高一数学 函数的单调性与最值

高一数学 函数的单调性与最值
高一数学 函数的单调性与最值

单调性与最大(小)值 第1课时 函数的单调性

学习目标 1.理解函数单调区间、单调性等概念.2.会划分函数的单调区间,判断单调性.3.会用定义证明函数的单调性.

知识点一 函数的单调性

思考 画出函数f (x )=x 、f (x )=x 2的图象,并指出f (x )=x 、f (x )=x 2的图象的升降情况如何? 答案 两函数的图象如下:

函数f (x )=x 的图象由左到右是上升的;函数f (x )=x 2的图象在y 轴左侧是下降的,在y 轴右侧是上升的. 梳理 一般地,单调性是相对于区间来说的,函数图象在某区间上上升,则函数在该区间上为增函数,该区间称为增区间.反之则为减函数,相应区间称为减区间.因为很多时候我们不知道函数图象是什么样的,而且用上升下降来刻画单调性很粗糙.所以有以下定义: 设函数f (x )的定义域为I :

(1)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1

(2)如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1f (x 2),那么就说函数f (x )在区间D 上是减函数. 知识点二 函数的单调区间

思考 我们已经知道f (x )=x 2的减区间为(-∞,0],f (x )=1

x 的减区间为(-∞,0),这两个减区间能不能交

换?

答案 f (x )=x 2的减区间可以写成(-∞,0),而f (x )=1

x 的减区间(-∞,0)不能写成(-∞,0],因为0不属

于f (x )=1

x

的定义域.

梳理 一般地,有下列常识:

(1)函数单调性关注的是整个区间上的性质,单独一点不存在单调性问题,所以单调区间的端点若属于定义域,则该点处区间可开可闭,若区间端点不属于定义域则只能开. (2)单调区间D ?定义域I .

(3)遵循最简原则,单调区间应尽可能大.

类型一 求单调区间并判断单调性

例1 如图是定义在区间[-5,5]上的函数y =f (x ),根据图象说出函数的单调区间,以及在每一单调区间上,它是增函数还是减函数?

解 y =f (x )的单调区间有[-5,-2],[-2,1],[1,3],[3,5],其中y =f (x )在区间[-5,-2],[1,3]上是减函数,在区间[-2,1],[3,5]上是增函数.

反思与感悟 函数的单调性是在定义域内的某个区间上的性质,单调区间是定义域的子集;当函数出现两个以上单调区间时,单调区间之间可用“,”分开,不能用“∪”,可以用“和”来表示;在单调区间D 上函数要么是增函数,要么是减函数,不能二者兼有.

跟踪训练1 写出函数y =|x 2-2x -3|的单调区间,并指出单调性.

解 先画出f (x )=?

????

x 2-2x -3,x <-1或x >3,-(x 2-2x -3),-1≤x ≤3的图象,如图.

所以y =|x 2-2x -3|的单调区间有(-∞,-1],[-1,1],[1,3],[3,+∞),其中单调减区间是(-∞,-1],[1,3];单调增区间是[-1,1],[3,+∞). 类型二 证明单调性

命题角度1 证明具体函数的单调性 例2 证明f (x )=x 在其定义域上是增函数. 证明 f (x )=x 的定义域为[0,+∞).

设x 1,x 2是定义域[0,+∞)上的任意两个实数,且x 1

(x 1-x 2)(x 1+x 2)x 1+x 2=x 1-x 2

x 1+x 2

.

∵0≤x 10, ∴f (x 1)-f (x 2)<0,即f (x 1)

∴f (x )=x 在它的定义域[0,+∞)上是增函数.

反思与感悟 运用定义判断或证明函数的单调性时,应在函数的定义域内给定的区间上任意取x 1,x 2且x 1

x

在[1,+∞)上是增函数.

证明 设x 1,x 2是实数集R 上的任意实数,且1≤x 1

x 2)

=(x 1-x 2)+(1x 1-1

x 2)=(x 1-x 2)+x 2-x 1x 1x 2

=(x 1-x 2)(1-

1

x 1x 2)=(x 1-x 2)(x 1x 2-1x 1x 2

). ∵1≤x 1

x 1x 2-1x 1x 2>0,故(x 1-x 2)(x 1x 2-1x 1x 2

)<0, 即f (x 1)-f (x 2)<0,即f (x 1)

∴f (x )=x +1

x 在区间[1,+∞)上是增函数.

命题角度2 证明抽象函数的单调性

例3 已知函数f (x )对任意的实数x 、y 都有f (x +y )=f (x )+f (y )-1,且当x >0时,f (x )>1.求证:函数f (x )在R 上是增函数.

证明 方法一 设x 1,x 2是实数集上的任意两个实数,且x 1>x 2.令x +y =x 1,y =x 2,则x =x 1-x 2>0. f (x 1)-f (x 2)=f (x +y )-f (y )=f (x )+f (y )-1-f (y )=f (x )-1.∵x >0,∴f (x )>1,f (x )-1>0, ∴f (x 1)-f (x 2)>0,即f (x 1)>f (x 2). ∴函数f (x )在R 上是增函数. 方法二 设x 1>x 2,则x 1-x 2>0, 从而f (x 1-x 2)>1,即f (x 1-x 2)-1>0.

f (x 1)=f [x 2+(x 1-x 2)]=f (x 2)+f (x 1-x 2)-1>f (x 2),故f (x )在R 上是增函数.

反思与感悟 因为抽象函数不知道解析式,所以不能代入求f (x 1)-f (x 2),但可以借助题目提供的函数性质来确定f (x 1)-f (x 2)的大小,这时就需要根据解题需要对抽象函数进行赋值.

跟踪训练3 已知函数f (x )的定义域是R ,对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),且当x >0时,0

证明 ∵对于任意实数m ,n ,恒有f (m +n )=f (m )·f (n ),令m =1,n =0,可得f (1)=f (1)·f (0), ∵当x >0时,0<f (x )<1,∴f (1)≠0,∴f (0)=1.

令m =x <0,n =-x >0,则f (m +n )=f (0)=f (-x )·f (x )=1,∴f (x )f (-x )=1, 又∵-x >0时,0<f (-x )<1,

∴f (x )=1

f (-x )

>1.

∴对任意实数x ,f (x )恒大于0. 设任意x 10, ∴0

∴f (x 2)-f (x 1)=f [(x 2-x 1)+x 1]-f (x 1)=f (x 2-x 1)f (x 1)-f (x 1)=f (x 1)[f (x 2-x 1)-1]<0, ∴f (x )在R 上是减函数. 类型三 单调性的应用

命题角度1 利用单调性求参数范围

例4 若函数f (x )=?

???

?

(3a -1)x +4a ,x <1,-ax ,x ≥1是定义在R 上的减函数,则a 的取值范围为( )

A.[18,1

3) B.(0,13)

C.[1

8

,+∞) D.(-∞,18]∪[1

3,+∞)

答案 A

解析 要使f (x )在R 上是减函数,需满足: ????

?

3a -1<0,-a <0,(3a -1)·1+4a ≥-a ·1.

解得18≤a <13

.

反思与感悟 分段函数在定义域上单调,除了要保证各段上单调外,还要接口处不能反超.另外,函数在单调区间上的图象不一定是连续不断的.

跟踪训练4 已知函数f (x )=x 2-2ax -3在区间[1,2]上单调,则实数a 的取值范围为________________. 答案 a ≤1或a ≥2

解析 由于二次函数开口向上,故其增区间为[a ,+∞),减区间为(-∞,a ],而f (x )在区间[1,2]上单调,所以[1,2]?[a ,+∞)或[1,2]?(-∞,a ],即a ≤1或a ≥2. 命题角度2 用单调性解不等式

例5 已知y =f (x )在定义域(-1,1)上是减函数,且f (1-a )

?

-1<1-a <1,-1<2a -1<1,1-a >2a -1,

解得0

3

即所求a 的取值范围是0

3

.

反思与感悟 若已知函数f (x )的单调性,则由x 1,x 2的大小,可得f (x 1),f (x 2)的大小;由f (x 1),f (x 2)的大小,可得x 1,x 2的大小.

跟踪训练5 在例5中若函数y =f (x )的定义域为R ,且为增函数,f (1-a )

解 ∵y =f (x )的定义域为R ,且为增函数, f (1-a )2

3,

∴所求a 的取值范围是(2

3

,+∞).

1.函数y =f (x )在区间[-2,2]上的图象如图所示,则此函数的增区间是( )

A.[-2,0]

B.[0,1]

C.[-2,1]

D.[-1,1]

答案 C

2.函数y =6

x 的减区间是( )

A.[0,+∞)

B.(-∞,0]

C.(-∞,0),(0,+∞)

D.(-∞,0)∪(0,+∞)

答案 C

3.在下列函数f (x )中,满足对任意x 1,x 2∈(0,+∞),当x 1f (x 2)的是( ) A.f (x )=x 2 B.f (x )=1

x

C.f (x )=|x |

D.f (x )=2x +1

答案 B

4.已知函数y =f (x )满足:f (-2)>f (-1),f (-1)

5.若函数f (x )在R 上是减函数,且f (|x |)>f (1),则x 的取值范围是( )

A.x <1

B.x >-1

C.-1

D.x <-1或x >1

答案 C

1.若f (x )的定义域为D ,A ?D ,B ?D ,f (x )在A 和B 上都单调递减,未必有f (x )在A ∪B 上单调递减.

2.对增函数的判断,对任意x 1

(x 1-x 2)[f (x 1)-f (x 2)]>0或f (x 1)-f (x 2)

x 1-x 2>0.对减函数的判断,对任意x 1f (x 2),相应地也可用一个

不等式来替代:(x 1-x 2)[f (x 1)-f (x 2)]<0或f (x 1)-f (x 2)

x 1-x 2

<0.

3.熟悉常见的一些函数的单调性,包括一次函数,二次函数,反比例函数等.

4.若f (x ),g (x )都是增函数,h (x )是减函数,则:①在定义域的交集(非空)上,f (x )+g (x )单调递增,f (x )-h (x )单调递增,②-f (x )单调递减,③1

f (x )

单调递减(f (x )≠0).

5.对于函数值恒正(或恒负)的函数f (x ),证明单调性时,也可以作商f (x 1)

f (x 2)

与1比较.

课时作业

一、选择题

1.函数y =1

x -1的单调减区间是( )

A.(-∞,1),(1,+∞)

B.(-∞,1)∪(1,+∞)

C.{x ∈R |x ≠1}

D.R

答案 A

解析 单调区间不能写成单调集合,也不能超出定义域,故C ,D 不对,B 表达不当.故选A.

2.如果函数f (x )在[a ,b ]上是增函数,那么对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),下列结论中不正确的是( ) A.f (x 1)-f (x 2)x 1-x 2

>0

B.(x 1-x 2)[f (x 1)-f (x 2)]>0

C.若x 1

D.x 1-x 2f (x 1)-f (x 2)>0 答案 C

解析 因为f (x )在[a ,b ]上是增函数,对于任意的x 1,x 2∈[a ,b ](x 1≠x 2),x 1-x 2与f (x 1)-f (x 2)的符号相同,故A ,B ,D 都正确,而C 中应为若x 1

3.已知函数f (x )是R 上的增函数,A (0,-1),B (3,1)是其图象上的两点,那么-1

C.(-∞,-1]∪[3,+∞)

D.(-∞,0]∪[1,+∞) 答案 B

解析 由已知f (0)=-1,f (3)=1, ∴-1

4.已知函数f (x )在R 上是增函数,则下列说法正确的是( ) A.y =-f (x )在R 上是减函数 B.y =1

f (x )在R 上是减函数

C.y =[f (x )]2在R 上是增函数

D.y =af (x )(a 为实数)在R 上是增函数 答案 A

解析 设x 1-f (x 2),A 选项一定成立.

其余三项不一定成立,如当f (x )=x 时,B 、C 不成立,当a <0时,D 不成立. 5.已知函数f (x )在(-∞,+∞)上是增函数,若a ,b ∈R 且a +b >0,则有( ) A.f (a )+f (b )>-f (a )-f (b ) B.f (a )+f (b )<-f (a )-f (b ) C.f (a )+f (b )>f (-a )+f (-b ) D.f (a )+f (b )

解析 ∵a +b >0,∴a >-b ,b >-a , ∵f (x )在R 上是增函数, ∴f (a )>f (-b ),f (b )>f (-a ), ∴f (a )+f (b )>f (-a )+f (-b ).

6.已知函数f (x )=?

????

x 2+4x ,x ≥0,

4x -x 2,x <0,若f (4-a )>f (a ),则实数a 的取值范围是( )

A.(-∞,2)

B.(2,+∞)

C.(-∞,-2)

D.(-2,+∞)

答案 A

解析 画出f (x )的图象(图略)可判断f (x )在R 上递增, 故f (4-a )>f (a )?4-a >a ,解得a <2. 二、填空题

7.已知函数f (x )=?

????

-x +3a ,x ≥0,

x 2-ax +1,x <0是(-∞,+∞)上的减函数,则实数a 的取值范围是________.

答案 [0,1

3

]

解析 当x <0时,函数f (x )=x 2-ax +1是减函数,解得a ≥0,当x ≥0时,函数f (x )=-x +3a 是减函数,分段点0处的值应满足1≥3a ,解得a ≤13,∴0≤a ≤1

3

.

8.已知f (x )是定义在区间[-1,1]上的增函数,且f (x -2)

2

)

解析 由题意,得????

?

-1≤x -2≤1,-1≤1-x ≤1,

x -2<1-x ,

解得1≤x <3

2

故满足条件的x 的取值范围是1≤x <3

2

.

9.函数f (x +1)=x 2-2x +1的定义域是[-2,0],则f (x )的单调减区间是________. 答案 [-1,1]

解析 f (x +1)=x 2-2x +1=(x -1)2=(x +1-2)2, ∴f (x )=(x -2)2,x ∈[-1,1], ∴f (x )在定义域[-1,1]上单调递减.

10.已知一次函数y =(k +1)x +k 在R 上是增函数,且其图象与x 轴的正半轴相交,则k 的取值范围是________. 答案 (-1,0)

解析 依题意????

?

k +1>0,-k k +1>0,解得-1

三、解答题

11.求函数y =-x 2+2|x |+3的单调增区间.

解 ∵y =-x 2+2|x |+3=?

????

-x 2+2x +3,x ≥0,

-x 2-2x +3,x <0.

函数图象如图所示:

∴函数y =-x 2+2|x |+3的单调增区间是(-∞,-1]和[0,1].

12.已知函数f (x )在(0,+∞)上为增函数,且f (x )<0(x >0),试判断F (x )=1

f (x )

在(0,+∞)上的单调性并给出

证明过程.

解 F (x )在(0,+∞)上为减函数.

证明:任取x 1,x 2∈(0,+∞),且x 1

f (x 1)=f (x 1)-f (x 2)f (x 2)f (x 1).

∵y =f (x )在(0,+∞)上为增函数,且x 10. ∴F (x 2)-F (x 1)<0,即F (x 1)>F (x 2). ∴F (x )在(0,+∞)上为减函数. 13.已知f (x )=x

x -a

(x ≠a ).

(1)若a =-2,试证明f (x )在(-∞,-2)内单调递增; (2)若a >0且f (x )在(1,+∞)内单调递减,求a 的取值范围. (1)证明 任设x 1

x 1x 1+2-x 2

x 2+2=2(x 1-x 2)(x 1+2)(x 2+2)

. ∵(x 1+2)(x 2+2)>0,x 1-x 2<0,

∴f (x 1)

x 1x 1-a -x 2

x 2-a =a (x 2-x 1)(x 1-a )(x 2-a )

. ∵a >0,x 2-x 1>0,∴要使f (x 1)-f (x 2)>0, 只需(x 1-a )(x 2-a )>0恒成立,∴a ≤1. 综上所述0

14.若f (x )=-x 2+2ax 与g (x )=a

x +1

在区间[1,2]上都是减函数,则a 的取值范围是____________. 答案 (0,1]

解析 由f (x )=-x 2+2ax 在[1,2]上是减函数可得a ≤1,由g (x )=a

x +1在[1,2]上是减函数可得a >0.

∴0

15.设函数f (x )的定义域是(0,+∞),且对任意正实数x ,y 都有f (xy )=f (x )+f (y )恒成立,已知f (2)=1,且x >1时,f (x )>0. (1)求f (1

2

)的值;

(2)判断y =f (x )在(0,+∞)上的单调性并给出证明; (3)解不等式f (2x )>f (8x -6)-1.

解 (1)对于任意x ,y ∈R 都有f (xy )=f (x )+f (y ), ∴当x =y =1时,有f (1)=f (1)+f (1),∴f (1)=0. 当x =2,y =12时,有f (2×12)=f (2)+f (1

2),

即f (2)+f (1

2)=0,

又f (2)=1,∴f (1

2

)=-1.

(2)y =f (x )在(0,+∞)上为单调增函数,证明如下: 设0

x 1)=f (x 2),

即f (x 2)-f (x 1)=f (x 2

x 1).

因为x 2x 1>1,故f (x 2

x 1

)>0,

即f (x 2)>f (x 1),故f (x )在(0,+∞)上为单调增函数. (3)由(1)知,f (1

2)=-1,

∴f (8x -6)-1=f (8x -6)+f (1

2)

=f (1

2(8x -6))=f (4x -3),

∴f (2x )>f (4x -3),

∵f (x )在定义域(0,+∞)上为增函数,

∴?

????

2x >4x -3,4x -3>0. 解得解集为{x |34

第2课时 函数的最大(小)值

学习目标 1.理解函数的最大(小)值的概念及其几何意义.2.会借助单调性求最值.3.掌握求二次函数在闭区间上的最值.

知识点一 函数的最大(小)值

思考 在下图表示的函数中,最大的函数值和最小的函数值分别是多少?1为什么不是最小值?

答案最大的函数值为4,最小的函数值为2.1没有A中的元素与之对应,不是函数值.

梳理一般地,设函数y=f(x)的定义域为I.如果存在实数M满足:(1)对于任意x∈I,都有f(x)≤M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y=f(x)的最大值.

如果存在实数M满足:(1)对于任意x∈I,都有f(x)≥M.(2)存在x0∈I,使得f(x0)=M.那么,称M是函数y =f(x)的最小值.

知识点二函数的最大(小)值的几何意义

思考函数y=x2,x∈[-1,1]的图象如下:

试指出函数的最大值、最小值和相应的x的值.

答案x=±1时,y有最大值1,对应的点是图象中的最高点,x=0时,y有最小值0,对应的点为图象中的最低点.

梳理一般地,函数最大值对应图象中的最高点,最小值对应图象中的最低点,它们不一定只有一个.

类型一借助单调性求最值

例1已知函数f(x)=x

x2+1

(x>0),求函数的最大值和最小值.

解设x1,x2是区间(0,+∞)上的任意两个实数,且x1

x21+1-

x2 x22+1

=x1(x22+1)-x2(x21+1)

(x21+1)(x22+1)

(x2-x1)(x2x1-1)

(x21+1)(x22+1)

.

当x10,x1x2-1<0,f(x1)-f(x2)<0,f(x1)

当1≤x10,x1x2-1>0,

f(x1)-f(x2)>0,f(x1)>f(x2),

∴f(x)在[1,+∞)上单调递减.

∴f(x)max=f(1)=1

2,无最小值.

反思与感悟(1)若函数y=f(x)在区间[a,b]上单调递增,则f(x)的最大值为f(b),最小值为f(a).

(2)若函数y=f(x)在区间[a,b]上单调递减,则f(x)的最大值为f(a),最小值为f(b).

(3)若函数y =f (x )有多个单调区间,那就先求出各区间上的最值,再从各区间的最值中决出最大(小).函数的最大(小)值是整个值域范围内最大(小)的.

(4)如果函数定义域为开区间,则不但要考虑函数在该区间上的单调性,还要考虑端点处的函数值或者发展趋势.

跟踪训练1 已知函数f (x )=

2

x -1

(x ∈[2,6]),求函数的最大值和最小值. 解 设x 1,x 2是区间[2,6]上的任意两个实数,且x 1

=2[(x 2-1)-(x 1-1)]

(x 1-1)(x 2-1)

2(x 2-x 1)

(x 1-1)(x 2-1)

.

由2≤x 1

得x 2-x 1>0,(x 1-1)(x 2-1)>0, 于是f (x 1)-f (x 2)>0, 即f (x 1)>f (x 2).

所以,函数y =2

x -1

在区间[2,6]上是减函数.

因此,函数y =2

x -1在区间[2,6]的两个端点上分别取得最大值与最小值,

即在x =2时取得最大值,最大值是2, 在x =6时取得最小值,最小值是2

5.

类型二 求二次函数的最值

例2 (1)已知函数f (x )=x 2-2x -3,若x ∈[0,2],求函数f (x )的最值; (2)已知函数f (x )=x 2-2x -3,若x ∈[t ,t +2],求函数f (x )的最值; (3)已知函数f (x )=x -2x -3,求函数f (x )的最值;

(4)“菊花”烟花是最壮观的烟花之一.制造时一般是期望在它达到最高点时爆裂.如果烟花距地面的高度h m 与时间t s 之间的关系为h (t )=-4.9t 2+14.7t +18,那么烟花冲出后什么时候是它爆裂的最佳时刻?这时距地面的高度是多少?(精确到1 m)

解 (1)∵函数f (x )=x 2-2x -3开口向上,对称轴x =1, ∴f (x )在[0,1]上单调递减,在[1,2]上单调递增,且f (0)=f (2). ∴f (x )max =f (0)=f (2)=-3,f (x )min =f (1)=-4. (2)∵对称轴x =1, ①当1≥t +2即t ≤-1时, f (x )max =f (t )=t 2-2t -3, f (x )min =f (t +2)=t 2+2t -3.

②当t +t +22≤1

f (x )max =f (t )=t 2-2t -3, f (x )min =f (1)=-4.

③当t ≤1

2,即0

f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (1)=-4.

④当11时,f (x )max =f (t +2)=t 2+2t -3, f (x )min =f (t )=t 2-2t -3.

设函数最大值为g (t ),最小值为φ(t ),则有

g (t )=?

????

t 2-2t -3(t ≤0),

t 2+2t -3(t >0),

φ(t )=????

?

t 2+2t -3(t ≤-1),-4(-1

t 2-2t -3(t >1).

(3)设x =t (t ≥0),则x -2x -3=t 2-2t -3.

由(1)知y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =1时,f (x )min =-4,无最大值.

(4)作出函数h (t )=-4.9t 2+14.7t +18的图象(如图).显然,函数图象的顶点就是烟花上升的最高点,顶点的横坐标就是烟花爆裂的最佳时刻,纵坐标就是这时距地面的高度.

由二次函数的知识,对于函数h (t )=-4.9t 2+14.7t +18,我们有:当t =-14.72×(-4.9)=1.5时,函数有最大

值h =4×(-4.9)×18-14.72

4×(-4.9)

≈29.

于是,烟花冲出后1.5 s 是它爆裂的最佳时刻,这时距地面的高度约为29 m.

反思与感悟 (1)二次函数在指定区间上的最值与二次函数的开口、对称轴有关,求解时要注意这两个因素. (2)图象直观,便于分析、理解;配方法说理更严谨,一般用于解答题. 跟踪训练2 (1)已知函数f (x )=x 4-2x 2-3,求函数f (x )的最值; (2)求二次函数f (x )=x 2-2ax +2在[2,4]上的最小值;

(3)如图,某地要修建一个圆形的喷水池,水流在各个方向上以相同的抛物线路径落下,以水池的中央为坐标原点,水平方向为x 轴、竖直方向为y 轴建立平面直角坐标系.那么水流喷出的高度h (单位:m)与水平距

离x (单位:m)之间的函数关系式为h =-x 2+2x +54,x ∈[0,5

2

].求水流喷出的高度h 的最大值是多少?

解 (1)设x 2=t (t ≥0),则x 4-2x 2-3=t 2-2t -3.

y =t 2-2t -3(t ≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当t =1即x =±1时,f (x )min =-4,无最大值. (2)∵函数图象的对称轴是x =a , ∴当a <2时,f (x )在[2,4]上是增函数, ∴f (x )min =f (2)=6-4a .

当a >4时,f (x )在[2,4]上是减函数, ∴f (x )min =f (4)=18-8a .

当2≤a ≤4时,f (x )min =f (a )=2-a 2. ∴f (x )min =????

?

6-4a ,a <2,2-a 2,2≤a ≤4,

18-8a ,a >4.

(3)由函数h =-x 2+2x +54,x ∈[0,5

2]的图象可知,函数图象的顶点就是水流喷出的最高点.此时函数取得

最大值.

对于函数h =-x 2+2x +54,x ∈[0,5

2

],

当x =1时,函数有最大值h max =-12+2×1+54=9

4.

于是水流喷出的最高高度是9

4 m.

类型三 函数最值的应用

例3 已知x 2-x +a >0对任意x ∈(0,+∞)恒成立,求实数a 的取值范围. 解 方法一 令y =x 2-x +a ,

要使x 2-x +a >0对任意x ∈(0,+∞)恒成立, 只需y min =

4a -14>0,解得a >1

4

. ∴实数a 的取值范围是(1

4,+∞).

方法二 x 2-x +a >0可化为a >-x 2+x . 要使a >-x 2+x 对任意x ∈(0,+∞)恒成立, 只需a >(-x 2+x )max ,

又(-x 2+x )max =14,∴a >1

4.

∴实数a 的取值范围是(1

4, +∞).

引申探究

把例3中“x ∈(0,+∞)”改为“x ∈(1

2,+∞)”,再求a 的取值范围.

解 f (x )=-x 2+x 在(1

2,+∞)上为减函数,

∴f (x )的值域为(-∞,1

4

),

要使a >-x 2+x 对任意x ∈(1

2,+∞)恒成立,

只需a ≥14,∴a 的取值范围是[1

4

,+∞).

反思与感悟 恒成立的不等式问题,任意x ∈D ,f (x )>a 恒成立,一般转化为最值问题:f (x )min >a 来解决.任意x ∈D ,f (x )

跟踪训练3 已知ax 2+x ≤1对任意x ∈(0,1]恒成立,求实数a 的取值范围. 解 ∵x >0,∴ax 2+x ≤1可化为a ≤1x 2-1

x .

要使a ≤1x 2-1

x 对任意x ∈(0,1]恒成立,

只需a ≤(1x 2-1

x

)min .

设t =1

x ,∵x ∈(0,1],∴t ≥1.

1x 2

-1x =t 2-t =(t -12)2-14

. 当t =1时,(t 2-t )min =0,即x =1时,(1x 2-1

x )min =0,

∴a ≤0.∴a 的取值范围是(-∞,0].

1.函数y =-x +1在区间[1

2,2]上的最大值是( )

A.-12

B.-1

C.1

2 D.3

答案 C

2.函数f (x )=1

x 在[1,+∞)上( )

A.有最大值无最小值

B.有最小值无最大值

C.有最大值也有最小值

D.无最大值也无最小值 答案 A

3.函数f (x )=x 2,x ∈[-2,1]的最大值,最小值分别为( ) A.4,1 B.4,0 C.1,0 D.以上都不对

答案 B

4.已知函数f (x )=?

????

2x +6,x ∈[1,2],

x +7,x ∈[-1,1),则f (x )的最大值,最小值分别为( )

A.10,6

B.10,8

C.8,6

D.以上都不对

答案 A

5.若不等式-x +a +1≥0对一切x ∈(0,1

2]成立,则a 的最小值为( )

A.0

B.-2

C.-52

D.-12

答案 D

1.函数的最值与值域、单调性之间的联系

(1)对一个函数来说,其值域是确定的,但它不一定有最值,如函数y =1

x .如果有最值,则最值一定是值域

中的一个元素.

(2)若函数f (x )在闭区间[a ,b ]上单调,则f (x )的最值必在区间端点处取得.即最大值是f (a )或f (b ),最小值是f (b )或f (a ).

2.二次函数在闭区间上的最值

探求二次函数在给定区间上的最值问题,一般要先作出y =f (x )的草图,然后根据图象的增减性进行研究.特别要注意二次函数的对称轴与所给区间的位置关系,它是求解二次函数在已知区间上最值问题的主要依据,并且最大(小)值不一定在顶点处取得.

课时作业

一、选择题

1.函数f (x )=????

?

1,x >0,0,x =0,

-1,x <0的值域是( )

A.R

B.[-1,1]

C.{-1,1}

D.{-1,0,1}

答案 D

解析 该函数的函数值只有三个.

2.函数g (x )=x 2-4x +3在区间(1,4]上的值域是( ) A.[-1,+∞) B.[0,3] C.(-1,3] D.[-1,3]

答案 D

解析 g (x )=(x -2)2-1,当x =2时,g (x )min =-1; 当x =4时,g (x )max =3, ∴g (x )在(1,4]上的值域为[-1,3]. 3.下列说法正确的是( )

A.若函数f (x )的值域为[a ,b ],则f (x )min =a ,f (x )max =b

B.若f (x )min =a ,f (x )max =b ,则函数f (x )的值域为[a ,b ]

C.若f (x )min =a ,直线y =a 不一定与f (x )的图象有交点

D.若f (x )min =a ,直线y =a 一定与f (x )的图象有且仅有一个交点 答案 A

解析 值域为[a ,b ],则最小的函数值即f (x )min =a ,最大的函数值即f (x )max =b ,A 对.f (x )min =a ,f (x )max =b ,区间[a ,b ]上的某些元素可能不是函数值,因而[a ,b ]不一定是值域,B 错.若f (x )min =a ,由定义一定存在x 0使f (x 0)=a ,即f (x )与直线y =a 一定有交点,但不一定唯一,C ,D 都错. 4.函数y =x +2x -1( ) A.有最小值1

2,无最大值

B.有最大值1

2,无最小值

C.有最小值1

2,有最大值2

D.无最大值,也无最小值 答案 A

解析 ∵y =x +2x -1在定义域[12,+∞)上是增函数,∴y ≥f (12)=12,即函数最小值为1

2,无最大值,选

A.

5.已知函数f (x )=-x 2+4x +a ,x ∈[0,1],若f (x )的最小值为-2,则f (x )的最大值为( ) A.-1 B.0 C.1 D.2

答案 C

解析 因为f (x )=-(x -2)2+4+a ,由x ∈[0,1]可知当x =0时,f (x )取得最小值,即-4+4+a =-2,所以a =-2,所以f (x )=-(x -2)2+2,当x =1时,f (x )取得最大值为-1+2=1.故选C.

6.已知函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,则实数k 的取值范围是( )

A.[160,+∞)

B.(-∞,40]

C.(-∞,40]∪[160,+∞)

D.(-∞,20]∪[80,+∞) 答案 C

解析 由于二次函数f (x )=4x 2-kx -8在区间(5,20)上既没有最大值也没有最小值,因此函数f (x )=4x 2-kx -8在区间(5,20)上是单调函数.二次函数f (x )=4x 2-kx -8图象的对称轴方程为x =k 8,因此k 8≤5或k

8≥20,

所以k ≤40或k ≥160. 二、填空题

7.若x 2-x +1>2x +m 在[-1,1]上恒成立,则实数m 的取值范围是________. 答案 (-∞,-1)

解析 由题意得x 2-3x +1-m >0在[-1,1]上恒成立. 令g (x )=x 2-3x +1-m =(x -32)2-5

4-m ,

其对称轴为x =3

2

∴g (x )在区间[-1,1]上是减函数,

∴g (x )min =g (1)=1-3+1-m >0,∴m <-1.

8.若函数y =ax +1(a >0)在区间[1,3]上的最大值为4,则a =________. 答案 1

解析 ∵a >0,∴函数y =ax +1在区间[1,3]上是增函数,∵y max =3a +1=4,解得a =1.

9.已知函数f (x )=x 2-6x +8,x ∈[1,a ],并且f (x )的最小值为f (a ),则实数a 的取值范围是________. 答案 (1,3]

解析 f (x )的对称轴为x =3, 当且仅当1

①y =x +|x |;②y =x -|x |;③y =x |x |;④y =x

|x |.其中有最小值的函数有________个.

答案 2

解析 y =x +|x |=?????

0,x <0,

2x ,x ≥0,y min =0.

y =x -|x |=?

???

?

0,x >0,2x ,x ≤0,无最小值.

y =x |x |=?

????

x 2,x >0,

-x 2,x ≤0,无最小值.

y =x |x |=?????

1,x >0,-1,x <0,

y min =-1. 三、解答题

11.某公司在甲乙两地同时销售一种品牌车,利润(单位:万元)分别为L 1=-x 2+21x 和L 2=2x ,其中x 为销售量(单位:辆).若该公司在两地共销售15辆,则能获得的最大利润为多少万元? 解 设公司在甲地销售x 辆,则在乙地销售(15-x )辆,设两地销售的利润之和为y ,则 y =-x 2+21x +2(15-x )=-x 2+19x +30.

由题意知?

????

x ≥0,15-x ≥0.

∴0≤x ≤15,且x ∈Z .

当x =-19

2×(-1)=9.5时y 值最大,

∵x ∈Z ,∴取x =9或10.

当x =9时,y =120,当x =10时,y =120. 综上可知,公司获得的最大利润为120万元.

12.求f (x )=x 2-2ax -1在区间[0,2]上的最大值和最小值. 解 f (x )=(x -a )2-1-a 2,对称轴为x =a .

(1)当a <0时,由图①可知,f (x )在区间[0,2]上是增函数,所以f (x )min =f (0)=-1,f (x )max =f (2)=3-4a . (2)当0≤a ≤1时,由图②可知,对称轴在区间[0,2]内,所以f (x )min =f (a )=-1-a 2,f (x )max =f (2)=3-4a . (3)当1<a ≤2时,由图③可知,对称轴在区间[0,2]内,所以f (x )min =f (a )=-1-a 2,f (x )max =f (0)=-1. (4)当a >2时,由图④可知,f (x )在[0,2]上为减函数,所以f (x )min =f (2)=3-4a ,f (x )max =f (0)=-1.

13.已知函数f (x )=x 2+2ax +2,x ∈[-5,5]. (1)当a =-1时,求函数f (x )的最大值和最小值;

(2)求实数a 的取值范围,使y =f (x )在区间[-5,5]上是单调函数. 解 (1)当a =-1时,f (x )=x 2-2x +2=(x -1)2+1.

∵x ∈[-5,5],故当x =1时,f (x )取得最小值为1, 当x =-5时,f (x )取得最大值为37.

(2)函数f (x )=(x +a )2+2-a 2图象的对称轴为x =-a . ∵f (x )在[-5,5]上是单调的, 故-a ≤-5或-a ≥5.

即实数a 的取值范围是a ≤-5或a ≥5. 四、探究与拓展

14.若函数f (x )=????

?

(x -m )2,x ≤0,x +1x +m ,x >0的最小值为f (0),则实数m 的取值范围是( )

A.[-1,2]

B.[-1,0]

C.[1,2]

D.[0,2]

答案 D

解析 当x ≤0时,f (x )=(x -m )2,f (x )min =f (0)=m 2, 所以对称轴x =m ≥0. 当x >0时,f (x )=x +1

x

+m ≥2

x ·1

x

+m =2+m , 当且仅当x =1

x ,即x =1时取等号,

所以f (x )min =2+m . 因为f (x )的最小值为m 2, 所以m 2≤2+m ,所以0≤m ≤2. 15.已知函数f (x )=1+x +1-x . (1)求函数f (x )的定义域和值域;

(2)设F (x )=m 1-x 2+f (x ),求函数F (x )的最大值的表达式g (m ). 解 (1)要使函数f (x )有意义,

需满足?

???

?

1+x ≥0,1-x ≥0,得-1≤x ≤1.

故函数f (x )的定义域是{x |-1≤x ≤1}. ∵[f (x )]2=2+21-x 2,且0≤1-x 2≤1, ∴2≤[f (x )]2≤4,又∵f (x )≥0, ∴2≤f (x )≤2,

即函数f (x )的值域为[2,2]. (2)令f (x )=t ,则t 2=2+21-x 2, 则

1-x 2=

t 2

2

-1,

高中数学函数的单调性与最值练习题

函数的单调性与最值 1.下列函数中,在区间(-1,1)为减函数的是( ) A .x y -=11 B .x y cos = C .)1ln(+=x y D .x y -=2 2.函数)82ln()(2--=x x x f 的单调递增区间是( ) A .)2,(--∞ B .)1,(-∞ C .),1(+∞ D .),4(+∞ 3.若函数m x x x f +-=2)(2在),3[+∞上的最小值为1,则实数m 的值为( ) A .-3 B .-2 C .-1 D .1 4函数x x x f -=1)(的单调递增区间是( ) A .)1,(-∞ B .),1(+∞ C .)1,(-∞,),1(+∞ D .)1,(--∞,),1(+∞ 5设函数)1()(,0,10,00,1)(2-=?? ???<-=>=x f x x g x x x x f ,则函数g (x)的单调递减区间是( ) A .]0,(-∞ B .)1,0[ C .),1[+∞ D .]0,1[- 6.若函数R x x a x x f ∈++=,2)(2在区间),3[+∞和]1,2[--上均为增函数,则实数a 的取值范围是( )A .]3,311[-- B .]4,6[-- C .]22,3[-- D .]3,4[-- 7.函数],(,1 2n m x x x y ∈+-=的最小值为0,则m 的取值范围是( ) A .)2,1( B .)2,1(- C .)2,1[ D .)2,1[- 8.已知函数a ax x x f +-=2)(2在区间)1,(-∞上有最小值,则函数x x f x g )()(=在区间),1(+∞上一定( )A .有最小值 B .有最大值 C .是减函数 D .是增函数 9.若函数2)(2-+=x a x x f 在),0(+∞上单调递增,则实数a 的取值范围是 10.已知函数f (x)的值域为]9 4,83[,则函数)(21)()(x f x f x g -+=的值域为 1.已知函数)1(log 2-=ax y 在)2,1(上单调递增,则实数a 的取值范围是( ) A .]1,0( B .]2,1[ C .+∞,1[) D .+∞,2[)

高一函数单调性完整版

函数的单调性 学习目标(1)掌握函数的基本性质(单调性、最大值或最小值、奇偶性),能应 用函数的基本性质解决一些问题。 (2)从形与数两方面理解函数单调性的概念,初步掌握利用函数图象和 单调性定义判断、证明函数单调性的方法. (3)了解奇偶性的概念,回 会利用定义判断简单函数的奇偶性。 重点与难点 (1)判断或证明函数的单调性; (2)奇偶性概念的形成与函数奇偶性的判断。 学习过程 【学习导航】 知识网络 学习要求 1. 从特殊到一般,掌握增函数、减函数、单调区间的概念; 2. 会根据图像说出函数的单调区间,并能指出其增减性; 3. 会用定义证明一些简单函数的单调性. 自学评价 观察函数x x f =)(,2 )(x x f =的图象 从左至右看函数图象的变化规律: (1). x x f =)(的图象是_________的, 2)(x x f =的图象在y 轴左侧是______的,2)(x x f =的图象在y 轴右侧是_______的. (2). x x f =)(在),(+∞-∞上,f (x )随着x 的增大而___________;2 )(x x f =在]0,(-∞ 上, f (x )随着x 的增大而_______;2 )(x x f =在),0(+∞上,f (x )随着x 的增大而________. 一、 函数的单调性 1.单调函数的定义 (1)增函数:一般地,设函数()f x 的定义域为I :如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x <,那么就说()f x 在这个区间上是增函数。 (2)减函数:如果对于属于I 内某个区间上的任意两个自变量的值1x 、2x ,当1x <2x 时都有12()()f x f x >,那么就说()f x 在这个区间上是减函数。 函数的单调性 单调性的定义 定义法证明函数的单调性 增函数 减函数 单调区间 x y 0 x y 0 x x f =)( 2)(x x f =

高一数学 函数单调性讲解

高中数学必修一函数——单调性 考纲解读: 了解单调函数及单调区间的意义,掌握判断函数单调性的方法;掌握增,减函数的意义,理解函数单调函数的性质。 能力解读:函数单调性的判断和函数单调性的应用。利用函数单调性判断方法来判断函数的单调性,利用函数的单调性求解函数的最值问题。掌握并熟悉抽象函数以及符合函数的单调性判断方法。 知识要点: 1.函数单调性的定义, 2.证明函数单调性; 3.求函数的单调区间 4.利用函数单调性解决一些问题; 5.抽象函数与函数单调性结合运用 一、单调性的定义 (1)设函数)(x f y =的定义域为A ,区间A I ? 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f <,那么就说 )(x f y =在区间I 上是单调增函数,I 称为)(x f y =的单调增区间 如果对于区间I 内的任意两个值1x ,2x ,当21x x <时,都有)()(21x f x f >,那么就说 )(x f y =在区间I 上是单调减函数,I 称为)(x f y =的单调减区间 (2)设函数)(x f y =的定义域为A 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≤恒成立,那么称)(0x f 为 )(x f y =的最大值; 如果存在定值A x ∈0,使得对于任意A x ∈,有)()(0x f x f ≥恒成立,那么称)(0x f 为 )(x f y =的最小值。 二、函数单调性的证明 重点:函数的单调性只能在函数的定义域内来讨论,所以求函数的单调区间,必须 先求函数的定义域; (1)定义法求单调性 函数单调性定义中的1x ,2x 有三个特征:一是任意性;二是大小,即 )(2121x x x x <<;三是同属于一个单调区间,三者缺一不可;

函数的单调性与最值练习题(适合高三)

函数的单调性与最值练习题 学校:___________姓名:___________班级:___________考号:___________ 一、选择题(每小题4分) 1.函数2()log f x x =在区间[1,2]上的最小值是( ) A.1- B.0 C.1 D.2 2.已知212()log (2)f x x x =-的单调递增区间是( ) A.(1,)+∞ B.(2,)+∞ C.(,0)-∞ D .(,1)-∞ 3.定义在R 上的函数()f x 对任意两个不相等实数,a b ,总有 ()()0f a f b a b ->-成立, 则必有( ) A.()f x 在R 上是增函数 B.()f x 在R 上是减函数 C.函数()f x 是先增加后减少 D.函数()f x 是先减少后增加 4.若在区间(-∞,1]上递减,则a 的取值范围为( ) A. [1,2) ? B. [1,2] ? C. [1,+∞)???D. [2,+∞) 5.函数y=x 2﹣2x ﹣1在闭区间[0,3]上的最大值与最小值的和是( ) A.﹣1 B.0 C.1 D.2 6.定义在),0(+∞上的函数()f x 满足对任意的))(,0(,2121x x x x ≠+∞∈,有 2121()(()())0x x f x f x -->.则满足(21)f x -<1()3 f 的x 取值范围是( ) A.(12,23) B.[13,23) C. (13,23) D.[12,23 ) 7.已知(x)=???≥<+-)1(log )1(4)13(x x x a x a a 是(-∞,+∞)上的减函数,那么a的取值范围是( ) A.(0,1) B .(0,31 ) C.[71,31) D.[71,1) 8.函数22log (23)y x x =+-的单调递减区间为( ) A.(-∞,-3) B .(-∞,-1) C.(1,+∞) D .(-3,-1) 9.已知函数()f x 是定义在[0,) +∞的增函数,则满足(21)f x -<1()3f 的x 取值范围是( ) (A )(∞-,23) (B )[13,23) (C)(12,∞+) (D)[12,23 ) 10.下列函数中,在定义域内是单调递增函数的是( ) A .2x y = B.1y x = C.2y x = D .tan y x =

高一数学函数练习题及答案

数学高一函数练习题(高一升高二衔接) 一、 求函数的定义域 1、求下列函数的定义域: ⑴33y x =+- ⑵y = ⑶01(21)111 y x x = +-+ - 2、设函数f x ()的定义域为[]01,,则函数f x ()2 的定义域为_ _ _;函数f x ()-2的定义域为________; 3、若函数(1)f x +的定义域为[]-23,,则函数(21)f x -的定义域是 ;函数1(2)f x +的定义域为 。 4、 知函数f x ()的定义域为 [1,1]-,且函数()()()F x f x m f x m =+--的定义域存在,求实数m 的取值范围。 二、求函数的值域 5、求下列函数的值域: ⑴2 23y x x =+- ()x R ∈ ⑵2 23y x x =+- [1,2]x ∈ ⑶311x y x -= + ⑷31 1 x y x -=+ (5)x ≥ ⑸ y = ⑹ 22 5941x x y x +=-+ ⑺31y x x =-++ ⑻2y x x =- ⑼ y =⑽ 4y = ⑾y x =6、已知函数22 2()1 x ax b f x x ++=+的值域为[1,3],求,a b 的值。 三、求函数的解析式 1、 已知函数2 (1)4f x x x -=-,求函数()f x ,(21)f x +的解析式。 2、 已知()f x 是二次函数,且2 (1)(1)24f x f x x x ++-=-,求()f x 的解析式。 3、已知函数()f x 满足2()()34f x f x x +-=+,则()f x = 。 4、设()f x 是R 上的奇函数,且当[0,)x ∈+∞时, ()(1f x x =+,则当(,0)x ∈-∞时()f x =____ _ ()f x 在R 上的解析式为 5、设()f x 与()g x 的定义域是{|,1}x x R x ∈≠±且,()f x 是偶函数,()g x 是奇函数,且1 ()()1 f x g x x += -,求()f x 与()g x 的解析表达式 四、求函数的单调区间 6、求下列函数的单调区间: ⑴ 2 23y x x =++ ⑵y = ⑶ 2 61y x x =-- 7、函数()f x 在[0,)+∞上是单调递减函数,则2 (1)f x -的单调递增区间是 8、函数236x y x -= +的递减区间是 ;函数y =的递减区间是 五、综合题 9、判断下列各组中的两个函数是同一函数的为 ( ) ⑴3 ) 5)(3(1+-+= x x x y , 52-=x y ; ⑵111-+=x x y , )1)(1(2-+=x x y ; ⑶x x f =)(, 2)(x x g = ; ⑷x x f =)(, ()g x ; ⑸21)52()(-=x x f , 52)(2-=x x f 。

人教版高中数学《函数的单调性与最值》教学设计全国一等奖

1.3.1函数的单调性与最大(小)值(第一课时) 教学设计 一、教学内容解析: (1)教学内容的内涵、数学思想方法、核心与教学重点; 本课教学内容出自人教版《普通高中课程标准实验教科书必修数学1》(以下简称“新教材”)第一章节。 函数的单调性是研究当自变量x不断增大时,它的函数y增大还是减小的性质.如增函数表现为“随着x增大,y也增大”这一特征.与函数的奇偶性不同,函数的奇偶性是研究x成为相反数时,y是否也成为相反数,即函数的对称性质. 函数的单调性与函数的极值类似,是函数的局部性质,在整个定义域上不一定具有.这与函数的奇偶性、函数的最大值、最小值不同,它们是函数在整个定义域上的性质. 函数单调性的研究方法也具有典型意义,体现了对函数研究的一般方法:加强“数”与“形”的结合,由直观到抽象;由特殊到一般.首先借助对函数图象的观察、分析、归纳,发现函数的增、减变化的直观特征,进一步量化,发现增、减变化数字特征,从而进一步用数学符号刻画. 函数单调性的概念是研究具体函数单调性的依据,在研究函数的值域、定义域、最大值、最小值等性质中有重要应用(内部);在解不等式、证明不等式、数列的性质等数学的其他内容的研究中也有重要的应用(外部).可见,不论在函数内部还是在外部,函数的单调性都有重要应用,因而在数学中具有核心地位. 教学的重点是:引导学生对函数定义域I的给定区间D上“随着x增大,y也增大(或减小)”这一特征进行抽象的符号描述:在区间D上任意取x1,x2,当x1<x2时,有f(x1)<f(x2)(或f(x1)>f(x2)),则称函数f(x)在区间D上是增函数(或减函数). (2)教学内容的知识类型; 在本课教学内容中,包含了四种知识类型。函数单调性的相关概念属于概念性知识,函数单调性的符号语言表述属于事实性知识,利用函数单调性的定义证明函数单调性的步骤属于程序性知识,发现问题----提出问题----解决问题的研究模式,以及从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明等研究问题的一般方法,属于元认知知识. (3)教学内容的上位知识与下位知识; 在本课教学内容中,函数的单调性,是文字语言、图形语言、符号语言的上位知识.图象法、作差法是判断证明函数单调性的下位知识. (4)思维教学资源与价值观教育资源; 生活常见数据曲线图例子,能引发观察发现思维;函数f(x)= +1和函数 1 y x x =+,能引发 提出问题---分析问题----解决问题的研究思维,不等关系等价转化为作差定号,是转化化归思维的好资源,是树立辩证唯物主义价值观的好契机;创设熟悉的二次函数探究背景,是引发从直观到抽象,由特殊到一般,从感性到理性、先猜想后证明思维的好材料,树立了“事物是普遍联系的”价值观. 二、教学目标设置: 本课教学以《普通高中数学课程标准(实验)》(以下统称为“课标”)为基本依据,以“数学育人”作为根本目标设置。 “课标”数学1模块内容要求是:不仅把函数看成变量之间的依赖关系,还要用集合与对应的语言刻画函数,体会函数的思想方法与研究方法,结合实际问题,体会函数在数学和其他学科中的重要性。 “课标”对本课课堂教学内容要求是:通过已学过的函数特别是二次函数,理解函数的单调性.(第一课时) 为尽好达到以上要求,结合学生实际,本课课堂教学目标设置如下: (1)知识与技能: 理解函数单调性的概念,让学生能清晰表述函数单调性的定义与相关概念; 能利用图象法直观判断函数的单调性;

高一数学竞赛培训讲座之函数的基本性质

函数的基本性质 基础知识: 函数的性质通常是指函数的定义域、值域、解析式、单调性、奇偶性、周期性、对称性等等,在解决与函数有关的(如方程、不等式等)问题时,巧妙利用函数及其图象的相关性质,可以使得问题得到简化,从而达到解决问题的目的. 关于函数的有关性质,这里不再赘述,请大家参阅高中数学教材及竞赛教材:陕西师范大学出版社 刘诗雄《高中数学竞赛辅导》、刘诗雄、罗增儒《高中数学竞赛解题指导》. 例题: 1. 已知f(x)=8+2x -x 2,如果g(x)=f(2-x 2 ),那么g(x)( ) A.在区间(-2,0)上单调递增 B.在(0,2)上单调递增 C.在(-1,0)上单调递增 D.在(0,1)上单调递增 提示:可用图像,但是用特殊值较好一些.选C 2. 设f(x)是R 上的奇函数,且f(x +3)=-f(x),当0≤x≤ 23时,f(x)=x ,则f(2003)=( ) A.-1 B.0 C.1 D.2003 解:f(x +6)=f(x +3+3)=-f(x +3)=f(x) ∴ f(x)的周期为6 f(2003)=f(6×335-1)=f(-1)=-f⑴=-1 选A 3. 定义在实数集上的函数f(x),对一切实数x 都有f(x +1)=f(2-x)成立,若f(x)=0仅有 101个不同的实数根,那么所有实数根的和为( ) A.150 B.2303 C.152 D.2 305 提示:由已知,函数f(x)的图象有对称轴x = 23 于是这101个根的分布也关于该对称轴对称.

即有一个根就是23,其余100个根可分为50对,每一对的两根关于x =2 3对称 利用中点坐标公式,这100个根的和等于 23×100=150 所有101个根的和为 23×101=2303.选B 4. 实数x ,y 满足x 2=2xsin(xy)-1,则x 1998+6sin 5 y =______________. 解:如果x 、y 不是某些特殊值,则本题无法(快速)求解 注意到其形式类似于一元二次方程,可以采用配方法 (x -sin(xy))2+cos 2(xy)=0 ∴ x=sin(xy) 且 cos(xy)=0 ∴ x=sin(xy)=±1 ∴ siny=1 xsin(xy)=1 原式=7 5. 已知x =9919+是方程x 4+bx 2+c =0的根,b ,c 为整数,则b +c =__________. 解:(逆向思考:什么样的方程有这样的根?) 由已知变形得x -9919= ∴ x 2-219x +19=99 即 x 2-80=219x 再平方得x 4-160x 2+6400=76x 2 即 x 4-236x 2+6400=0 ∴ b=-236,c =6400 b + c =6164 6. 已知f(x)=ax 2+bx +c(a >0),f(x)=0有实数根,且f(x)=1在(0,1)内有两个实数根, 求证:a >4. 证法一:由已知条件可得 △=b 2-4ac≥0 ① f⑴=a +b +c >1 ②

高一数学函数的单调性知识点

高一数学函数单调性 一、函数单调性知识结构 【知识网络】 1.函数单调性的定义,2.证明函数单调性;3.求函数的单调区间 4.利用函数单调性解决一些问题;5.抽象函数与函数单调性结合运用 二、重点叙述 1. 函数单调性定义 (一)函数单调性概念 (1)增减函数定义 一般地,设函数y=f(x)的定义域为I,对于定义域I内某个区间D上的任意两个自变量的值x1、x2 : 如果当x1<x2时,都有f(x1 ) <f(x2 ),那么就说函数y=f(x)在区间D上是增函数; 如果当x1<x2时,都有f(x1 ) >f(x2 ),那么就说函数y=f(x)在区间D上是减函数。 如果函数在区间D上是增函数或减函数,那么就说函数在这一区间具有(严格的)单调性,区间D叫做的单调区间。 (2)函数单调性的内涵与外延 ⑴函数的单调性也叫函数的增减性。函数的单调性是对某个区间而言的,是一个局部概念。 ⑵由函数增减性的定义可知:任意的x1、x2∈D, ① x1<x2 ,且f(x1 ) <f(x2 ),y=f(x)在区间D上是增函数;(可用于判断或证明函数的增减性) ② y=f(x)在区间D上是增函数,且x1<x2 , f(x1 ) <f(x2 ) ;(可用于比较函数值的大小) ③ y=f(x)在区间D上是增函数,且f(x1 ) <f(x2 ), x1<x2。(可用于比较自变量值的大小) 2. 函数单调性证明方法 证明函数单调性的方法有:定义法(即比较法);导数法。 实际上,用导数方法证明一般函数单调性是很便捷的方法,定义法是基本方法,常用来证明解决抽象函数或不易求导的函数的单调性。 (1)定义法:利用增减函数的定义证明。在证明过程中,把数式的大小比较转化为求差比较(或求商比

函数的单调性与最值(含解析

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义 增函数 减函数 定义 设函数f (x )的定义域为I .如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1, x 2 当x 1f (x 2) ,那么就说 函数f (x )在区间D 上是减函数 图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >1 2 B .k <12 C .k >-12 D .k <- 1 2

高一数学(人教版必修一)教案:《函数的最大(小)值》

§1.3.1函数的最大(小)值 一.教学目标 1.知识与技能: 理解函数的最大(小)值及其几何意义. 学会运用函数图象理解和研究函数的性质. 2.过程与方法: 通过实例,使学生体会到函数的最大(小)值,实际上是函数图象的最高(低)点的纵坐标,因而借助函数图象的直观性可得出函数的最值,有利于培养以形识数的解题意识. 3.情态与价值 利用函数的单调性和图象求函数的最大(小)值,解决日常生活中的实际问题,激发学生学习的积极性. 二.教学重点和难点 教学重点:函数的最大(小)值及其几何意义 教学难点:利用函数的单调性求函数的最大(小)值. 三.学法与教学用具 1.学法:学生通过画图、观察、思考、讨论,从而归纳出求函数的最大(小)值的方法和步骤. 2.教学用具:多媒体手段 四.教学思路 (一)创设情景,揭示课题. 画出下列函数的图象,指出图象的最高点或最低点,并说明它能体现函数的什么特征? ①()3f x x =-+ ②()3 [1,2]f x x x =-+∈- ③2 ()21f x x x =++ ④2 ()21[2,2]f x x x x =++∈- (二)研探新知 1.函数最大(小)值定义 最大值:一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有()f x M ≤; (2)存在0x I ∈,使得0()f x M =. 那么,称M 是函数()y f x =的最大值. 思考:依照函数最大值的定义,结出函数()y f x =的最小值的定义. 注意:

①函数最大(小)首先应该是某一个函数值,即存在0x I ∈,使得0()f x M =; ②函数最大(小)应该是所有函数值中最大(小)的,即对于任意的x I ∈,都有 ()(())f x M f x m ≤≥. 2.利用函数单调性来判断函数最大(小)值的方法. ①配方法 ②换元法 ③数形结合法 (三)质疑答辩,排难解惑. 例1.(教材P 30例3)利用二次函数的性质确定函数的最大(小)值. 解(略) 例2.将进货单价40元的商品按50元一个售出时,能卖出500个,若此商品每个涨价1元,其销售量减少10个,为了赚到最大利润,售价应定为多少? 解:设利润为y 元,每个售价为x 元,则每个涨(x -50)元,从而销售量减少 10(50),x -个共售出500-10(x-50)=100-10x(个) ∴y=(x-40)(1000-10x) 9000(50x +≤2=-10(x-70)<100) ∴max 709000x y ==时 答:为了赚取最大利润,售价应定为70元. 例3.求函数2 1 y x = -在区间 上的最大值和最小值. 解:(略) 例4.求函数y x =+ 解:令201t x t =≥=-+有则 2215 1()024 y t t t t =-++=--+ ≥Q 21()02t ∴--≤ 2155 ()244 t ∴--+≤ .∴5 原函数的最大值为4

高考总复习:函数的单调性与最值

第三节函数的单调性与最值 [知识能否忆起] 一、函数的单调性 1.单调函数的定义

图象描述 自左向右看图象逐渐上升 自左向右看图象逐渐下降 2.单调区间的定义 若函数y =f (x )在区间D 上是增函数或减函数,则称函数y =f (x )在这一区间上具有(严格的)单调性,区间D 叫做y =f (x )的单调区间. 二、函数的最值 前提 设函数y =f (x )的定义域为I ,如果存在实数M 满足 条件 ①对于任意x ∈I ,都有f (x )≤M ; ②存在x 0∈I ,使得f (x 0)=M ①对于任意x ∈I ,都有f (x )≥M ; ②存在x 0∈I ,使得f (x 0)=M 结论 M 为最大值 M 为最小值 [小题能否全取] 1.(2012·陕西高考)下列函数中,既是奇函数又是增函数的为( ) A .y =x +1 B .y =-x 3 C .y =1 x D .y =x |x | 解析:选D 由函数的奇偶性排除A ,由函数的单调性排除B 、C ,由y =x |x |的图象可知此函数为增函数,又该函数为奇函数,故选D. 2.函数y =(2k +1)x +b 在(-∞,+∞)上是减函数,则( ) A .k >12 B .k <12 C .k >-1 2 D .k <-1 2 解析:选D 函数y =(2k +1)x +b 是减函数, 则2k +1<0,即k <-1 2 .

3.(教材习题改编)函数f (x )=1 1-x 1-x 的最大值是( ) A.4 5 B.54 C.3 4 D.43 解析:选D ∵1-x (1-x )=x 2 -x +1=? ????x -122+34≥34 ,∴0<11-x 1-x ≤43. 4.(教材习题改编)f (x )=x 2 -2x (x ∈[-2,4])的单调增区间为________;f (x )max =________. 解析:函数f (x )的对称轴x =1,单调增区间为[1,4],f (x )max =f (-2)=f (4)=8. 答案:[1,4] 8 5.已知函数f (x )为R 上的减函数,若m f (n ); ???? ??1x >1,即|x |<1,且x ≠0. 故-1 (-1,0)∪(0,1) 1.函数的单调性是局部性质 从定义上看,函数的单调性是指函数在定义域的某个子区间上的性质,是局部的特征.在某个区间上单调,在整个定义域上不一定单调. 2.函数的单调区间的求法 函数的单调区间是函数定义域的子区间,所以求解函数的单调区间,必须先求出函数的定义域.对于基本初等函数的单调区间可以直接利用已知结论求解,如二次函数、对数函数、指数函数等;如果是复合函数,应根据复合函数的单调性的判断方法,首先判断两个简单函数的单调性,再根据“同则增,异则减”的法则求解函数的单调区间. [注意] 单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结.

高中数学必修1函数的基本性质

高中数学必修1函数的基本性质 1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。 如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。 注意: ○ 1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○ 2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。 (2)利用定义判断函数奇偶性的格式步骤: ○ 1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○ 2 确定f (-x )与f (x )的关系; ○ 3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。 (3)简单性质: ①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称; ②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上: 奇+奇=奇,奇?奇=偶,偶+偶=偶,偶?偶=偶,奇?偶=奇 2.单调性 (1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1f (x 2)),那么就说f (x )在区间D 上是增函数(减函数); 注意: ○ 1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○ 2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1

第05讲-函数的单调性与最值(讲义版)

第05讲-函数的单调性与最值 一、考情分析 借助函数图象,会用符号语言表达函数的单调性、最大值、最小值,理解它们的作用和实际意义. 二、知识梳理 1.函数的单调性 (1)单调函数的定义 增函数减函数 定义设函数y=f(x)的定义域为A,区间M?A,如果取区间M中任意两个值x1,x2,改变量Δx=x2-x1>0,则当 Δy=f(x2)-f(x1)>0时,就称 函数y=f(x)在区间M上是增 函数 Δy=f(x2)-f(x1)<0时,就称函数y =f(x)在区间M上是减函数 图象 描述 自左向右看图象是上升的自左向右看图象是下降的 (2)上是增函数或是减函数, 性,区间M称为单调区间. 2.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件(1)对于任意x∈I,都有f(x)≤M; (2)存在x0∈I,使得f(x0)=M (3)对于任意x∈I,都有f(x)≥M; (4)存在x0∈I,使得f(x0)=M 结论M为最大值M为最小值 [方法技巧] 1.(1)闭区间上的连续函数一定存在最大值和最小值,当函数在闭区间上单调时最值一定在端点处取到. (2)开区间上的“单峰”函数一定存在最大值(或最小值).

2.函数y =f (x )(f (x )>0)在公共定义域内与y =-f (x ),y =1 f (x ) 的单调性相反. 3.“对勾函数”y =x +a x (a >0)的增区间为(-∞,-a ),(a ,+∞);单调减区间是[-a ,0),(0,a ]. 三、 经典例题 考点一 确定函数的单调性(区间) 【例1-1】(2019·安徽省泗县第一中学高二开学考试(理))如果函数f(x)在[a ,b]上是增函数,对于任意的x 1,x 2∈[a ,b](x 1≠x 2),下列结论不正确的是( ) A . ()()1212 f x f x x x -->0 B .f(a)0 D .()() 2121x x f x f x -->0 【答案】B 【解析】 试题分析:函数在[a ,b]上是增函数则满足对于该区间上的12,x x ,当12x x <时有()()12f x f x <,因此 ()()1212 0f x f x x x ->-,(x 1-x 2) [f(x 1)-f(x 2)]>0, ()() 21 210x x f x f x ->-均成立,因为不能确定12,x x 的 大小,因此f(a)

高一数学函数的性质

高一数学函数知识点归纳_高一数学函数的性质 高一数学函数知识点归纳 1、函数:设A、B为非空集合,如果按照某个特定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数,写 作y=f(x),x∈A,其中,x叫做自变量,x的取值范围A叫做函数 的定义域,与x相对应的y的值叫做函数值,函数值的集合 B={f(x)∣x∈A}叫做函数的值域。 2、函数定义域的解题思路: ⑴若x处于分母位置,则分母x不能为0。 ⑵偶次方根的被开方数不小于0。 ⑶对数式的真数必须大于0。 ⑷指数对数式的底,不得为1,且必须大于0。 ⑸指数为0时,底数不得为0。 ⑹如果函数是由一些基本函数通过四则运算结合而成的,那么,它的定义域是各个部分都有意义的x值组成的集合。 ⑺实际问题中的函数的定义域还要保证实际问题有意义。 3、相同函数 ⑴表达式相同:与表示自变量和函数值的字母无关。 ⑵定义域一致,对应法则一致。 4、函数值域的求法

⑴观察法:适用于初等函数及一些简单的由初等函数通过四则运算得到的函数。 ⑵图像法:适用于易于画出函数图像的函数已经分段函数。 ⑶配方法:主要用于二次函数,配方成y=(x-a)2+b的形式。 ⑷代换法:主要用于由已知值域的函数推测未知函数的值域。 5、函数图像的变换 ⑴平移变换:在x轴上的变换在x上就行加减,在y轴上的变换在y上进行加减。 ⑵伸缩变换:在x前加上系数。 ⑶对称变换:高中阶段不作要求。 6、映射:设A、B是两个非空集合,如果按某一个确定的对应法则f,使对于A中的任意仪的元素x,在集合B中都有唯一的确定的 y与之对应,那么就称对应f:A→B为从集合A到集合B的映射。 ⑴集合A中的每一个元素,在集合B中都有象,并且象是唯一的。 ⑵集合A中的不同元素,在集合B中对应的象可以是同一个。 ⑶不要求集合B中的每一个元素在集合A中都有原象。 7、分段函数 ⑴在定义域的不同部分上有不同的解析式表达式。 ⑵各部分自变量和函数值的取值范围不同。 ⑶分段函数的定义域是各段定义域的交集,值域是各段值域的并集。 8、复合函数:如果(u∈M),u=g(x)(x∈A),则, y=f[g(x)]=F(x)(x∈A),称为f、g的复合函数。 高一数学函数的性质

高一数学函数的单调性与最值教案

高一数学函数的单调性 与最值教案 内部编号:(YUUT-TBBY-MMUT-URRUY-UOOY-DBUYI-0128)

高一数学——函 数 第三讲 函数的单调性与最大(小)值 【教学目标】: (1)通过已学过的函数特别是二次函数,理解函数的单调性及其几何意义; (2)学会运用函数图象理解和研究函数的性质; (3)能够熟练应用定义判断数在某区间上的的单调性; (4)理解函数的最大(小)值及其几何意义。 【重点难点】: 1.重点:函数的单调性、最大(小)值及其几何意义, 2.难点: 利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值。 【教学过程】:用具: 一、知识导向或者情景引入 1、观察下列各个函数的图象,并说说它们分别反映了相应函数的哪些变化规律: (3)函数图象是否具有某种对称性 2、画出下列函数的图象,观察其变化规律: (1)f(x) = x ○ 1 从左至右图象上升还是下降 ______ ○ 2 在区间 ____________ 上,随着x 的增 大,f(x)的值随着 ________ .

(2)f(x) = -2x+1 ○1从左至右图象上升还是下降 ______ ○2在区间 ____________ 上,随着x的增大,f(x)的值随着 ________ . (3)f(x) = x2 ○1在区间 ____________ 上,f(x)的值随着x的增大而 ________ . ○2在区间 ____________ 上,f(x)的值随着x的增大而 ________ . 二、新课教学 (一)函数单调性定义 1.增函数 一般地,设函数y=f(x)的定义域为I, 如果对于定义域I内的某个区间D内的任意两个自变量x 1,x 2 ,当x 1

高一数学函数单调性的定义图象及应用

函数的单调性习题 一. 选择题: 1.函数1 1 --=x y 的单调区间是 ( ) ),.(+∞-∞A )0,.(-∞B ),1(),1,.(+∞-∞C ()+∞-∞,1)1,.(Y D 2.如果函数)(x f 在],[b a 上是增函数,那么对于任意的)(],,[,2121x x b a x x ≠∈,下列结论中不正确的是 ( ) 0) ()(. 2 121>--x x x f x f A 0)]()()[.(2121>--x f x f x x B )()()()(.21b f x f x f a f C <<< 0) ()(. 121 2>--x f x f x x D 3.函数2)1(2)(2+-+=x a x x f 在区间]4,(-∞上单调递减,则a 的取值范围是( ) ),3.[+∞-A ]3,.(--∞B ]5,.(-∞C ),3[+∞ 4.函数2 1 )(++= x ax x f 在区间),2(+∞-上单调递增,则a 的取值范围是( ) )21,0.(A ),1()1,.(+∞--∞Y B ),2 1 .(+∞C ),2.(+∞-D 5.函数)2(,2 3 -≠+=x x y 在区间]5,0[上的最大值、最小值分别是( ) 0,73.A 0,23.B 73,23.C .D 最大值7 3 ,无最小值。 6.函数23)(2++=x x x f 在区间)5,5(+-上的最大值、最小值分别是( ) 12,42.A 41,42.-B 41,12.-C D 最小值4 1 -,无最大值。 7.下列命题正确的是 ( ) A 定义在),(b a 上的函数)(x f ,若存在),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 B 定义在),(b a 上的函数)(x f ,若有无穷多对),(21b a x x ∈,使得21x x <时有 )()(21x f x f <,那么)(x f 在),(b a 上为增函数。 C 若)(x f 在区间1I 上为增函数,在区间2I 上也为增函数,那么)(x f 在21I I Y 上也一定为增函数, D 若在)(x f 区间I 上为增函数且),(),()(2121I x x x f x f ∈<,那么21x x <。 8.设),(),,(d c b a 都是)(x f 的单调增区间,且),(),,(21d c x b a x ∈∈21x x <,则)(1x f 与)(2x f 的大小关系为 ( ) )()(.21x f x f A < )()(.21x f x f B > )()(.21x f x f C = D 不能确定 9.考察函数:①x y =;②x x y =;③x x y 2 -=;④x x x y +=。其中在)0,(-∞上 为增函数的有( ) .A ①② B 。②③ C 。③④ .D ①④ 10.已知函数32)(2+-=x x x f 在闭区间],0[m 上有最大值3,最小值2,则m 的取值范围是( ) ),1.[+∞A ]2,0.[B ]2,.(--∞C ]2,1.[D 二. 填空题: 1. 函数x y -=在),[+∞a 上是减函数,则a 的取值范围是 2. 函数x x y 1 2- =的单调递增区间是 3. 函数562+-=x x y 的单调增区间是 4. 已知函数)(x f 在区间),0(+∞上是减函数,那么)1(2+-a a f 与)4 3 (f 的大小关 系为 5. 函数245x x y --=的单调递增区间是

函数的单调性与最值(含例题详解)

函数的单调性与最值 一、知识梳理 1.增函数、减函数 一般地,设函数f(x)的定义域为I,区间D?I,如果对于任意x1,x2∈D,且x1f(x2) . 2.单调区间的定义 若函数y=f(x)在区间D上是增函数或减函数,则称函数y=f(x)在这一区间上具有(严格的)单调性,区间D叫做y=f(x)的单调区间. 3.函数的最值 前提设函数y=f(x)的定义域为I,如果存在实数M满足 条件①对于任意x∈I,都有 f(x)≤M;②存在x0∈I,使得 f(x0)=M ①对于任意x∈I,都有f(x)≥M;②存在 x0 ∈ I,使得f(x0) =M 结论M为最大值M为最小值 注意: 1.函数的单调区间是指函数在定义域内的某个区间上单调递增或单调递减.单调区间只能用区间表示,不能用集合或不等式表示;如有多个单调区间应分别写,不能用并集符号“∪”联结,也不能用“或”联结. 2.两函数f(x),g(x)在x∈(a,b)上都是增(减)函数,则f(x)+g(x)也为增(减)函数,但 f(x)·g(x),1等的单调性与其正负有关,切不可盲目类比. f( x) [试一试] 1.下列函数中,在区间(0,+∞)上为增函数的是( ) A.y=ln(x+2) B.y=-x+1 D.y=x+1 解析:选 A 选项 A 的函数y=ln(x+2)的增区间为(-2,+∞),所以在(0,+∞)上一定是增函数. 2.函数f(x)=x2-2x(x∈[-2,4])的单调增区间为___ ;f(x)max= ________ . 解析:函数f(x)的对称轴x=1,单调增区间为[1,4],f(x)max=f(-2)=f(4)=8. 答案:

相关文档
最新文档