2014年湖北省高考数学试卷(理科)答案与解析

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

2014年湖北高考《 六指猴》小说阅读

[2014年湖北高考,16-19]阅读下面的文章,完成(1)~(4)题。 六指猴 墨中白 侯六是新来为东家赶马车的,右手六指,护院的都笑称他六指猴。 侯六也不恼,伸出手问:“像六指猴吗?” “六指猴是江洋大盗,你是给东家赶马车的。”说完,大伙善意地笑了。 东家江大佬有钱,有钱的东家不住在泗州城。东家喜欢住在五里城的凤凰墩。凤凰墩背靠九座梅花山,西临拦山河,东边一条大道直通南边的泗州城。 东家爱去泗州城听戏。 东家听完泗州戏,侯六就陪他去梅岭茶馆。 东家和众玩家边品茶,边玩赏古玉。 众玩家要看东家腰上的玉。 东家掏出洁白的手帕,用嘴吹吹,才解下玉放在上面。只见手帕上的蟠螭,圆眼怒睁,细眉飞扬,脚爪上翘,胛骨尽显,活泼有趣。 众人夸:“好玉。” 侯六却在旁边大碗喝着茶,喝完,就到泗州大街上逛。 东家品足了茶,侯六准时套好马车等他。坎坷道,马车如履平地。东家喜欢坐在车上眯着双眼哼着泗州戏,回味着茶馆玩玉时的惬意。 到家,东家拎起长衫下车,侯六就看到他腰带上那只活泼的蟠螭。 东家有钱,可有钱的东家人不坏。东家喜欢拿出白花花的银子救济乡邻。侯六常听人夸,东家是善人。 侯六拴好马,路过东家房时,就听东家和老婆说:“侯六人不小了,是该成家了……” 侯六听后心一热,父母去世,无人再关心自己。 泗州大街,仁义当铺。 黑衣人闪身进屋。 老板贾仁义低声问:“玉呢?大人催要。” 黑衣人说:“盗不来。” “没有你偷不来的宝贝,否则告知官府,丢的不仅是玉,还有多人的性命!” 黑衣人不回答,抛下酬金,飞跃离去,眨眼钻进黑夜里。 天亮,府衙有人投案,声称自己是大盗六指猴。师爷马皮金一看是马夫侯六,笑说:“你手长六手指,就是六指猴?” “我是六指猴,为东家赶车,实是想偷他的玉。” 马皮金只好向吴知府禀报。 吴知府听后,说:“通知江大佬,让他看着办吧。” 马皮金把知府的话转告给东家,临别小声叮嘱:“大人的嘴,大着呢!” 东家忙带上金银赶到府衙。 看着满眼的金银,吴知府叹道:“你有钱心善,好人呀,可好人如何会让飞贼赶车呢,要追究……”吴知府眯着小眼盯着东家的腰间。 东家取下玉佩递过去,说:“一个赶马的怎会是大盗哟?”马皮金忙上前接玉,旁边的吴知府就怪怨说:“好好马车不赶,非说是飞贼,自己的命贱,也不为主人着想,再说,他真是六指猴,怎敢自己找上门来?这些下人呀,醉酒后,全是醉话!” 东家忙谢过知府,刚把侯六带走,贾仁义就求见吴知府说:“真是六指猴呀。” 吴知府笑道:“抓了六指猴,还会有七指猴八指猴,那么多飞贼抓得完吗?要的是玉!”看着吴知府把玩着圆眼怒睁的蟠螭,贾仁义连赞:“大人高明!” 侯六得知东家用古玉救他,跪谢说:“我不配。”东家伸手拉起他说:“玉是宝,可活人更是宝哩!” 侯六说:“不能再为您赶马了。”转身欲去。 东家也不挽留,说:“走正道吧!路平整,好走!” 六指猴点头,飞身上了大路。 平原大道,晨光如金。 东家坐着马车去泗州城,路遇一老者,停车,让其坐。

试论近三年高考数学试卷分析

HR Planning System Integration and Upgrading Research of A Suzhou Institution 近三年高考数学试卷分析 陈夏明 近三年的数学试卷强调了对基础知识的掌握、突出运用所学知识解决实际问题的能力.整套试卷遵照高考考试大纲的要求,从题型设置、考察知识的范围和运算量,书写量等方面保持相对稳定,体现了考查基础知识、基本运算方法和基本数学思想方法的特点.好多题都能在课本上找到影子,是课本题的变形和创新.这充分体现了高考数学试题“来源于课本”的命题原则,同时,也注重了知识之间内在的联系与综合,在知识的交汇点设计试题的原则。 2009年高考数学考试大纲与往年对比,总体保持平稳,个别做了修改,修改后更加适合中学实际和现代中学生的实际水平,从大纲来看,高考主干知识八大块:1.函数;2.数列;3.平面向量;4.不等式(解与证);5.解析几何;6.立体几何;7.概率与统计。仍为考查的重点,其中函数是最核心的主干知识. 考试要求有变化: 今年数学大纲总体保持平稳,并在平稳过渡中求试题创新,试题难度更加适合中学教学实际和现代中学生的实际水平;适当加大文理卷的差异,力求文理学生成绩平衡,文科试题“适当拉大试题难度的分布区间,试题难度的起点应降低,而试题难度终点应与理科相同”。 试题难度没有太大变化,但思维量进一步加大,更加注重基础知识、基本技能的考查.注重通性通法,淡化特殊技巧,重视数学思想方法的考查.不回避重点知识的考查。函数、数列、概率(包括排列、组合)、立体几何、解析几何等知

识仍是考查的重点内容.保持高考改革的连续性、稳定性,严格遵循《考试大纲》命题. 针对高考变化教师应引导学生: 1.注重专题训练,找准薄弱环节 2.关注热点问题进行有针对性的训练 3.重视高考模拟试题的训练 4.回归课本,查缺补漏。 5.重视易错问题和常用结论的归纳总结 6.心理状态的调整与优化 (1)审题与解题的关系: 我建以审题与解题的关系要一慢一快:审题要慢,做题要快。 (2)“会做”与“得分”的关系: 解题要规范,俗话说:“不怕难题不得分,就怕每题都扣分”所以务必将解题过程写得层次分明,结构完整.这非常重要,在平时训练时要严格训练. (3)快与准的关系: 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果. (4)难题与容易题的关系: 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此不要在某个卡住的题上打“持久战”,特别不要“小题大做”那样既耗费时间又未心能拿分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,而且解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难。 因此,我建议答题应遵循: 三先三后: 1.先易后难 2.先高(分)后低(分) 3.先同后异。

2016年全国统一高考数学试卷(理科)(新课标ⅲ)及答案

2016年全国统一高考数学试卷(理科)(新课标Ⅲ) 一、选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)设集合S={x|(x﹣2)(x﹣3)≥0},T={x|x>0},则S∩T=()A.[2,3]B.(﹣∞,2]∪[3,+∞)C.[3,+∞)D.(0,2]∪[3,+∞)2.(5分)若z=1+2i,则=() A.1 B.﹣1 C.i D.﹣i 3.(5分)已知向量=(,),=(,),则∠ABC=()A.30°B.45°C.60°D.120° 4.(5分)某旅游城市为向游客介绍本地的气温情况,绘制了一年中各月平均最高气温和平均最低气温的雷达图,图中A点表示十月的平均最高气温约为15℃,B点表示四月的平均最低气温约为5℃,下面叙述不正确的是() A.各月的平均最低气温都在0℃以上 B.七月的平均温差比一月的平均温差大 C.三月和十一月的平均最高气温基本相同 D.平均最高气温高于20℃的月份有5个 5.(5分)若tanα=,则cos2α+2sin2α=()

A.B.C.1 D. 6.(5分)已知a=,b=,c=,则() A.b<a<c B.a<b<c C.b<c<a D.c<a<b 7.(5分)执行如图程序框图,如果输入的a=4,b=6,那么输出的n=() A.3 B.4 C.5 D.6 8.(5分)在△ABC中,B=,BC边上的高等于BC,则cosA=()A.B.C.﹣D.﹣ 9.(5分)如图,网格纸上小正方形的边长为1,粗实线画出的是某多面体的三视图,则该多面体的表面积为()

A.18+36B.54+18C.90 D.81 10.(5分)在封闭的直三棱柱ABC﹣A1B1C1内有一个体积为V的球,若AB⊥BC,AB=6,BC=8,AA1=3,则V的最大值是() A.4πB. C.6πD. 11.(5分)已知O为坐标原点,F是椭圆C:+=1(a>b>0)的左焦点, A,B分别为C的左,右顶点.P为C上一点,且PF⊥x轴,过点A的直线l与线段PF交于点M,与y轴交于点E.若直线BM经过OE的中点,则C的离心率为() A.B.C.D. 12.(5分)定义“规范01数列”{a n}如下:{a n}共有2m项,其中m项为0,m 项为1,且对任意k≤2m,a1,a2,…,a k中0的个数不少于1的个数,若m=4,则不同的“规范01数列”共有() A.18个B.16个C.14个D.12个 二、填空题:本大题共4小题,每小题5分. 13.(5分)若x,y满足约束条件,则z=x+y的最大值为.

2017高考数学(理)(全国II卷)详细解析

绝密★启用前 2017年普通高等学校招生全国统一考试 新课标II卷 理科数学 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1. A.B.C.D. 【答案】D 2.设集合,.若,则 A.B.C.D. 【答案】C 【解析】 试题分析:由得,即是方程的根,所以,,故选C. 【考点】交集运算、元素与集合的关系 【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏B.3盏C.5盏D.9盏

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. B. C. D. 【答案】B 【解析】 试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱, 其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积 ,故该组合体的体积.故选B. 【考点】三视图、组合体的体积 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 5.设,满足约束条件,则的最小值是 A.B.C.D.

2016年高考全国卷Ⅱ理科数学试题及答案

2016年高考全国卷Ⅱ理科数学试题及答案 (满分150分,时间120分钟) 第Ⅰ卷 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是 符合题目要求的. (1)已知(3)(1)i z m m =++-在复平面内对应的点在第四象限,则实数m 的取值范围是 (A )(31) -, (B )(13)-,(C )(1,)∞+(D )(3)∞--, (2)已知集合{1,}A =2,3,{|(1)(2)0,}B x x x x =+-<∈Z ,则A B = (A ){1}(B ){1 2},(C ){0123},,,(D ){10123}-,,,, (3)已知向量(1,)(3,2)m =-,=a b ,且()⊥a +b b ,则m = (A )-8 (B )-6 (C )6 (D )8 (4)圆2228130x y x y +--+=的圆心到直线10ax y +-= 的距离为1,则a= (A )43- (B )3 4 - (C ) 3 (D )2 (5)如图,小明从街道的E 处出发,先到F 处与小红会合,再一起到位于G 处的老年公寓参加志愿者活动,则小明到老年公寓可以选择的最短路径条数为 (A )24 (B )18 (C )12 (D )9 (6)右图是由圆柱与圆锥组合而成的几何体的三视图,则该几何体的表面积为 (A )20π (B )24π (C )28π (D )32π

(7)若将函数y =2sin 2x 的图像向左平移π 12个单位长度,则评议后图象的对称轴为 (A )x =k π2–π6 (k ∈Z ) (B )x =k π2+π 6 (k ∈Z ) (C )x =k π2–π12 (k ∈Z ) (D )x =k π2+π 12 (k ∈Z ) (8)中国古代有计算多项式值的秦九韶算法,右图是实现该算法的程序 框图.执行该程序框图,若输入的x =2,n =2,依次输入的a 为2,2,5, 则输出的s = (A )7 (B )12 (C )17 (D )34 (9)若cos(π4–α)= 3 5,则sin 2α= (A )725 (B )15 (C )–15 (D )–7 25 (10)从区间[]0,1随机抽取2n 个数1x ,2x ,…,n x ,1y ,2y ,…,n y ,构成n 个数对()11,x y ,()22,x y , …,(),n n x y ,其中两数的平方和小于1的数对共有m 个,则用随机模拟的方法得到的圆周率π 的近似 值为 (A ) 4n m (B )2n m (C )4m n (D )2m n (11)已知F 1,F 2是双曲线E 22 221x y a b -=的左,右焦点,点M 在E 上,M F 1与x 轴垂直, sin 211 3 MF F ∠= ,则E 的离心率为 (A )2 (B )3 2 (C )3 (D )2 (12)已知函数()()f x x ∈R 满足()2()f x f x -=-,若函数1x y x +=与() y f x =图像的交点为 1122(,),(,),,(,),m m x y x y x y ??? 则1 ()m i i i x y =+=∑ (A )0 (B )m (C )2m (D )4m

2014年湖北省高考英语试题及其详细解析

2014年普通高等学校招生全国统一考试(湖北卷)第一部分:听力(共两节,满分30分) 做题时,先将答案划在试卷上。录音内容结束后,你将有两分钟的时间将试卷上的答案转涂到答题卡上。 第一节(共5小题;每小题1.5分,满分7.5分) 听下面5段对话。每段对话后有一个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听完每段对话后,你都有10秒钟的时间来回答有关小题和阅读下一小题。每段对话仅读一遍。 1. What is Linda? A. A writer. B. A student. C. A teacher. 2. What is the man afraid of? A. Having an accident. B. Missing the interview. C. Saying something wrong. 3. What does the woman want to do? A. To return a jacket. B. To change a jacket. C. To buy another jacket. 4. Why does the man feel upset? A. A guy stole his clothes. B. He found his clothes ugly. C. Someone said he was ugly. 5. What does the woman mean? A. She disbelieves her son. B. She feels very sorry for her son. C. She wants her son to use a new key. 第二节(共15小题;每小题1.5分,满分22.5分) 听下面5段对话或独白。每段对话或独白后有几个小题,从题中所给的A、B、C三个选项中选出最佳选项,并标在试卷的相应位置。听每段对话或独白前,你将有时间阅读各个小题,每小题5秒钟;听完后,各小题将给出5秒钟的作答时间。每段对话或独白读两遍。 听第6段材料,回答第6、7题。 6. Why isn’t Jenny at the store? A. She left work early. B. She’s late for work. C. She’s been out of work. 7. How does the man feel about Jenny? A. Angry. B. Curious. C. Concerned. 听第7段材料,回答第8、9题。 8. What is lying on the railway tracks? A. A man. B. A rock. C. A trunk. 9. What are the speakers about to do? A. To move the rock. B. To wave the T-shirt. C. To find something red. 听第8段材料,回答第10至12题。 10. What does the man want to talk about? A. Lucy’s poor health. B. Lucy’s school education. C. Lucy’s work performance. 11. What did the customer at Table 4 do that annoyed Lucy? A. He praised her. B. He made a complaint. C. He ordered the special offer. 12. Why is Lucy in low spirits? A. She hasn’t made a plan.

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

[历年真题]2014年湖北省高考数学试卷(理科)

2014年湖北省高考数学试卷(理科) 一、选择题:本大题共10小题,每小题5分,共50分,在每小题给出的四个选项中,只有一项是符合题目要求的. 1.(5分)i为虚数单位,()2=() A.﹣1 B.1 C.﹣i D.i 2.(5分)若二项式(2x+)7的展开式中的系数是84,则实数a=()A.2 B.C.1 D. 3.(5分)设U为全集,A,B是集合,则“存在集合C使得A?C,B??U C”是“A∩B=?”的() A.充分而不必要的条件B.必要而不充分的条件 C.充要条件D.既不充分也不必要条件 4.(5分)根据如下样本数据,得到回归方程=bx+a,则() x345678 y 4.0 2.5﹣0.50.5﹣2.0﹣3.0 A.a>0,b>0 B.a>0,b<0 C.a<0,b>0 D.a<0,b<0 5.(5分)在如图所示的空间直角坐标系O﹣xyz中,一个四面体的顶点坐标分别为(0,0,2),(2,2,0),(1,2,1),(2,2,2),给出的编号为①,②,③,④的四个图,则该四面体的正视图和俯视图分别为() A.①和②B.③和①C.④和③D.④和② 6.(5分)若函数f(x),g(x)满足f(x)g(x)dx=0,则f(x),g(x)为区

间[﹣1,1]上的一组正交函数,给出三组函数: ①f(x)=sin x,g(x)=cos x; ②f(x)=x+1,g(x)=x﹣1; ③f(x)=x,g(x)=x2, 其中为区间[﹣1,1]上的正交函数的组数是() A.0 B.1 C.2 D.3 7.(5分)由不等式组确定的平面区域记为Ω1,不等式组确定的平面区域记为Ω2,在Ω1中随机取一点,则该点恰好在Ω2内的概率为()A.B.C.D. 8.(5分)《算数书》竹简于上世纪八十年代在湖北省江陵县张家山出土,这是我国现存最早的有系统的数学典籍,其中记载有求“囷盖”的术:置如其周,令相乘也,又以高乘之,三十六成一,该术相当于给出了由圆锥的底面周长L与高h,计算其体积V的近似公式V≈L2h,它实际上是将圆锥体积公式中的圆周率π近似取为3,那么,近似公式V≈L2h相当于将圆锥体积公式中的π近似取为()A.B.C. D. 9.(5分)已知F1,F2是椭圆和双曲线的公共焦点,P是它们的一个公共点.且∠F1PF2=,则椭圆和双曲线的离心率的倒数之和的最大值为()A.B.C.3 D.2 10.(5分)已知函数f(x)是定义在R上的奇函数,当x≥0时,f(x)=(|x﹣a2|+|x﹣2a2|﹣3a2),若?x∈R,f(x﹣1)≤f(x),则实数a的取值范围为()A.[﹣,]B.[﹣,] C.[﹣,]D.[﹣,] 二、填空题:本大题共3小题,每小题5分,共15分. 11.(5分)设向量=(3,3),=(1,﹣1),若(+λ)⊥(﹣λ),则实数λ=.12.(5分)直线l1:y=x+a和l2:y=x+b将单位圆C:x2+y2=1分成长度相等的四段弧,

2018高考江苏数学试题与答案解析[解析版]

2017年普通高等学校招生全国统一考试(卷) 数学I 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =I ,则实数a 的值为_______. 【答案】1 【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =I ,∴1a =或231a +=,解得1a =. 【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10 【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴() 2 21310z = -+=. 【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18 【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为606 1000100 = ,则应从丙 种型号的产品中抽取6 30018100 ?=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例, 即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年,4,5分】如图是一个算法流程图:若输入x 的值为1 16 ,则输出y 的值是_______. 【答案】2- 【解析】初始值116 x =,不满足1x ≥,所以41 216 222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于 基础题. (5)【2017年,5,5分】若1tan 46πα? ?-= ?? ?.则tan α=_______. 【答案】7 5 【解析】tan tan tan 114tan 4tan 161tan tan 4 π απααπαα--??-= == ?+? ?+Q ,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年,6,5分】如如图,在圆柱12O O 有一个球O ,该球与圆柱的上、下底面及母线均相 切。记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12 V V 的值是________. 【答案】3 2 【解析】设球的半径为R ,则球的体积为:3 43 R π,圆柱的体积为:2322R R R ππ?=.则313223423 V R R V ππ==. 【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力. (7)【2017年,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D

2016全国三卷理科数学高考真题及答案

2016年普通高等学校招生全国统一考试 理科数学 一. 选择题:本大题共12小题,每小题5分,在每小题给出的四个选项中,只有一项是符合题目 要求的. (1)设集合S ={}{}(x 2)(x 3)0,T 0S x x x =--≥=I >P ,则S I T = (A) [2,3] (B)(-∞ ,2]U [3,+∞) (C) [3,+∞) (D)(0,2]U [3,+∞) (2)若z=1+2i ,则 41 i zz =- (A)1 (B) -1 (C) i (D)-i (3)已知向量1(,22BA =uu v ,1 ),2 BC =uu u v 则∠ABC= (A)300 (B) 450 (C) 600 (D)1200 (4)某旅游城市为向游客介绍本地的气温情况,绘制了一年中月平均最高气温和平均最低气温的雷达图。图中A 点表示十月的平均最高气温约为150C ,B 点表示四月的平均最低气温约为50C 。下面叙述不正确的是 (A) 各月的平均最低气温都在00C 以上 (B) 七月的平均温差比一月的平均温差大 (C) 三月和十一月的平均最高气温基本相同 (D) 平均气温高于200C 的月份有5个 (5)若3 tan 4 α= ,则2cos 2sin 2αα+= (A)6425 (B) 4825 (C) 1 (D)1625 (6)已知4 3 2a =,34 4b =,13 25c =,则 (A )b a c << (B )a b c <<(C )b c a <<(D )c a b << (7)执行下图的程序框图,如果输入的a =4,b =6,那么输出的n = (A )3 (B )4 (C )5 (D )6

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

相关文档
最新文档