有直流电机的换向器和电刷等缺点,和其他类型交流电动机相比,它由于没有励磁电流,因而功率因数高,力矩惯量比大,定子电流和定子电阻损耗减小,且转子参数可测、控制性能好。现已广泛用于数控机床、工业机器人、超大规模集成电路制造、柔性制造系统、载人宇宙飞船、电动工具以及家用电器等高科技领域。 另一方面,高速数字信号处理芯片(DSP) 的快速发展也对伺服系统的发展起到了推动作用。DSP强大的数据处理能力和高运行速度使得先进的控制技术如矢量控制、直接转矩控制等得以实现。并且DSP芯片内部集成了A/D转换、数字输

伺服系统的发展及展望

伺服系统的发展及展望 摘要:本文主要介绍了伺服系统的三个发展阶段,包括步进电动机开环伺服系统阶段、直流伺服电动机闭环伺服系统阶段、无刷直流伺服电动机、交流伺服电动机伺服系统阶段,并分析了伺服系统的发展趋势:交流化、智能化、网络化、小型化。 关键词:伺服;智能化;小型化 伺服系统也叫位置随动系统,它的根本任务是实现执行机械对位置指令(给定量)的准确跟踪,当给定量随机变化时,系统能使被控制量准确无误地跟随并复现给定量,是一个位置反馈控制系统[1],主要包括电机和驱动器两部分,广泛用于航空、航天、国防及工业自动化等自动控制领域。随着电力电子、控制理论、计算机术等技术的快速发展以及电机制造工艺水平的不断提高,伺服系统近年来获得了迅速发展。 1伺服系统的发展阶段 伺服系统的发展与伺服电动机的不同发展阶段相联系,

由直流电机构成的伺服系统是直流伺服系统,由交流电机构成伺服系统是交流伺服系统。伺服电动机至今经历了三个主要发展阶段: 1.1 第一个发展阶段(20世纪60年代以前):步进电动机开环伺服系统 伺服系统的驱动电机为步进电动机或功率步进电动机,位置控制为开环系统。步进电机是一种将电脉冲转化为角位移的执行机构,两相混合式步进电机步距角一般为3.6°、1.8°,五相混合式步进电机步距角一般为0.72°、0.36°。 步进电机存在一些缺点:在低速时易出现低频振动现象;一般不具有过载能力;步进电机的控制为开环控制,启动频率过高或负载过大易出现丢步或堵转现象,停止时转速过高易出现过冲现象。 1.2 第二个发展阶段(20世纪60-70年代):直流伺服电动机闭环伺服系统 由于直流电动机具有优良的调速性能,很多高性能驱动装置采用了直流电动机,伺服系统的位置控制也由开环系统发展成为闭环系统。在数控机床的应用领域,永磁式直流电动机占统治地位,其控制电路简单,无励磁损耗,低速性能好。 1.3 第三个发展阶段(80年代至今):无刷直流伺服电动机、交流伺服电动机伺服系统

伺服系统复习题

《运动控制系统》复习题 第一章伺服系统的作用及组成 1.在伺服控制系统中,使输出量能够以一定跟随输入量的变换而变换的系统称为,亦称为伺服系统。(准确度、随动系统) 2.伺服系统按调节理论分类可分为:开环伺服系统、闭环伺服系统、半闭环伺服系统。 3.伺服系统按使用的驱动元件分类可分为:步进伺服系统、直流伺服系统、交流伺服系统。 第二章伺服控制基础知识 GTR/MOSFET/IGBT各自的特点及应用范围。 。 第三章步进电动机的控制 1.简述反应式步进电机的工作原理。 2.一台无相步进电动机,工作在十拍方式,转子齿数为48,在单相绕组中测得的电流频率为500Hz,试求电动机的齿距角、步距角和转速。 ;

3.三相步进电动机工作在双三拍方式,已知步距角为3°,最大转矩T max =,转动部分的转动惯量J=×,试求该步进电动机的自由振荡频率和周期。 ! 4.若一台BF 系列四相反应式步进电动机,其步距角为°/°。试问:(1) °/°表示什么意思(2)写出四相八拍运行方式的一个通电顺序。(4)在A 相测得电源频率为400Hz 时,每分钟的转速为多少 / 5.正常情况下步进电机的转速取决于( ) A.控制绕组通电频率 B.绕组通电方式 C.负载大小 D.绕组的电流 # 6.某三相反应式步进电机的转子齿数为50,其齿距角为( ) ° °电角度 °电角度 7.某四相反应式步进电机的转子齿数为60,其步距角为( ) °电角度 °电角度 8.某三相反应式步进电机的初始通电顺序为C B A →→,下列可使电机反转的通电顺序为(A ) A.A B C →→ B.A C B →→ C.B C A →→ D.C A B →→

数控机床中伺服系统现状

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。 三、进给伺服系统的现状与展望

电液伺服技术的发展与未来展望

电液伺服技术的发展与未来展望 电液伺服系统的特点 电液伺服系统有许多优点,其中最突出的就是响应速度快、输出功率大、控制精确性高,因而在航空、航天、军事、冶金、交通、工程机械等领域得到了广泛的应用。人类使用水利机械及液压传动虽然已有很长的历史,但液压控制技术的快速发展却还是近几十年的事,随着电液伺服阀的诞生,使液压伺服技术进入了电液伺服时代,其应用领域也得到广泛的扩展。随着现代科学技术特别是材料科学的发展,人们更加重视动态试验。而电液伺服技术是实现动态高周疲劳、程控疲劳和低周疲劳以及静态的恒变形速率、恒负荷速率和各种模拟仿真试验系统的最佳技术手段。 国内电液伺服试验机的起步 国外试验机同行在电液伺服技术的应用和研制起步较早,自二十世纪50年代中期以来就先后生产了各种使用电液伺服系统的试验机,如美国MTS、英国Instron、瑞士Amsler(现在分为瑞士RUMUL和瑞士W+B试验机公司)、德国Sehench和日本岛津等公司都先后研制成功各种电液伺服试验机。当时我国在这个应用领域还是空白,使用的电液伺服试验机都是从这些国家进口的。 我国试验机厂家是在上世纪70年代初才开始研制电液伺服试验机,长春试验机研究所、长春试验机厂、红山试验机厂和济南试验机厂等开始进行研制。在国家财力的支持下,先后都成功地开发出电液伺服动静试验机,并开始在国内应用。正是通过当时这段时间的成功实践,培养锻炼出一批技术人员,创建了我国今后电液伺服技术发展的平台,奠定了国内在该技术领域的基础。 国内电液伺服试验机的发展阶段 国内电液伺服试验机的发展按照产品发展时期的特点大致划分成两个阶段:即自主发展阶段和与国外合作发展阶段。 自主发展阶段:二十世纪70年代末期到二十世纪90年代初期,国内的电液伺服试验机都是以自主开发为主。主要是集中在国内几个有实力的试验机厂家,如长春试验机研究所、长春试验机厂、红山试验机厂和济南试验机厂等。这个时期的主要代表性的产品有:1983年长春试验机研究所研制的2000kN电液伺服岩石压力试验机,该设备采用高压容器作为围压,模拟试样的真实受力情况。是三轴动静试验机的代表性产品,并首次把计算机引入电液伺服试验机的控制。1984年长春试验机研究所研制的3000kN电液伺服双缸卧式拉力试验机。该项目中首次应用静压支撑技术,成功地在两个卧式伺服油缸上实现静压支撑。另外,还首次应用了伺服同步技术,实现双缸系统的同步跟踪和精确定位。双缸的同步

伺服系统原理及发展趋势 王刚

伺服系统原理及发展趋势 姓名:王刚学号:50128523405 摘要:伺服系统是机电产品中的重要环节,其控制性能反映了机电设备的控制质量。高性能的伺服系统可以提供灵活、方便、准确、快速的驱动。本文在理解《伺服驱动与控制技术》这门课程的理论基础上,介绍了伺服系统的发展过程和伺服系统的分类、原理,并具体阐述了伺服系统的发展趋势。 关键词:伺服系统;控制;电机;发展 Abstract:Servo-system is the important link in the mechanical-electrical products ,its control property reflects the control quality of mechanical-electrical device.High-performance servo system can provide a flexible, convenient, accurate and fast driver. Based on understanding the servo drive and control technology based on the theory of this course, the developing of the Servo-system are introduced and the classification, the principle of the servo system, and expounds the development trend of servo system in detail. Keyword:Servo-system;Control;Motor;developing 引言 伺服系统是用来精确地跟随或复现某个过程的反馈控制系统。又称随动系统。在很多情况下,伺服系统专指被控制量(系统的输出量)是机械位移或位移速度、加速度的反馈控制系统,其作用是使输出的机械位移(或转角)准确地跟踪输入的位移(或转角)。最基本的伺服系统包括伺服执行元件(电机、液压缸等)、反馈元件和伺服驱动器。

交流伺服系统发展现状及其趋势

交流伺服系统发展现状及其趋势运动控制系统作为电气自动化的一个重要的应用领域,已经被广泛应用于国民经济各个部门。运动控制系统主要研究电动机拖动及机械设备的位移控制问题。交流伺服系统是运动控制系统所研究的重要的一部分,而纵观电力拖动的发展过程,交、直流两种拖动方式并存与各个生产领域,随着工业技术的发展,两者相互竞争,相互促进。 1990年以前,由于技术成本等原因,国内伺服电机以直流永磁有刷电机和步进电机为主,而且主要集中在机床和国防军工行业。1990年以后,进口永磁交流伺服电机系统逐步进入中国,此期间得益于稀土永磁材料的发展、电力电子及微电子技术日新月异的进步,交流伺服电机的驱动技术也得以很快发展。如今约占整个电力拖动容量80%的不变速拖动系统都采用交流电动机,而只占20%的高精度、宽广调速范围的拖动系统采用直流电动机。自20世纪80年代以来,随着现代电机技术、现代电力电子技术、微电子技术、控制技术及计算机技术等支撑技术的快速发展,交流伺服控制技术的发展得以极大的迈进,使得先前困扰着交流伺服系统的电机控制复杂、调速性能差等问题取得了突破性的进展,交流伺服系统的性能日渐提高,价格趋于合理,使得交流伺服系统取代直流伺服系统尤其是在高精度、高性能要求的伺服驱动领域成了现代电伺服驱动系统的一个发展趋势。 一、交流伺服系统的概述 伺服来自英文单词Servo,指系统跟随外部指令进行人们所期望的运动,运动要素包括位置、速度和力矩。伺服系统的发展经历了从液压、气动到电气的过程,而电气伺服系统包括伺服电机、反馈装置和控制器。在20世纪60年代,最早是直流电机作为主要执行部件,在70年代以后,交流伺服电机的性价比不断提高,逐渐取代直流电机成为伺服系统的主导执行电机。控制器的功能是完成伺服系统的闭环控制,包括力矩、速度和位置等。我们通常说的伺服驱动器已经包括了控制器的基本功能和功率放大部分。虽然采用功率步进电机直接驱动的开环伺服系统曾经在90年代的所谓经济型数控领域获得广泛使用,但是迅速被交流伺服所取代。进入21世纪,交流伺服系统越来越成熟,市场呈现

伺服驱动系统的原理与种类

机电一体化系统设计基础课程教学辅导 第四章:伺服驱动系统的原理与种类 一、教学建议 ●通过文字教材掌握伺服驱动的基本原理,了解机电一体化伺服驱动系统的种类及其 特性。 ●流媒体课件第15讲介绍了机电一体化系统伺服驱动的基本原理、种类及其特性; ●在学习的过程中,如果有学习的心得和体会,请在课程论坛上和大家分享;如果有 什么疑惑,也可以在课程论坛寻找帮助。 二、教学要求 1.掌握伺服驱动的基本原理 一般来说,伺服系统组成框图如图1所示。 图1 伺服系统组成框图 (1)控制器:伺服系统中控制器的主要任务是根据输入信号和反馈信号决定控制策略,控制器通常由电子线路或计算机组成。 (2)功率放大器:伺服系统中功率放大器的作用是将信号进行放大,并用来驱动执行机构完成某种操作,功率放大装置主要由各种电力电子器件组成。 (3)执行机构:执行机构主要由伺服电动机或液压伺服机构和机械传动装置等组成。 (4)检测装置:检测装置的任务是测量被控制量,实现反馈控制。无论采用何种控制方案,系统的控制精度总是低于检测装置的精度,因此要求检测装置精度高、线性度好、可靠性高、响应快。 2.了解机电一体化伺服驱动系统的种类及其特性 (1)根据使用能量的不同,可以分为电气式、液压式和气压式等几种类型,特性如表1所示。 表1 伺服驱动系统的特点及优缺点 种类特点优点缺点 电 气 式 可使用普通电源;信号与动力 的传送方向相同;有交流和直 流之别,须注意电压之大小 操作简便;编程容易;能实现定 位伺服;响应快、易与CPU接 口;体积小,动力较大;无污染 瞬时输出功率大,但过载能力差,由于某 种原因而卡住时,会引起烧毁事故,易受 外部噪声影响 气 压 式 空气压力源的压力为(5~7) ×105Pa;要求操作人员技术 熟练 气源方便、成本低;无泄漏污染; 速度快、操作比较简单 功率小,体积大,动作不够平稳;不易小 型化;远距离传输困难;工作噪声大、难 于伺服 液 压 式 要求操作人员技术熟练;液压 源的压力为(20~80)×105Pa 输出功率大,速度快,动作平 稳,可实现定位伺服 设备难于小型化;液压源或液压油要求(杂 质、温度、测量、质量)严格;易泄漏且 有污染

数控技术的现状和发展趋势

目录 摘要 (1) 1绪论 (1) 2数控技术国外现状 (1) 2.1开放结构的发展 (1) 2.2伺服系统 (1) 2.3 CNC系统联网 (1) 2.4功能不断发展扩大 (1) 3数控技术发展趋势 (1) 3.1性能发展方向 (1) 3.2功能发展方向 (1) 3.3体系结构发展方向 (1) 3.4智能化新一代PCNC数控系 (1) 3.5新一代数控技术关键问题 (1) 结语 (1) 参考文献 (1) 致 (1)

数控技术的现状和发展趋势 CNC technology, the status quo and development trends 摘要 本文简要介绍了当今世界数控技术发展的趋势及国外数控技术发展的现状,在此基础上本文从性能、功能和体系结构三个方面介绍了数控技术的发展方向。阐述肯定了当前开发研究适应于复杂制造过程的、具有闭环控制体系结构的、智能化新一代PCNC数控系统已成为可能并提出了实现文中所述发展方向的关键技术。 关键词:数控,发展趋势,功能,性能,开放性。 Abstract: This paper mainly introduces the current d evelopment ambition of numerical control technology a nd the developing .ON the basis of this the paper introduce the development direction from the aspect s of capacity, function and structure. PCNC is the key technology to achieve this, because PCNC adapt s to the complex producing procedure and is a new generation of intelligence. Key words:NC, trends, features, performance, openness

伺服系统介绍.doc

一、相关概念 伺服系统(servomechanism)又称随动系统,是用来精确地跟随或复现某个过程的反馈控制系统。伺服系统使物体的位置、方位、状态等输出被控量能够跟随输入目标(或给定值)的任意变化的自动控制系统。它的主要任务是按控制命令的要求、对功率进行放大、变换与调控等处理,使驱动装置输出的力矩、速度和位置控制非常灵活方便。 在机器人中,伺服驱动器控制电机的运转。驱动器采用速度环,位置环,电流环三环闭环电路,内部还设有错误检出和保护电路。驱动器通过通信连接器,控制连接器,编码连接器跟外部输入信号和输出信号相连。通信连接器主要用于跟电脑或控制器通信。控制连接器用于跟伺服控制器联接,驱动器所需的输入信号、输出信号、控制信号和一些方式选择信号都通过该控制连接器传输,它是驱动器最为关键的连接器。编码连接器跟电机编码器连接,用于接收编码器闭环反馈信号,即速度反馈和换向信号。 伺服电机主要用于驱动机器人的关节。关节越多,机器人的柔性和精准度越高,所需要使用的伺服电机的数量就越多。机器人对伺服电机的要求非常高,必须满足快速响应、高起动转矩、动转矩惯量比大、调速范围宽,要适应机器人的形体做到体积小、重量轻,还必须经受频繁的正反向和加减速运行等苛刻的条件,做到高可靠性和稳定性。伺服电机分为直流、交流和步进,工业机器人用的较多的是交流。 机器人用伺服电机

二、伺服系统的技术现状 2.1视觉伺服系统 随着机器人技术的迅猛发展,机器人承担的任务更加复杂多样,传统的检测手段往往面临着检测范围的局限性和检测手段的单一性.视觉伺服控制利用视觉信息作为反馈,对环境进行非接触式的测量,具有更大的信息量,提高了机器人系统的灵活性和精确性,在机器人控制中具有不可替代的作用。 视觉系统由图像获取和视觉处理两部分组成,图像的获取是利用相机模型将三维空间投影到二维图像空间的过程,而视觉处理则是利用获取的图像信息得到视觉反馈的过程。基本的相机模型主要包括针孔模型和球面投影模型,统一化模型是对球面模型的推广,将各种相机的图像映射到归一化的球面上。视觉伺服中的视觉反馈主要有基于位置、图像特征和多视图几何的方法。 其中,基于位置的方法将视觉系统动态隐含在了目标识别和定位中,从而简化了控制器的设计,但是一般需要已知目标物体的模型,且对图像噪声和相机标定误差较为敏感。基于图像特征的视觉反馈构造方法,其中基于特征点的方法在以往的视觉伺服中应用较为广泛,研究较为成熟,但是容易受到图像噪声和物体遮挡的影响,并且现有的特征提取方法在发生尺度和旋转变化时的重复性和精度都不是太好,在实际应用中存在较大的问题。因此,学者们提出了基于全局图像特征的视觉反馈方法,利用更多的图像信息对任务进行描述,从而增强视觉系统的鲁棒性,但是模型较为复杂,控制器的设计较为困难,且可能陷入局部极小点。目前针对这一类系统的控制器设计的研究还比较少,一般利用局部线性化模型进行控制,只能保证局部的稳定性。多视图几何描述了物体多幅图像之间的关系,间接反映了相机之间的几何关系。相比于基于图像特征的方法,多视图几何与笛卡尔空间的关系较为直接,简化了控制器的设计。常用的多视图几何包括单应性、对极几何以及三焦张量。 2.2伺服系统控制技术 现代的机器人伺服系统多采用交流伺服驱动系统,而且正在逐渐向数字化方向转变。数字控制技术已经五孔不入,如信号处理技术中的数字滤波、数字控制器,把功能更加强大的控制器芯片已经各种智能处理模块应用到工业机器人交流伺服系统中,可以实现更好的控制性能。 最近几十年,由于微电子技术的进步,各种方便用户开发的微控制器与数字信号处理器件大量涌现市场,为各种先进的智能控制算法在控制系统中的应用提供了可能。如今,各种新型的伺服控制策略大量涌现,大有与传统控制策略一较高低的趋势下面简单介绍几种: 1)矢量控制矢量控制技术的提出,为交流伺服驱动系统的快速进步提供了理论支持。矢量控制技术的主要原理为:以转子旋转磁场作为参考系,将电动机定子矢量电流经过两次坐标变换分解为直轴电流和交轴电流分量,且使两电流分量相互正交,同时对交直轴电流分量的

伺服系统的特点、分类及发展方向

伺服系统的特点、分类及发展方向 伺服电机(servomotor)是指在伺服系统中控制机械元件运转的发动机,是一种补助马达间接变速装置。伺服电机可使控制速度,位置精度非常准确,可以将电压信号转化为转矩和转速以驱动控制对象。伺服电机转子转速受输入信号控制,并能快速反应,在自动控制系统中,用作执行元件,且具有机电时间常数小、线性度高、始动电压等特性,可把所收到的电信号转换成电动机轴上的角位移或角速度输出。分为直流和交流伺服电动机两大类,其主要特点是,当信号电压为零时无自转现象,转速随着转矩的增加而匀速下降。 数控机床伺服系统的作用在于接受来自数控装置的指令信号,驱动机床移动部件跟随指令脉冲运动,并保证动作的快速和准确,这就要求高质量的速度和位置伺服。以上指的主要是进给伺服控制,另外还有对主运动的伺服控制,不过控制要求不如前者高。数控机床的精度和速度等技术指标往往主要取决于伺服系统。 一、伺服系统的基本要求和特点 1.对伺服系统的基本要求 (1)稳定性好:稳定是指系统在给定输入或外界干扰作用下,能在短暂的调节过程后到达新的或者回复到原有平衡状态。 (2)精度高:伺服系统的精度是指输出量能跟随输入量的精确程度。作为精密加工的数控机床,要求的定位精度或轮廓加工精度通常都比较高,允许的偏差一般都在0.01~0.00lmm之间。 (3)快速响应性好:快速响应性是伺服系统动态品质的标志之一,即要求跟踪指令信号的响应要快,一方面要求过渡过程时间短,一般在200ms以内,甚至小于几十毫秒;另一方面,为满足超调要求,要求过渡过程的前沿陡,即上升率要大。 2、伺服系统的主要特点 (1)精确的检测装置:以组成速度和位置闭环控制。

液 压 传 动 的 现 状 及 发 展 趋 势

液压传动的现状及发展趋势 摘要:通过对世界流体传动及控制技术发展趋势的分析,介绍了我国液压行业面临的危机和现状以及和世界水平的差距,并提出我国液压行业的发展方向和对策。 关键词:流体传动,液压控制,元件,仿真 动力传动,以及运动控制依然是21世纪全球经济的重要组成部分,流体传动及控制术也依然是其中极为重要和积极的角色。中国加入W TO ,液压工业在中国的发展将面临空前的挑战和机遇。作为液压元件制造行业中的一员,在工作中,有幸接触了众多既是对手又是朋友的国外知名企业,每年的中国P TC展览会也感触颇深。民族工业的振兴,需要每个人都为之努力。希望中国液压工业能够在世界列强中占有一席之地。 1液压传动技术发展现状 近代液压传动技术是由19 世纪崛起并蓬勃发展的石油工业推动起来的,最早实践成功的液压传动装置是舰船上的炮塔转位器,其后出现了液压六角车床和磨床,一些通用车床到20 世纪30年代末才用上了液压传动。第二次世界大战期间,由于军事上的需要,出现了以电液伺服系统为代表的响应快、精度高的液压元件和控制系统,从而使液压技术得到了迅猛发展。20 世纪50 年代,随着世界各国经济的恢复和发展,生产过程自动化的不断增长,使液压技术很快转入民用工业,在机械制造、起重运输机械及各类施工机械、船舶、航空等领域得到了广泛的发展和应用。20世纪60 年代以来,随着原子能、航空航天技术、微电子技术的发展,液压技术在更深、更广阔的领域得到了发展,在工程机械,数控加工中心,冶金自动线等国民经济的各个方面也都得到了应用。 目前液压技术应用的主要领域是工程机械和冶金机械等,具体来说,液压系统在以下领域中有着广泛的应用。

电液伺服阀的应用及发展趋势

电液伺服阀的应用及发展趋势 摘要:电液伺服阀是电液伺服控制系统中的重要控制元件,在系统中起着电业转换和功率放大作用。具体地说,系统工作时,他直接接收系统传递来的电信号,并把电信号转换成具有相应极性的、成比例的、能够控制电液伺服阀的负载流量或负载压力的信号,从而使系统输出较大的液压功率,用以驱动相应的执行机构。电液伺服阀的性能和可靠性可以直接影响系统的性能和可靠性,是电液伺服控制系统中引人注目的关键元件。 关键字:电液伺服阀;现状;发展趋势;应用;展望 引言:电液伺服阀是一种变电气信号为液压信号以实现流量或压力控制的转换装置。它充分发挥了电气信号传递快、线路连接方便,适于远距离控制,易于测量、比较和校正的有点,和液压输出力大、惯性小、反应快的优点。这两者的结合使电液伺服阀成为一种反应灵活、精度高、快速性好、输出功率大的控制元件。[1] 一、电液伺服阀研究现状 群控系统(DNC)和柔性制造系统(FMS)等新工艺装备的使用,计算机辅助设计(CAD)和计算机辅助测试(CAT)的广泛应用,为我们进一步简化伺服阀结构,完善设计,降低工艺制造成本和管理费用,提高产品性能,稳定产品质量,增加产品可靠性和延长使用寿命创造了极其有利的条件。 1、伺服阀的结构改进 (1)在电液伺服阀的部分结构上,主要从余度技术、结构优化和材料的更替等方面进行改造,以提高相关性能。采用三余度技术的电液伺服作动系统[1]将伺服阀的力矩马达、喷嘴挡板阀、系统的反馈元件等做成一式三份,若伺服阀线圈有一路断开,而系统仍能够正常工作,且有系统动态品质性能基本不变,从而提高了伺服作动系统的可靠性和容错能力。在结构的改进上,针对阀出现的故障提出改进措施,进行结构优化,以满足其相关性能的要求。从材料方面考虑,阀的某些元件采用了强度、塑性、韧性、硬度等机械性能优良的材料,既可以减少故障,又让阀具备良好的动态性能。 (2)从阀芯和阀套磨配加工工艺的改进上,采用不同的磨配原理,如磁力研磨法等原理来提高阀的工作性能。阀芯和阀套组成的滑阀副是伺服阀的核心,阀套窗口棱边的几何精度决定了阀的工作性能。在阀芯加工最后磨配端面时,不能直接获得尖锐的棱边,而是在棱边处产生“毛刺”,然后采取措施加以去除。上海交大的陈鹏研制了智能化、全自动的伺服阀配磨系统,以计算机为核心,能自动测量阀的输出特性,并给出配磨参数,从而使阀芯、阀套的制造简便、迅速。1992年由美国某公司在加州制造了一台加工阀芯棱边的CNC液压磨床,由另一公司制造了一台配合磨床的液压测试台,二者结合起来就是自动化流量磨削系统,使产品的完好率从50%提高到85%~90%,生产阀芯的时间缩减75%~80%,制造厂称加工精度可达±015μm,性能相当优良。[2]

我国伺服驱动产业现状及发展建议

我国伺服驱动产业现状及发展建议 一、伺服驱动技术发展概况 伺服控制是指采用自动控制技术,控制各种设备按预定方式运动。伺服驱动系统是机电一体化产品的“手和脚”,对机电一体化产品的精度、刚度、动态特性等有极为重要的影响,是工厂自动化、数控机床、机器人等机电一体化产品中的重要驱动部件。一套完整的伺服驱动系统包括伺服驱动器和伺服电机、连接电缆等。 伺服系统的发展经历了从液压、气动到电气的过程。电气伺服系统的发展则经历了从直流有刷伺服驱动、直流无刷伺服驱动到永磁同步交流无刷伺服驱动三个阶段。伺服驱动器的控制方案从早期的模拟控制系统发展到现代的基于DSP 控制的全数字控制系统。由于交流伺服驱动系统具有高能量密度、高性能、免维护(无炭刷、换向器等磨损元部件)、高可靠性等特点,目前随着微处理器技术、大功率高性能半导体功率器件技术、电机永磁材料制造工艺的成熟与完善,其功率日益提升,性价比也越来越高,已经逐渐成为主流,特别是随着我国制造业的转型,升级,对加工设备提出了高速度、高精度、高效率的要求,交流伺服驱动系统的应用范围日益广泛,越来越多地取代机械传动、液压和气动传动系统;交流伺服不断取代直流伺服的市场份额,导致直流伺服在整个伺服市场的占有率从目前的15%左右,每年大约下降0.5%;同时交流伺服成本和尺寸不断缩小,逐步取代步进驱动系统,成为工业领域实现自动化的基础技术之一。 二、现代伺服驱动的主要应用领域 现代交流伺服系统最早被应用到宇航和军事领域,比如火炮、雷达控制。上世纪70年代逐渐进入到工业领域和民用领域。工业应用主要包括数控机床、机器人和其他广义的数控机械,比如纺织机械、印刷机械、包装机械、医疗设备、半导体设备、邮政机械、冶金机械、自动化流水线、各种专用设备等。其中伺服用量最大的行业依次是:机床、食品包装、纺织、电子半导体、塑料、印刷和橡胶机械,这些行业对伺服驱动器的需求旺盛。 2006年伺服系统在中国市场收入约36160万美元,增长26.8%,预计在2011年将达到95380万美元,年增长率及预计增长率都超过20%。 目前,我国已成为世界第一机床消费大国和生产大国,就国内外的市场现状看,普及型和高档数控机床使用交流永磁无刷伺服系统代替步进驱动系统已经成为标准配置,其年需求量在20万套以上,部分高档数控机床开始采用交流永磁直线伺服系统如力矩电机、直线电机等。 在工业机器人领域,交流永磁伺服系统得到大量应用。工业机器人拥有多个自由度,每台工业机器人需要的伺服驱动系统数量在6套以上。目前世界范围内工业机器人拥有量超过150万台,机器人的需求量年增长在30%以上。国际上工业机器人采用的伺服系统属专用系统,多轴合一,模块化,特殊的散热结构,特殊的控制方式,对可靠性要求极高。 在注塑机领域,我国的注塑机年产量已达10万台,占世界注塑机总产量的2/3以上。注塑机的发展趋势是从油电式向全电式方向发展,预计在3-5年内可能会形成油压、全电、油电“三分天下”的局面。若电动注塑机占总产量的20%计,注塑机用伺服驱动器一年的需求量达24万台。

自动化技术和理论、的产生发展及展望

自动化技术和理论、的产生发展及展望 内容提要:自动化的应用普遍存在与日常的生活与工作中,但是它的含义是什么呢?它是何时诞生的呢?它发展到今天都经历了那些过程呢?或许大多数人都不知道,下面我将讲述一些这几个问题,还将简要的概述自动化中一些基本概念的含义,他们之间的区别和联系。我还将举例说明自动化的应用存在我们生活的每一个角落,自动化无处不在。最后我将谈一下我对自动化前景的展及认识。 关键字:自动化自动控制智能控制反馈展望论文 英文版内容提要:Automation is essential for our lives and our works today . Wherever we go ,we can see it’s shadow . We can say that it liberates our humans. But most of people are not understanding it .What is automation ? how many periods have in the process of it’s developing . Evereone kmows them ? I don’t think it . So I write the notes to introduce some fields and theories of automation . I hope that it can make more people understand automation and control theory . 一、引言 所谓自动化(Automation),是指机器或装置在无人干预的情况下按规定的程序或指令自动的进行操作或运行。广义上讲,自动化还包括模拟或再现人的智能活动。自动化技术广泛用于工业、农业、国防、科学研究、交通运输、商业、医疗,服务以及家庭等各方面。 另外,与自动化相关的一个术语就是自动控制(Automatic Control),自动控制是关于受控系统的分析、设计和运行的理论和技术。一般的说,自动化主要研究的是人造系统的控制问题,自动控制则除了上述研究外,还研究社会、经济、生物、环境等非人造系统的控制问题。例如生物控制、经济控制、社会控制及人口控制等,显然这些都不能归入自动化的研究领域。不过人们提到自动控制,通常是指工程系统的控制,在这个意义上自动化和自动控制是相似的。 二、自动化技术的产生及发展 关于控制和自动化技术发展但是其上可以分为四个历史时期: 1、自动化装置的出现和应用(18世纪以前) 古代人类在长期的生产和生活中,为了减轻自己的劳动,逐渐利用自然界的动力(水力、风力等)代替人力、畜力,以及用自动装置代替人的部分繁杂的脑力劳动和对自然界动力的控制。 2、自动化技术形成时期(18世纪末至20世纪30年代) 3、局部自动化时期(20世纪40~50年代) 在1943~1946年,美国电气工程师J.埃克脱(Eckert)核物理学家J.莫奇利(Mauchly)为美国陆军研制成世界上第一台基于电子管和数字管的计算机(Electronic Digit Computer)——电子书子积分和自动计数器(ENIAC)。随后人们对计算机进行了多次改良,使之更加实用。同时, 电子计算机的发明,为20世纪60~70年代开始的在控制系统广泛应用程序控制和逻辑控制以及应用数字计算机直接控制生产过程,奠定了基础。 目前,小型电子数字计算机或单片机已成为复杂自动控制系统的一组成部分,以实现复杂的控制和算法。 4、综合自动化时期(20世纪50年代起末至今)

伺服电机的发展历史

伺服电机的发展历史 自从德国MANNESMANN的Rexroth公司的Indramat分部在1978年汉诺威贸易博览会交流伺服电机上正式推出MAC永磁交流伺服电动机和驱动系统,这标志着此种新一代交流伺服技术已进入实用化阶段。到20世纪80年代中后期,各公司都已有完整的系列产品。整个伺服装置市场都转向了交流系统。早期的模拟系统在诸如零漂、抗干扰、可靠性、精度和柔性等方面存在不足,尚不能完全满足运动控制的要求,近年来随着微处理器、新型数字信号处理

器(DSP)的应用,出现了数字控制系统,控制部分可完全由软件进行,分别称为摪胧只瘮或抟旌鲜綌、撊只瘮的永磁交流伺服系统。 到目前为止,高性能的电伺服系统大多采用永磁同步型交流伺服电动机,控制驱动器多采用快速、准确定位的全数字位置伺服系统。典型生产厂家如德国西门子、美国科尔摩根和日本松下及安川等公司。 日本安川电机制作所推出的小型交流伺服电动机和驱动

器,其中D系列适用于数控机床(最高转速为1000r/min,力矩为0.25~2.8N.m),R系列适用于机器人(最高转速为3000r/min,力矩为0.016~0.16N.m)。之后又推出M、F、S、H、C、G 六个系列。20世纪90年代先后推出了新的D 系列和R系列。由旧系列矩形波驱动、8051单片机控制改为正弦波驱动、80C、154CPU和门阵列芯片控制,力矩波动由24%降低到7%,并提高了可靠性。这样,只用了几年时间形成了八个系列(功率范围为0.05~6kW)较完整的体系,满足了工作机械、搬运机构、焊接机械人、装配

机器人、电子部件、加工机械、印刷机、高速卷绕机、绕线机等的不同需要。 以生产机床数控装置而著名的日本法那克(Fanuc)公司,在20世纪80年代中期也推出了S系列(13个规格)和L 系列(5个规格)的永磁交流伺服电动机。L系列有较小 的转动惯量和机械时间常数,适用于要求特别快速响应的位置伺服系统。 日本其他厂商,例如:三菱电动机(HC-KFS、HC-MFS、HC-SFS、

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统现状分析(doc 5)

数控机床中伺服系统的现状分析 一、概述 伺服系统是以机械运动的驱动设备,电动机为控制对象,以控制器为核心,以电力电子功率变换装置为执行机构,在自动控制理论的指导下组成的电气传动自动控制系统。这类系统控制电动机的转矩、转速和转角,将电能转换为机械能,实现运动机械的运动要求。具体在数控机床中,伺服系统接收数控系统发出的位移、速度指令,经变换、放调与整大后,由电动机和机械传动机构驱动机床坐标轴、主轴等,带动工作台及刀架,通过轴的联动使刀具相对工件产生各种复杂的机械运动,从而加工出用户所要求的复杂形状的工件。 作为数控机床的执行机构,伺服系统将电力电子器件、控制、驱动及保护等集为一体,并随着数字脉宽调制技术、特种电机材料技术、微电子技术及现代控制技术的进步,经历了从步进到直流,进而到交流的发展历程。数控机床中的伺服系统种类繁多,本文通过分析其结构及简单归分,对其技术现状及发展趋势作简要探讨。 二、伺服系统的结构及分类 从基本结构来看,伺服系统主要由三部分组成:控制器、功率驱动装置、反馈装置和电动机(图1)。控制器按照数控系统的给定值和通过反馈装置检测的实际运行值的差,调节控制量;功率驱动装置作为系统的主回路,一方面按控制量的大小将电网中的电能作用到电动机之上,调节电动机转矩的大小,另一方面按电动机的要求把恒压恒频的电网供电转换为电动机所需的交流电或直流电;电动机则按供电大小拖动机械运转。 图1 伺服系统的结构 图1 伺服系统的结构 图1中的主要成分变化多样,其中任何部分的变化都可构成不同种类的伺服系统。如根据驱动电动机的类型,可将其分为直流伺服和交流伺服;根据控制器实现方法的不同,可将其分为模拟伺服和数字伺服;根据控制器中闭环的多少,可将其分为开环控制系统、单环控制系统、双环控制系统和多环控制系统。考虑伺服系统在数控机床中的应用,本文首先按机床中传动机械的不同将其分为进给伺服与主轴伺服,然后再根据其它要素来探讨不同伺服系统的技术特性。

电液伺服阀的发展趋势与现状

电液伺服阀与比电液例阀的研究现状与发展趋势 王迪 学号:1101100328 (广西大学机械工程学院530004) 摘要:电液比例阀是电液比例控制技术的核心元件,它按照输入电信号指令,连续成比例地控制液压系统的压力、流量或方向等参数。电液伺服阀是电液伺服控制系统中的关键元件。二者均在电液比例系统以及电液伺服系统中起到重要作用。本文中以电液比例换向阀和电液伺服阀为例详细介绍了其工作原理,并从性能、方展、前景等方面分别对两类阀进行了阐述,使我们对其有了更深刻的认识。 关键词:电液比例阀;电液比例换向阀;电液伺服阀;现状;趋势 1 引言 液压工业己成为全球性的工业,国际液压界一些著名公司如美国的派克汉尼汾公司(PARKER HANNIFIN)、德国的力士乐(REXROTH)和博世公司(BOSCH)等居世界领先地位,我国液压工业距国外还有一定的差距。 现代液控技术始于第一次世界大战后。今天,机电一体化的进程对液控技术提出了更多的需求,而计算机技术和控制理论的发展则为液压技术注入了新的动力。电液比例阀与电液伺服阀作为液压系统中的重要控制元件,分别代表了电液比例技术与电液伺服技术的发展情况。电液伺服阀与电液比例阀的出现使液压系统与现代化的电子技术结合的更加紧。 电液比例阀,是电液比例控制技术的核心和主要功率放大元件,代表了流体控制技术的发展方向[ 1 ] 。它以传统的工业用液压控制阀为基础,采用电- 机械转换装置,将电信号转换为位移信号,按输入电信号指令连续、成比例地控制液压系统的压力、流量或方向等参数。 电液伺服阀不仅能够实现微小电气信号向大功率液压信号(流量与压力)的转换,还可以根据输入电信号的大小,成比例地输出相应的流量和压力。因此,在电液伺服系统中,电液伺服阀将电气部分与液压部分连接起来,实现整个系统的控制策略和执行元件的动作。所以,电液伺服阀的性能,特别是其电液伺服阀的动特性和稳定性,直接影响到整个液压系统乃至机械设备的可靠性和寿命。电液伺服阀的发展史就是一部力图获得速度更快、精度更高、稳定性更好的创新史[ 2 ]。 2 发展历史 2.1电液伺服阀发展历史 最早使用液压伺服技术的机构也许已经湮灭在浩瀚的历史长河中。直到1750 年左右,用于控制给水系统和蒸汽锅炉水位的液位控制阀在英国出现。随着工业革命的发展,控制策略的不断改进, 进而影响到液压技术的发展。在二战前夕,由于空气动力学的应用要求一种能够实现机械信号与气体信号转换装置。在二战末期,伺服阀是采用滑阀阀芯在阀套中移动的结构。阀芯的运动是直流螺线管产生的电磁力与弹簧产生的压力共同作用的结果,因此,此时的伺服阀还仅仅是一种单级开环控制阀。二战结束后,电液伺服阀开发研制进入了迅速发展时

伺服系统的发展

伺服系统的发展 伺服系统在机电设备中具有重要的地位,下面简单谈谈其发展历程: (1 )直流伺服系统 伺服系统的发展经历了由液压到电气的过程。电气伺服系统根据所 驱动的电机类型分为直流(DC)伺服系统和交流(AC)伺服系统。50 年代,无刷电机和直流电机实现了产品化,并在计算机外围设备和机械设备上获得了广泛的应用。70年代则是直流伺服电机的应用最为广泛的时代。 (2)交流伺服系统 从70 年代后期到80 年代初期,随着微处理器技术、大功率高性能半导体功率器件技术和电机永磁材料制造工艺的发展及其性能价格比的日益提高,交流伺服技术—交流伺服电机和交流伺服控制系统逐渐成为主导产品。交流伺服驱动技术已经成为工业领域实现自动化的基础技术之一,并将逐渐取代直流伺服系统。 交流伺服系统按其采用的驱动电动机的类型来分,主要有两大类:永磁同步(SM 型)电动机交流伺服系统和感应式异步(IM 型)电动机交流伺服系统。

其中,永磁同步电动机交流伺服系统在技术上已趋于完全成熟,具备了十分优良 的低速性能,并可实现弱磁高速控制,拓宽了系统的调速范围,适应了高性能伺服驱动的要求。并且随着永磁材料性能的大幅度提高和价格的降低,其在工业生产自动化领域中的应用将越来越广泛,目前已成为交流伺服系统的主流。感应式异步电动机交流伺服系统由于感应式异步电动机结构坚固,制造容易,价格低廉,因而具有很好的发展前景,代表了将来伺服技术的方向。但由于该系统采用矢量变换控制,相对永磁同步电动机伺服系统来说控制比较复杂,而且电机低速运行时还存在着效率低,发热严重等有待克服的技术问题,目前并未得到普遍应用。 系统的执行元件一般为普通三相鼠笼型异步电动机,功率变换器件通常采用智能功率模块IPM 。为进一步提高系统的动态和静态性能,可采用位置和速度闭环控制。三相交流电流的跟随控制能有效地提高逆变器的电流响应速度,并且能限制暂态电流,从而有利于IPM 的安全工作。速度环和位置环可使用单片机控制,以使控制策略获得更高的控制性能。电流调节器若为比例形式,三个 交流电流环都用足够大的比例调节器进 行控制,其比例系数应该在保证系统不产生振荡的前提下尽量选大些,使被控异步电动机三相交流电流的幅值、相位和频率紧随给定值快速变 化,从而实现电压型逆变器的快速电流控制。电流用比例调节,具有结构简单、电流跟随性能好以及限制电动机起制动电流快速可靠等诸多优点。

相关文档
最新文档