2011年山东大学数学分析考研试题

2011年山东大学数学分析考研试题

1.证明:31124)1(n

dx x n ≥

?∫? (15分) 2.求2222a z y x =++被ax y x =+22所截面积。(15分)

3.若)(x f 在0x 处有极大,求证:00=??=x x k x f

(15分)

4.证明:)(x f 为凸函数,则)(x f 连续。(15分)

5.已知2121,2,1??+===n n n F F F F F ,证明:∑∞=11n n F 收敛。(20分)

6. (1))(x f 在[]1,0上连续,(2)1)(≤x f ,(3)

∫=1

0)(dx x f ,求证:[]21)(1,0,≤

∈?∫a b

dx x f b a 有 (20分) 7.证明:),E x R m (中ρ一致连续 (20分)

8.证明:∑P 1发散,P 为遍历所有质数 (15分)

9.已知:)(x f 二次可微且)(x f ′′有界,证明:若+∞→→x x f ,0)(时,+∞→→′x x f ,0)( (15分)

山东大学数学分析

2005年试题 一、1.求极限1222lim n n a a na n →∞ ++L ,其中lim .n n a a →∞= 2.求极限21lim (1).x x x e x -→+∞+ 3.证明区间(0,1)和(0,)+∞具有相同的基数(势)。 4.计算积分:21,D dxdy y x +??其中D 是由0,1,x y y x ===所围成的区域。 5.计算:2222,:21C ydx xdy I C x y x y -+=+=+?方向为逆时针。 6.设0,0,a b >>证明:11()().1b b a a b b ++≥+ 二、设()f x 为[,]a b 上的有界可测函数且 2[,]()0,a b f x dx =?证明: ()f x 在 [,]a b 上几乎处处为零。 三、设()f x 在(0,)+∞内连续且有界,试讨论()f x 在(0,)+∞内的一致连续性。 四、 设222220(,)0,0 x y f x y x y +>=+=?,讨论(,)f x y 在原点的连续性,偏导数存在性及可微性。 五、设()f x 在(,)a b 内二次可微,求证: 2 ()(,),..()2()()().24a b b a a b s t f b f f a f ξξ+-''?∈-+= 六、()f x 在R 上二次可导,,()0,x f x ''?∈>R 又00,()0,lim ()0,lim ()0.x x x f x f x f x αβ→-∞→+∞''?∈<=<=>R 证明:()f x 在R 上恰有两个零点。 七、设()f x 和()g x 在[,]a b 内可积,证明:对[,]a b 的任意分割

北京大学数学分析考研试题及解答

判断无穷积分 1 sin sin( )x dx x +∞ ?的收敛性。 解 根据不等式31|sin |||,||62 u u u u π -≤≤, 得到 33 sin sin 1sin 11 |sin()|||66x x x x x x x -≤≤, [1,)x ∈+∞; 从而 1sin sin (sin())x x dx x x +∞-?绝对收敛,因而收敛, 再根据1sin x dx x +∞?是条件收敛的, 由sin sin sin sin sin()(sin())x x x x x x x x =-+ , 可知积分1sin sin()x dx x +∞?收敛,且易知是是条件收敛的。 例5.3.39 设2()1...2!! n n x x P x x n =++++,m x 是21()0m P x +=的实根, 求证:0m x <,且lim m m x →+∞ =-∞。 证明 (1)任意* m N ∈,当0x ≥时,有21()0m P x +>; , 当0x <且x 充分大时,有21()0m P x +<,所以21()0m P x +=的根m x 存在, 又212()()0m m P x P x +'=>,21()m P x +严格递增,所以根唯一,0m x <。 (2) 任意(,0)x ∈-∞,lim ()0x n n P x e →+∞ =>,所以21()m P x +的根m x →-∞,(m →∞)。 因为若m →∞时,21()0m P x +=的根,m x 不趋向于-∞。 则存在0M >,使得(,0)M -中含有{}m x 的一个无穷子列,从而存在收敛子列0k m x x →,(0x 为某有限数0x M ≥-); 21210lim ()lim ()0k k k M m m m k k e P M P x -++→+∞ →+∞ <=-≤=,矛盾。 例、 设(1)ln(1)n n p a n -=+,讨论级数2 n n a ∞ =∑的收敛性。 解 显然当0p ≤时,级数 2 n n a ∞ =∑发散; 由 20 01 1ln(1) 1lim lim 2x x x x x x x →→- -++=011lim 21x x →=+ 12=,

山东大学837化工原理考研真题及笔记详解

山东大学837化工原理考研真题及笔记详解 2021年山东大学《837化工原理》考研全套 目录 ?山东大学《837化工原理》历年考研真题汇编 ?全国名校化工原理考研真题汇编(含部分答案) 说明:本部分收录了本科目近年考研真题,方便了解出题风格、难度及命题点。此外提供了相关院校考研真题,以供参考。 2.教材教辅 ?陈敏恒《化工原理》(第4版)笔记和课后习题(含考研真题)详解?[预售]陈敏恒《化工原理》(第4版)(上册)配套题库【考研真题精选+章节题库】 ?[预售]陈敏恒《化工原理》(第4版)(下册)配套题库【考研真题精选+章节题库】 ?夏清《化工原理》(第2版)(上册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】

?夏清《化工原理》(第2版)(下册)配套题库【名校考研真题+课后习题+章节题库+模拟试题】 说明:以上为本科目参考教材配套的辅导资料。 ? 试看部分内容 名校考研真题 绪论 本章不是考试重点,暂未编选名校考研真题,若有将及时更新。 第1章流体流动 一、填空题 1.某液体在内径为的水平管路中作稳定层流流动其平均流速为u,当它以相同的体积流量通过等长的内径为()的管子时,则其流速为原来的倍,压降是原来的倍。[四川大学2008研] 【答案】4 16查看答案 【解析】由流量可得,流速,因此有:,即流速为原来的4倍。 根据哈根-泊肃叶(Hagen-Poiseuille)公式(为压强降),则有:

因此,压降是原来的16倍。 2.一转子流量计,当通过水流量为1m3/h时,测得该流量计进、出间压强降为20Pa;当流量增加到1.5m3/h时,相应的压强降为。[四川大学2008研]【答案】20Pa查看答案 【解析】易知,当转子材料及大小一定时,、及为常数,待测流体密度可视为常数,可见为恒定值,与流量大小无关。 3.油品在φ的管内流动,在管截面上的速度分布可以表示为 ,式中y为截面上任一点至管内壁的径向距离(m),u为该点上的流速(m/s);油的粘度为。则管中心的流速为 m/s,管半径中点处的流速为 m/s,管壁处的剪应力为。[清华大学2001研]【答案】0.4968 0.3942 1查看答案 【解析】管内径。 在管中心处,则流速为。 在管半径中心处,则流速为。 由题意可知,则管壁处剪切力为: 4.某转子流量计,其转子材料为不锈钢,当测量密度为的空气的流量时,最大流量为。现用来测量密度为氨气的流量时,其最大流量为。[清华大学2000研]

最新山东大学2000-数学分析

山东大学2000-2007 数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ? 1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3.设(),()f x g x 在[0,)+∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 4 0?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 .x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。

山东大学 高等数学 【三套试题汇总】

一 求下列极限 1 1 lim sin n n n →∞ 1sin ≤n Θ 01lim =∞→n n ∴ 0sin 1lim =∞→n n n 2 求 lim x x x → Θ1lim 0 -=- →x x x 1lim 0 =+ →x x x ∴0 lim x x x →不存在 3 求 1 lim x x e → Θ ,lim 10 +∞=+→x x e 0lim 10 =-→x x e ∴10 lim x x e →不存在 0sin 4 lim sin 5x x x x x →++ 原式=1 5sin 1sin 1lim 0=+ + →x x x x x 一 求下列极限 1 1 lim cos n n n →∞ Θ ,1cos ≤n 01lim =∞→n n ∴ 0cos 1lim =∞→n n n 2 求2 2lim 2x x x →-- Θ ,122 lim 22lim 22-=--=--++→→x x x x x x 122lim 2=--- →x x x ∴2 2lim 2x x x →--不存在 3 求10 lim 2 x x → Θ ,2 2lim 1lim 10 0+∞==+→+→x x x x 02 2lim 1 lim 10 0==-→-→x x x x ∴ 10 lim 2 x x →不存在 02sin 4 lim 3sin x x x x x →++求 原式=43sin 3 1sin 21lim 0=++→x x x x x 一 求下列极限 1 1 lim n tgn n →∞ 不存在 2 求lim x a x a x a →-- Θ ,1lim lim =--=--+ + →→a x a x a x a x a x a x ,1lim lim -=--=----→→a x x a a x a x a x a x ∴lim x a x a x a →--不存在 3 求120lim x x e → Θ ,lim 210 +∞=+→x x e 0lim 21 0=- →x x e ∴ 120 lim x x e →不存在

浙江大学数学分析考研试题

浙江大学2006年攻读硕士研究生入学初试试题 考试科目:数学分析 科目代号:427 注意:所有解答必须写在答题纸上,写在试卷或草稿纸上一律无效! 111(20)1...log ,log 23111lim(...)122n n x n e n n n n →∞=++++-+++++一、分(1)证明数列收敛其中表示以为底的对数;(2)计算2 (15)[,],()()2()lim 0.()k k k k k a b r x f x r f x r f x r f x →∞++--=二、分函数f(x)在闭区间上连续,存在收敛于零的数列使得对任意的, 证明:为线性函数. (15)()(),()h x f x f x 三、分假设函数为处处不可导的连续函数,以此为基础构造连续函数使仅在两点可导,并说明理由。 22222221()sin ,0(20)(,)0,0(1)(,),(,)(2),(,)x y x y x y f x y x y f f x y x y x y f f f x y x y ?++≠?+=??+=? ????????四、分二元函数求 是否在原点连续,在原点是否可微,并说明理由。 0 000 (15)()[,]()1 lim ()()xy y f x a b f x dx a a f x dx f x dx ∞ ∞ ∞-→+>=???五、分在任意区间黎曼可积,收敛,证明: 2222223/21 (15),0,0,0.()x y z xdydz ydzdx zdxdy a b c ax by cz ++=++>>>++??六、分计算 222(15):1cos().V V x y z I ax by cz dxdydz ++==++???七、分计算在单位球上的积分 2()01!(20)(),12(0)n n n f x x x f ∞==--∑八、分设函数证明级数收敛。 (15)()(0)0,'()(),[0,)()0.f x f x f x Af x f x =≤∞=九、分设可微,对于任意的有证明在上注:这是我凭记忆记下来的,有些题目可能不是很准确。希望对大家有用! dragonflier 2006-1-16

山东大学2000-2007数学分析

2000年试题 一、 填空。 1. 22 2 333 12(1)lim[]?n n n n n →∞-+++= 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设r =则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149 x y +=正向,则()()?x y dx x y dy Γ-++=? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 4 0?x π =?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 0.x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

数学分析报告考研试题

高数考研试题2 一、填空题(本题共6小题,每小题4分,满分24分. 把答案填在题中横线上) (1)设,0,0,0,1cos )(=≠?????=x x x x x f 若若λ 其导函数在x=0处连续,则λ的取值围是2>λ. 【分析】 当≠x 0可直接按公式求导,当x=0时要求用定义求导. 【详解】 当1>λ时,有 ,0, 0,0,1sin 1cos )(21 =≠?????+='--x x x x x x x f 若若λλλ 显然当2>λ时,有) 0(0)(lim 0f x f x '=='→,即其导函数在x=0处连续. 【评注】 原题见《考研数学大串讲》P.21【例5】(此考题是例5的特殊情形). (2)已知曲线b x a x y +-=2 33与x 轴相切,则2b 可以通过a 表示为=2b 6 4a . 【分析】 曲线在切点的斜率为0,即0='y ,由此可确定切点的坐标应满足的条件,再根据在切点处纵坐标为零,即可找到2 b 与a 的关系. 【详解】 由题设,在切点处有 0332 2=-='a x y ,有 .220a x = 又在此点y 坐标为0,于是有 030023 0=+-=b x a x , 故 .44)3(6 422202202a a a x a x b =?=-= 【评注】 有关切线问题应注意斜率所满足的条件,同时切点还应满足曲线方程. 完全类似例题见《文登数学全真模拟试卷》数学四P.36第一大题第(3)小题. (3)设a>0, ,x a x g x f 其他若, 10,0,)()(≤≤?? ?==而D 表示全平面,则??-=D dxdy x y g x f I )()(= 2 a . 【分析】 本题积分区域为全平面,但只有当10,10≤-≤≤≤x y x 时,被积函数才不为零,因此实际上只需在满足此不等式的区域积分即可. 【详解】 ??-=D dxdy x y g x f I )()(=dxdy a x y x ??≤-≤≤≤1 0,102 =. ])1[(21 02101 2a dx x x a dy dx a x x =-+=??? + 【评注】 若被积函数只在某区域不为零,则二重积分的计算只需在积分区域与被积函数不为零的区域的公共部分上积分即可. 完全类似例题见《数学复习指南》P.191【例8.16-17】 . (4)设n 维向量0,),0,,0,(<=a a a T Λα;E 为n 阶单位矩阵,矩阵 T E A αα-=, T a E B αα1+=,

山东大学

山东大学-- 019 数学学院2011年硕士研究生招生目录

一、学术型学位 1.复试方式 全部初试上线考生均可参加复试,其形式为笔试和面试相结合,复试成绩实行百分制。复试成绩=(复试笔试成绩+复试面试成绩)×95%+外语听力成绩。 硕士拟录取成绩=初试成绩÷5×50%+复试成绩×50% 2.复试笔试科目: 基础数学:常微分方程、复变函数、实变函数(各约占1/3); 计算数学:数值逼近、数值方法、微分方程数值解(各约占1/3); 概率论与数理统计:概率论、数理统计(各约占1/2); 应用数学:计算方法、线性规划、数学模型(各约占1/3); 运筹学与控制论: 运筹学方向:概率论与数理统计、线性规划、整数线性规划(各约占1/3); 控制论方向:概率论与数理统计、线性系统(各约占1/2); 信息安全:概率论与数理统计、数论与代数结构、应用密码学(各约占1/3); 金融学、金融数学与金融工程:概率论、数理统计(各约占1/2); 系统理论:概率论与数理统计、线性规划、整数线性规划(各约占1/3)。 3.复试面试内容: 基础数学:英语、数学分析、线性代数、常微分方程、复变函数、实变函数; 计算数学:英语、数学分析、线性代数、微分方程数值解、数值逼近、数值代数、算法

语言; 概率论与数理统计:英语、数学分析、线性代数、概率论、数理统计、实变函数; 应用数学:英语、数学分析、线性代数、常微分方程、线性规划、数学模型、计算方法; 运筹学与控制论:英语、数学分析、线性代数、常微分方程、线性规划、整数线性规划、概率论与数理统计;或英语、数学分析、线性代数、常微分方程、自动控制原理、线性系统理论、概率论与数理统计; 信息安全:英语、数学分析、线性代数、概率论、数论与代数结构、计算机网络安全、应用密码学; 金融数学与金融工程:英语、数学分析、线性代数、概率论、数理统计、实变函数; 系统理论:英语、数学分析、线性代数、概率论、线性规划。 4.复试笔试科目参考书目: 基础数学:《复变函数》(第四版),余家荣著,高等教育出版社2007年版;《复变函数论》(第三版),钟玉泉编著,高等教育出版社2004年版;《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大学出版社2005年版;《常微分方程教程》(第二版),丁同仁、李承治编著,高等教育出版社2004年版。 计算数学:《数值逼近》,孙淑英、张圣丽等编著,山东大学出版社;《数值线性代数》,徐树方著,北京大学出版社2006年版;《偏微分方程数值解法》,李荣华等编著,吉林大学,高等教育出版社2005年版;也可参考其他同类教材。 概率论与数理统计:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》(一),复旦大学编,高等教育出版社1979年版;《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版。 应用数学:《数学模型》(第三版),姜启源编著,高等教育出版社2003年版;《计算方法引论》(第三版),徐萃薇、孙绳武编著,高等教育出版社2007年版;《运筹学》(第三版)(线性规划部分),刁在筠等编著,高等教育出版社2007年版。 运筹学与控制论:《概率论基础》(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《概率论与数理统计》(第二版),茆诗松、周纪芗编著,中国统计出版社2000年版;《运筹学》(第三版),刁在筠等编著,高等教育出版社2007年版;《自动控制原理》(第三版),高国桑、余文等著,华南理工大学出版社2009年版;《线性系统理论》,程兆林、马树萍编著,科学出版社2006年版;《数字信号处理——理论、算法与实现》(第二版),胡广书编著,清华大学出版社2003年版; 信息安全:英语、数学分析、线性代数、概率论同其它专业。《数论与代数结构》,王小云编,讲义;《密码学导引》,冯登国、裴定一编,科学出版社1999年版;《网络安全》,胡道元、闵京华著,清华大学出版社2004年版。 金融数学与金融工程:《概率论与数理统计》,刘建亚、吴臻编,高等教育出版社2004年版;《数理统计》,胡发胜、宿洁编,山东大学出版社2004年版;《概率论基础》(第一、二分册)(第二版),复旦大学李贤平编,高等教育出版社2008年第十四次印刷;《数理统计》,复旦大学编,高等教育出版社1979年版。 系统理论:《概率论》,华东师范大学出版社。 5.加试科目参考书目: 复变函数:《复变函数论》(第三版),钟玉泉编,高等教育出版社2004年版;《复变函数论》,张培璇编,山东大学出版社1993年版;《复变函数》(第四版),余家荣,高等教育出版社2007年版。 实变函数:《实变函数与泛函分析》(第二版),郭大钧、黄春朝、梁方豪编著,山东大

数学分析考研试题 (1)

南京理工大学2005年数学分析试题 一、(10分)设0>n a ,n=1,2, )(,0∞→≠→n a a n ,证 1lim =∞→n n n a 。 二、(15分)求积分 ??∑?ds n F ??其中),,=(x y yz x y F ?,∑为半球面,0z 1z y x 222≥,=++和圆1y x 0z 22≤+, =的外侧 三、(15分)设f 为一阶连续可微函数,且) (0f ''存在,f (0)=0, 定义?????≠'0 x x f x 10 x 0f x g )(=)()=( 证 g 是一个可微,且g '在0点连续。 四、(15分)证明 级数 ∑∞1n x n 2e =- 在),+(∞0上不一致收敛,但和函数在) ,+(∞0上无穷次可微。 五、(15分)设〕,〔b a C f ∈,证明,0>?ε存在连续折线函数g ,使得 ε<)()-(x g x f ,〕〔b a,x ∈ ?。 六、(15分)设),(t x u 为二元二阶连续可微函数且u 的各一阶偏导关于x 是以1为周期 函数,且2222x u t u ????=,证明?????E 1022dx x u t u 21t ))+()(()=(是一个与t 无关的函数。 七、(15分)设f 为〕 ,+〔∞1上实值函数,且f (1)=1,)()(+)=(1x x f x 1x f 22≥',证明)(+x f lim x ∞→存在且小于4 1π+。 八、(15分)设∑∞1n n n x a =为一幂函数,在(-R ,R )上收敛,和函数为f ,若数列{}j x 满足 0x x R 21>>>>Λ且0lim =∞ →j j x ,Λ1,2j 0x f j =,)=(,证明 Λ210n 0a n ,,=,= 九、(15)设f 是 〕〔〕,〔b a b a ??上的二元连续映射,定义 {}〕 ,〔),()=(b a y y x f max x g ∈,证明 g 在〔a ,b 〕上连续。 十、(20分)讨论二元函数连续、可偏导、可微三个概念之间的关系,要有论证和反例。

第四章 非线性规划 山大刁在筠 运筹学讲义教学内容

第四章 非线性规划 教学重点:凸规划及其性质,无约束最优化问题的最优性条件及最速下降法,约束最优化问题的最优性条件及简约梯度法。 教学难点:约束最优化问题的最优性条件。 教学课时:24学时 主要教学环节的组织:在详细讲解各种算法的基础上,结合例题,给学生以具体的认识,再通过大量习题加以巩固,也可以应用软件包解决一些问题。 第一节 基本概念 教学重点:非线性规划问题的引入,非线性方法概述。 教学难点:无。 教学课时:2学时 主要教学环节的组织:通过具体问题引入非线性规划模型,在具体讲述非线性规划方法的求解难题。 1、非线性规划问题举例 例1 曲线最优拟合问题 已知某物体的温度? 与时间t 之间有如下形式的经验函数关系: 3 12c t c c t e φ=++ (*) 其中1c ,2c ,3c 是待定参数。现通过测试获得n 组?与t 之间的实验数据),(i i t ?, i=1,2,…,n 。试确定参数1c ,2c ,3c ,使理论曲线(*)尽可能地与n 个测试点 ),(i i t ?拟合。 ∑=++-n 1i 221)]([ min 3i t c i i e t c c ?

例 2 构件容积问题 通过分析我们可以得到如下的规划模型: ??? ????≥≥=++++=0 ,0 2 ..)3/1( max 212 121222211221x x S x x x x a x x t s x x a V ππππ 基本概念 设n T n R x x x ∈=),...,(1,R R q j x h p i x g x f n j i α:,...,1),(;,...,1),();(==, 如下的数学模型称为数学规划(Mathematical Programming, MP): ?? ? ??===≤q j x h p i x g t s x f j i ,...,1,0)( ,...,1,0)( ..) ( min 约束集或可行域 X x ∈? MP 的可行解或可行点 MP 中目标函数和约束函数中至少有一个不是x 的线性函数,称(MP)为非线性规划 令 T p x g x g x g ))(),...,(()(1= T p x h x h x h ))(),...,(()(1=, 其中,q n p n R R h R R g αα:,:,那么(MP )可简记为 ?? ? ??≤≤ 0)( 0 ..)( min x h g(x)t s x f 或者 )(min x f X x ∈ 当p=0,q=0时,称为无约束非线性规划或者无约束最优化问题。 否则,称为约束非线性规划或者约束最优化问题。 定义4.1.1 对于非线性规划(MP ),若X x ∈*,并且有 X ),()(*∈?≤x x f x f 设计一个右图所示的由圆锥和圆柱面 围成的构件,要求构件的表面积为S , 圆锥部分的高h 和圆柱部分的高x 2之 比为a 。确定构件尺寸,使其容积最 大。

数学分析各校考研试题与答案

2003南开大学年数学分析 一、设),,(x y x y x f w -+=其中),,(z y x f 有二阶连续偏导数,求xy w 解:令u=x+y,v=x-y,z=x 则z v u x f f f w ++=; )1()1()1(-++-++-+=zv zu vv vu uv uu xy f f f f f f w 二、设数列}{n a 非负单增且a a n n =∞ →lim ,证明a a a a n n n n n n =+++∞ →1 21 ] [lim 解:因为an 非负单增,故有n n n n n n n n n na a a a a 1 1 21)(][≤ +++≤ 由 a a n n =∞ →lim ;据两边夹定理有极限成立。 三、设? ? ?≤>+=0 ,00),1ln()(2 x x x x x f α试确定α的取值围,使f(x)分别满足: (1) 极限)(lim 0x f x + →存在 (2) f(x)在x=0连续 (3) f(x)在x=0可导 解:(1)因为 )(lim 0x f x + →=)1ln(lim 20x x x ++ →α=)]()1(2[lim 221420n n n x x o n x x x x +-++--→+ α极限存在则2+α0≥知α2-≥ (2)因为)(lim 0 x f x - →=0=f(0)所以要使f(x)在0连续则2->α (3)0)0(='- f 所以要使f(x)在0可导则1->α 四、设f(x)在R 连续,证明积分ydy xdx y x f l ++?)(22与积分路径无关 解;令U=22 y x +则ydy xdx y x f l ++?)(22=2 1du u f l )(?又f(x)在R 上连续故存在F (u ) 使dF(u)=f(u)du=ydy xdx y x f ++)(22 所以积分与路径无关。 (此题应感小毒物提供思路) 五、 设 f(x)在[a,b]上可导, 0)2 (=+b a f 且 M x f ≤')(,证明 2) (4)(a b M dx x f b a -≤?

山大数学分析试题

山大数学分析试题

2000年试题 一、 填空。 1. 222 333 12(1)lim[]?n n n n n →∞-+++=L 2.10 (1) lim ?x x e x x →-+= 3.设3cos ,2sin (02),x t y t t π==<<则22?d y dx = 4.21 2 1 [ln(1)] ?1x x x dx x -++=+? 5.设22,r x y =+则 2216 []?x y r dxdy +≤=?? 6.设Γ表示椭圆22 149x y +=正向,则()()?x y dx x y dy Γ-++=?? 7.级数1 3(2)(1)n n n n x n ∞ =+-+∑的收敛范围为? 8.设()(1)ln(1),f x x x =++则()(0)?n f = 二、 1.设()f x 在[,]a b 上可积,令()(),x a F x f t dt =?证明:()F x 在[,]a b 上连续。 2.求2 0cos(2)(x e x dx αα∞ -?为实数)。 3.试求级数21n n n x ∞ =∑的和函数。 三、任选两题。 1.设()f x 在[,]a b 上连续且()0,f x >证明:21 ()().() b b a a f x dx dx b a f x ≥-??

2.求20cos sin n x nxdx π ?(1n ≥为正整数) 3. 设 (),() f x g x 在 [0,) +∞上可微且满足 lim (1)lim ()(0),(2)lim ()().x x f x A A g x g x x →∞ →∞ =<<+∞≠ →∞ 求证:存在数列{}(,)n n c c n →+∞→∞使得()()()().n n n n f c g c g c f c ''<- 2001年试题 一、1.220 cos 21 lim ?sin x x x x →-=+ 2.2! lim ?n n n n n →∞= 3.设ln(),u x xy =则22?u x ?=? 401cos 2?x xdx π -=?. 5.交换积分顺序2 1 20(,)?x x dx f x y dy -=?? 6.(3,4) (0,1)?xdx ydy -+=? 7.1(1)n n n n x ∞ =+∑的和函数为? 8.设()arctan ,f x x =则(21)(0)?n f += 二、 1.叙述函数()f x 在[,]a b 上一致连续和不一致连续的εδ-型语言。 2.计算定积分2 .x e dx +∞ -? 3.叙述并证明连续函数的中间值定理。 三、本题任选两题。 1.设(,)f x y 处处具有连续的一阶偏导数且(1,0)(1,0).f f =-试证在单位

(最新整理)年山东大学数学分析考研试题

(完整)2009年山东大学数学分析考研试题 编辑整理: 尊敬的读者朋友们: 这里是精品文档编辑中心,本文档内容是由我和我的同事精心编辑整理后发布的,发布之前我们对文中内容进行仔细校对,但是难免会有疏漏的地方,但是任然希望((完整)2009年山东大学数学分析考研试题)的内容能够给您的工作和学习带来便利。同时也真诚的希望收到您的建议和反馈,这将是我们进步的源泉,前进的动力。 本文可编辑可修改,如果觉得对您有帮助请收藏以便随时查阅,最后祝您生活愉快业绩进步,以下为(完整)2009年山东大学数学分析考研试题的全部内容。

2009年山东大学数学分析考研真题 1.设函数)(x f ) ()(bx a bx a --+=??其中)(x ?在a x =的某个小邻域内有定义且可导,求)0('f 2.设π<<++cos 2sin cos 2sin 3.设0,0>>y x ,求)4(),(2 y x y x y x f --=的极值 4.设)cos 1()1arctan()(200x x dt t du x f u x -+= ??,求0lim (x)x f → 5.计算 C xdy ydx -?,其中C 为椭圆22(x 2y)(3x 2y)1+++=,方向为逆时针方向。 6.计算(x y)dxdy x(y z)dydz S -+-??, 其中S 为柱面221x y +=及平面0,3z z ==所围成的区域Ω的整个边界曲面外侧。 7. 设(x)f =(x)f 在[0,)+∞上是否一致连续,并证明。 8.计算积分{}2min ,2D I x y dxdy =??,其中D=}{(x,y)|0x 4,0y 3≤≤≤≤ 9.计算积分20(y)sin 2x I e xydx +∞ -=? 10.设2 222222,0(x,y)00xy x y f x y x y ?+≠?=+??+≠? 当,当,讨论(1)(x,y)f 的连续性;(2),x y f f 的存在性及连续性;(3)(x,y)f 的可微性。 11. 设010,1,2,....n x x n +=== 判断级数0n ∞= 12.设(x)f 在(,)-∞+∞又连续的一阶导数,证明: 1)若' ||lim (x)0,x f α→+∞ =>则方程(x)0f =在(,)-∞+∞至少有一个实根; 2)若'||lim (x)0,x f →+∞=则方程'(x)0f =在(,)-∞+∞至少有一个实根。

2021山东大学计算数学考研真题经验参考书

考研一路走来,也是很多的辛酸,令人感到兴奋,毕竟通过了这一考验。 英语: 专业英语占50分,英译汉,其实专业英语考察的内容完全不是晦涩难懂很深奥的东西,我认为它最难的部分在于题量太多了,它会分为5个部分,每部分有不同的话题,我对喜欢考察的话题印象不太深了,大概就是经济、科技这方面的内容,然后今年真题里还有一段关于改革开放的内容。如果自身英语水平不错的话其实不用太过于担心这一部分的,主要是提升一下自己的翻译速度。因为我们需要在三个小时里做完20个小题,2个计算题,5个名词解释,4个简答,2个论述,5大段翻译,这三个小时你是没有放下笔的机会的,一直写就可以了。 单词用《一本单词》,真题推荐《木糖英语真题手译》,有时间去听蛋核英语微信公众号的网课,还要关注木糖英语考研微信公众号。 政治: 政治77,算不错了,我就多说一点吧。政治我是全程跟着李凡学的,九月份开始,买了李凡的《政治新时器》,然后配合他的政治强化课一起学,听一遍课,看一遍书。这一遍是把考研政治所有的内容都过一遍,让自己有初步的印象,看完一章就做一章的《政治新时器》,《政治新时器》我只做了一遍,如果你第一遍正确率低的话,可以二刷,这一遍大概到了九月底。近代史的内容比较注重时间线,所以我看《政治新时器》,内容更详细,更利于记忆,这一轮可以看两遍。第二轮结束之后对于政治的内容就有大体框架了,这时候也11月了,可以买各种名师试题刷刷成套选择题了,刷名师试卷的同时,我跟着李凡听他的时事政治汇总,时事政治的话我觉得最好的学习方法就是刷题,把各种名师的时事政治题都看过,有印象,考试绝对没问题。名师试卷选择题刷完之后,12月份我开始背分析题,最终结果也还不错。 由于本人专业课准备较迟,九月份才开始边整理边背诵的,四个月不到,中间还有各种事情浪费的时间就不算了,总之时间是相当紧迫的,真是每天起早贪黑,吐血背专业课,最终结果还行,也是感觉很幸运的。希望学弟学妹以我为鉴,早早开始复习,后面才能运筹帷幄、游刃有余,也能取得一个更好的成绩。接下来我结合自身说下复习专业课相关的建议。 专业课的学习,总结起来一句话:理解,提炼,反复。专业课背书是行不通

2017年北大数学分析考研试题(Xiongge)

北京大学2017年硕士研究生招生考试试题 (启封并使用完毕前按国家机密级事项管理) 考试科目:数学基础考试1(数学分析)考试时间:2016年12月25日上午 专业:数学学院各专业(除金融学和应用统计专业) 方向:数学学院各方向(除金融学和应用统计方向) ————————————————————————————————————————说明:答题一律写在答题纸上(含填空题、选择题等客观题),写在此试卷上无效. 1.(10分)证明lim n !+1Z 2 sin n x p 2x dx =0.2.(10分)证明1X n =111+nx 2sin x n ?在任何有限区间上一致收敛的充要条件是?>12.3.(10分)设1X n =1a n 收敛.证明lim s !0+1X n =1a n n s =1X n =1a n . 4.(10分)称 (t )=(x (t );y (t )),(t 2属于某个区间I )是R 2上C 1向量场(P (x;y );Q (x;y ))的积分曲线,若x 0(t )=P ( (t )),y 0(t )=Q ( (t ));8t 2I ,设P x +Q y 在R 2上处处非0,证明向量场(P;Q )的积分曲线不可能封闭(单点情形除外). 5.(20分)假设x 0=1;x n =x n 1+cos x n 1(n =1;2; ),证明:当x !1时,x n 2=o ?1n n ?.6.(20分)假如f 2C [0;1];lim x !0+f (x ) f (0)x =?<ˇ=lim x !1 f (x ) f (1)x 1 .证明:8 2(?;ˇ);9x 1;x 22[0;1]使得 =f (x 2) f (x 1)x 2 x 1 .7.(20分)设f 是(0;+1)上的凹(或凸)函数且 lim x !+1xf 0(x )=0(仅在f 可导的点考虑 极限过程).8.(20分)设 2C 3(R 3), 及其各个偏导数@i (i =1;2;3)在点X 02R 3处取值都是0.X 0点的?邻域记为U ?(?>0).如果 @2ij (X 0) á3 3是严格正定的,则当?充分小时,证明如下极限存在并求之: lim t !+1t 32? U ?e t (x 1;x 2;x 3)dx 1dx 2dx 3: 9.(30分)将(0; )上常值函数f (x )=1进行周期2 奇延拓并展为正弦级数: f (x ) 4 1X n =112n 1 sin (2n 1)x:该Fourier 级数的前n 项和记为S n (x ),则8x 2(0; );S n (x )=2 Z x 0sin 2nt sin t dt ,且lim n !1S n (x )=1.证明S n (x )的最大值点是 2n 且lim n !1S n 2n á=2 Z 0sin t t dt .考试科目:数学分析整理:Xiongge ,zhangwei 和2px4第1页共??页

山东大学《高等数学》期末复习参考题 (3)

山东大学《数学分析III 》期末复习参考题 一、填空题(共 5 小题,20 分) 1、设u x y =2,则???2u x y =。 2、设u x y y x =+2,则???2u x y = ___________________。 3、曲面3 2 3 04xy z xyz ++ =在点(,,)2112-处的切平面方程是 __________________________________。 4、曲线x te y e z t e t t t ===232222,,在对应于t =-1点处的法平面方程是______。 5、函数u =(x 2+y 2-z 2) 的等值面方程为__________. 二、选择题(共 10 小题,40 分) 1、设某个力场的力的方向指向y 轴的负向,且大小等于作用点(x ,y )的横坐标的平方。若某质点,质量为m ,沿着抛物线1-x =4y 2从点(1,0)移动到点(0,),则场力所做的功 为( ) 2、设函数u =2xz 3-yz -10x -23z ,则函数u 在点(1,-2,2)处方向导数的最大值为( ) (A) (B) (C) 7 (D) 3 3、设C 为曲线 0≤t ≤ 则 ( )

4、函数f x y xy x x y x (,)sin()=≠=??? ??00 不连续的点集为( ) (A) y 轴上的所有点 (B)空集(C) x >0且y =0的点集 (D) x<0且y=0的点集 5、函数f x y e xy (,)=在点(,)01处带皮阿诺型余项的二阶泰勒公式是( ) (A )[] 112212 ++ +-x x x y ! () (B )[]() 1122112 22++ +-++-x x x y o x y ! ()() (C )[]() 11222 22++ +++x x xy o x y ! (D )[]() 111 21211222+-+ -+-+-+()! ()()()x x x y o x y 6、曲线x y R y z R 222222 +=+=??? 在点R R R 222,,?? ? ??处的法平面方程为() (A )-+-= x y z R 2 (B )x y z R -+= 32 (C )x y z R -+= 2 (D )x y z R ++= 32 7、曲面tan()x y z ++=2302 3 在点(,,)111--处的法线方程为() (A )x y z -= +=+11419(B )x y z =-=+3410 9 (C )x y z -= +-=+-11419(D )x y z =--=+34109 8、设L 为下半圆周. 将曲线积分 化为定积分的 正确结果是() 9、函数f (x ,y )在有界闭域D 上有界是二重积分 存在的( )

相关文档
最新文档