通信原理 位同步提取实验与帧同步提取实验

通信原理 位同步提取实验与帧同步提取实验
通信原理 位同步提取实验与帧同步提取实验

中南大学通信原理实验报告(截图完整)

中南大学 《通信原理》实验报告 学生姓名 指导教师 学院 专业班级 完成时间

数字基带信号 1、实验名称 数字基带信号 2、实验目的 (1)了解单极性码、双极性码、归零码、不归零码等基带信号波形特点。 (2)掌握AMI、HDB 3 码的编码规则。 (3)掌握从HDB 3 码信号中提取位同步信号的方法。 (4)掌握集中插入帧同步码时分复用信号的帧结构特点。 (5)了解HDB 3 (AMI)编译码集成电路CD22103。 3、实验内容 (1)用示波器观察单极性非归零码(NRZ)、传号交替反转码(AMI)、三阶高密度双极性码 (HDB 3)、整流后的AMI码及整流后的HDB 3 码。 (2)用示波器观察从HDB 3 码中和从AMI码中提取位同步信号的电路中有关波形。 (3)用示波器观察HDB 3 、AMI译码输出波形。 4、基本原理(简写) 本实验使用数字信源模块和HDB 3 编译码模块。 1、数字信源 本模块是整个实验系统的发终端,模块内部只使用+5V电压,其原理方框图如图1-1所示,电原理图如图1-3所示(见附录)。本单元产生NRZ信号,信号码速率约为170.5KB,帧结构如图1-2所示。帧长为24位,其中首位无定义,第2位到第8位是帧同步码(7位巴克码1110010),另外16位为2路数据信号,每路8位。此NRZ信号为集中插入帧同步码时分复用信号,实验电路中数据码用红色发光二极管指示,帧同步码及无定义位用绿色发光二极管指示。发光二极管亮状态表示1码,熄状态表示0码。 本模块有以下测试点及输入输出点: ? CLK 晶振信号测试点 ? BS-OUT 信源位同步信号输出点/测试点(2个) ? FS 信源帧同步信号输出点/测试点 ? NRZ-OUT(AK) NRZ信号(绝对码)输出点/测试点(4个) 图1-1中各单元与电路板上元器件对应关系如下: ?晶振CRY:晶体;U1:反相器7404 ?分频器U2:计数器74161;U3:计数器74193;U4:计数器40160 ?并行码产生器K1、K2、K3:8位手动开关,从左到右依次与帧同步码、数

通信技术综合实验报告

综合实验报告 ( 2010-- 2011年度第二学期) 名称:通信技术综合实验题目:SDH技术综合实验院系:电子与通信工程系班级: 学号: 学生姓名: 指导教师: 设计周数:两周 成绩: 日期:2011年 6 月

A C B D S1 P1S1 P1 主用 备用 AC AC 环形保护组网配置实验 一、实验的目的与要求 1、实验目的: 通过本实验了解2M 业务在环形组网方式时候的配置。 2、实验要求: 在SDH1、SDH2、SDH3配置成环网,开通SDH2到SDH3两个节点间的2M 业务,并提供环网保护机制。 1)掌握二纤单向保护环的保护机理及OptiX 设备的通道保护机理。 2)掌握环形通道保护业务配置方法。采用环形组网方式时,提供3套SDH 设备,要求配置成虚拟单向通道保护环。 3)了解SDH 的原理、命令行有比较深刻,在做实验之前应画出详细的实际网络连接图,提交实验预习报告,要设计出实验实现方案、验证方法及具体的步骤。 4)利用实验平台自行编辑命令行并运行验证实验方案,进行测试实验是否成功。 二、实验正文 1.实验原理 单向通道保护环通常由两根光纤来实现,一根光纤用于传业务信号,称S 光纤;另一根光纤传相同的信号用于保护,称P 光纤。单向通道保护环使用“首端桥接,末端倒换”结构如下图所示: 业务信号和保护信号分别由光纤S1和P1携带。例如,在节点A ,进入环以节点C 为目的地的支路信号(AC )同时馈入发送方向光纤S1和P1。其中,S1光纤按ABC 方向将业务信号送至节点C ,P1光纤按ADC 方向将同样的信号作为保护信号送至分路节点C 。接收端分路节点C 同时收到两个方向支路信号,按照分路通道信号的优劣决定选其中一路作为分路信号,即所谓末端选收。正常情况下,以S1光纤送来信号为主信号。同时,从C 点插入环以节点A 为目的地的支路信号(CA)按上述同样方法送至节点A 。

通信原理实验 思考题

通信原理实验思考题 第三章数字调制技术 实验一FSK传输系统实验 实验后思考题: 1.FSK正交调制方式与传统的FSK调制方式有什么区别?有哪些特点? 答:传统的FSK调制方式采用一个模拟开关在两个独立振荡器中间切换,这样产生的波形在码元切换点的相位是不连续的。而且在不同的频率下还需采用不同的滤波器,在应用上非常不方便。采用正交调制的优点在于在不同的频率下可以自适应的将一个边带抑制掉,不需要设计专门的滤波器,而且产生的波形相位也是连续的,从而具有良好的频谱特性。 2.TPi03 和TPi04 两信号具有何关系? 答:正交关系 实验中分析: P28 2. 产生两个正交信号去调制的目的。 答:在FSK 正交调制方式中,必须采用FSK 的同相支路与正交支路信号;不然如果只采一路同相FSK 信号进行调制,会产生两个FSK 频谱信号,这需在后面采用较复杂的中频窄带滤波器。用两个正交信号去调制,可以提高频带利用率,减少干扰。 4.(1)非连续相位 FSK 调制在码元切换点的相位是如何的。 答:不连续的,当包含 N(N 为整数)个载波周期时,初始相位相同的相邻码元的波形(为整数)个载波周期时,和瞬时相位是连续的,当不是整数时,波形和瞬时相位 也是可能不连续的。 P29 1.(2)解调端的基带信号与发送端基带波形(TPi03)不同的原因? 答:这是由于解调端与发送端的本振源存在频差,实验时可根据以下方法调整:将调模块中的跳线KL01置于右端,然后调节电位器WL01,可以看到解调端基带信号与发送端趋于一致。 2.(2)思考接收端为何与发送端李沙育波形不同的原因? 答:李沙育图形的形状与两个输入信号的相位和频率都有关。 3. 为什么在全0或全1码下观察不到位定时的抖动? 答:因为在全0或全1码下接收数据没有跳变沿,译码器无论从任何时刻开始译码均能正确译码,因此译码器无须进行调整,当然就看不到位定时的抖动了。 实验二BPSK传输系统实验 实验后思考题: 1.写出眼图正确观察的方法。 答:眼图是指利用实验的方法估计和改善(通过调整)传输系统性能时在示波器上观察到的一种图形。 观察眼图的方法是:用一个示波器跨接在接收滤波器的输出端,然后调整示波器扫描周期,使示波器水平扫描周期与接收码元的周期同步,这时示波器屏幕上看到的图形像人的眼睛,故称为“眼图”。从“眼图”上可以观察出码间串扰和噪声的影响,从而估计

光纤通信实验指导书

目录 系统简介 (2) 实验部分 实验一数字信源及其光纤传输实验 (5) 实验二 HDB3编译码及其光纤传输实验 (11) 实验三 CMI编译码及其光纤传输实验 (20) 实验四光发送模块实验 (28) 实验五光接收模块实验 (35) 实验六数字信号电—光、光—电转换传输实验 (39) 1)方波信号和NRZ码传输; 2)CMI码传输; 3)HDB3码传输; 实验七波分复用(WDM)光纤通信系统实验 (43) EL-GT-IV光纤通信教学实验系统简介 光纤通信教学实验系统是为了配合《光纤通信系统》的理论教学而设计的实验装置,在这套系统上除了完成理论验证实验外,还可实现各种开发性实验,并可配合CPLD进行各模块的二次性开发。此外本实验箱,可扩展实验模块,实现通信原理的实验。 一、结构简介 光纤通信教学实验系统结构框图如下: 1310光纤收发模块1550光纤收发模块

主要由以下功能模块组成: 1.数字信号源单元: 此单元产生码速率为170.5K的单极性不归零码(NRZ),数字信号帧长为24位,其中包括两路数字信息,每路8位,另外8位中的7位为集中插入帧同步码。通过拨码开关,可以很方便地改变要传送的码信息并由发光二极管显示出来。 2.AMI(HDB3)编译码单元: 此单元将数字信号源单元产生的NRZ码进行编码,通过专用芯片转换成HDB3码或AMI码通过切换开关切换,然后将编码后的信号又经过译码单元还原成NRZ码。 3.电话接口单元 此单元有两路独立的电话输入接口、输出接口,通过专用电话接口芯片实现语音的全双工通信。自带馈电电源。 4.PCM&CMI编译码单元; 此单元采用CPLD来实现PCM&CMI编译码电路,可同时完成两路信号的编译码工作。PCM模块可以实现传输两路语音信号,采用TP3057编译器。 5.可调信号源单元: 此单元包括两路频率800HZ—2KHZ可调的方波、正弦波、三角波。 6.串行RS232接口单元: 此单元配有RS232接口及信号端口TX和RX,可实现自发自收通信实验,两台计算机间的全双工光纤通信实验。 7.1310波长光发送单元: PHLC-1310nmFP同轴激光二极管。 8.1550波长光发送单元: PHLC-1310nmFP同轴激光二极管。 9.1310波长光接受单元: 10.1550波长光接受单元: 主要完成光电信号的转换,小信号的检测与信号的恢复放大等功能。它主要有光检测模块、滤波放大模块组成。光检测模块采用PHPC-IS01-PFC,是PHOTRON公司的高性能光检测器件,输出可从DC到1GHZ。 11.数字时分复用光纤传输实验

单路双工通信系统综合实验

实验八 单路双工通信系统综合实验 一、 实验原理 在复接/解复接实验中,实验能直观观测信号的帧结构和接收端的帧同步过程;为了深入了解信号时分复用技术在一个传输系统中的性能、作用及对相关通信业务的影响,本节实验将数据和话音业务通过复接/解复接模块传输,测量复接/解复接器在传输信道不同误码率(4种可选)环境下对数据和话音业务的影响。系统连接框图见图4.37所示。 2# 1# 图4.37 时分复用(TDM )系统测试组成框图 二、 实验仪器 1、 Z H5001通信原理综合实验系统 一台 2、 20MHz 双踪示波器 一台 3、 电话机 二部 三、 实验目的 1、 帧的概念和基本特性 2、 了解帧的概念和基本特性 3、 了解帧的结构、帧组成过程 4、 熟悉帧复接/解复接器在通信系统中所处的地位及作用。 5、 定性了解帧传输在不同信道误码率时对话音业务和数据业务的影响。

四、回答预习问题 1、在进行该实验时,首先预习一下实验系统概述中“数字复接/解复接模块、交换处 理模块、用户接口模块、双音多频检测模块、ADPCM编译码模块”的原理;电话1 模块、电话2模块、ADPCM1模块、ADPCM2、 DTMF1 、DTMF2模块、复接模块和解 复接模块中跳线开关的含义。 数字复接/解复接模块: 数字复接/解复接由复接和解复接两个独立的模块构成。通信原理综合实验系统实现在信道传输上采用了类似TDM的传输方式:定长组帧、帧定位码与信息格式。一帧共有4个时间间隔,按8个bit一组分成了一个一个的固定时隙,帧结构组成如图2.37所示。各时隙从0到3顺序编号,分别记为TS0、TS1、TS2和TS3。TS0时隙为帧定位码,帧定位码选用7位Barker码(1110010),使接收端具有良好的相位分辨能力。TS1时隙为话音业务PCM 编码信号,TS2时隙为设置的开关信号,TS3时隙为为特殊码序列。TS0~TS3复合成一个256Kbps数据流在同一信道上传输。 图2.37 帧结构组成图 复接/解复接原理组成框图见图2.38所示。 帧传输复接模块主要由Barker码产生、同步调整、复接、系统定时单元所组成;帧传输解复接模块(亦称分接器)是由同步、定时、分接和恢复单元组成,其各电路完成的功能和和作用参见原理教材。 复接/解复接模块电原理图见图 2.39所示。复接模块主要由一片现场可编程门阵列(EPM7064)UB01(EPM7064)芯片、跳线开关SWB01和工作方式选择开关组成。其电路工作原理如下所述: 1.话音编码数据:输入的话音编码信号来自ADPCM2模块,编码方式取决于菜单设置; 2.开关信号:开关信号码字为8bit,可以直接通过跳线开关设置来改变码型。 在解复接模块正常工作并同步时,该开关码字信号从解复接模块的发光二极管DB01~DB08一一对应直观的显示出来。 3.m序列由UB01内部产生:M序列的码型共有4种,由跳线开关SWB02(M_SEL0、M_SEL1) 决定。从TPB01测试点可以监测发端m序列信号,具体设置见下表:

通信原理实验报告

通信原理实验报告

作者: 日期:

通信原理实验报告 实验名称:实验一—数字基带传输系统的—MATLAB方真 实验二模拟信号幅度调制仿真实验班级:10通信工程三班_________ 学号:2010550920 ________________ 姓名:彭龙龙______________

指导老师:王仕果______________

实验一数字基带传输系统的MATLA仿真 一、实验目的 1、熟悉和掌握常用的用于通信原理时域仿真分析的MATLAB函数; 2、掌握连续时间和离散时间信号的MATLAB产生; 3、牢固掌握冲激函数和阶跃函数等函数的概念,掌握卷积表达式及其物理意义,掌握卷积的计算方法、卷积的基本性质; 4、掌握利用MATLAB计算卷积的编程方法,并利用所编写的MATLAB程序验证卷积的常用基本性质; 5、掌握MATLAB描述通信系统中不同波形的常用方法及有关函数,并学会利用MATLAB求解系统功率谱,绘制相应曲线。 基本要求:掌握用MATLAB描述连续时间信号和离散时间信号的方法,能够编写 MATLAB程序,实现各种常用信号的MATLA实现,并且以图形的方式再现各种信号的波形。 二、实验内容 1、编写MATLAB程序产生离散随机信号 2、编写MATLAB程序生成连续时间信号 3、编写MATLAB程序实现常见特殊信号 三、实验原理 从通信的角度来看,通信的过程就是消息的交换和传递的过程。而从数学的角度来看,信息从一地传送到另一地的整个过程或者各个环节不外乎是一些码或信号的交换过程。例如信源压缩编码、纠错编码、AMI编码、扰码等属于码层次上的变换,而基带成形、滤波、调 制等则是信号层坎上的处理。码的变换是易于用软件来仿真的。要仿真信号的变换,必须解 决信号与信号系统在软件中表示的问题。 3.1信号及系统在计算机中的表示 3.1.1时域取样及频域取样 一般来说,任意信号s(t)是定义在时间区间(-R, +R)上的连续函数,但所有计算机的CPU都只能按指令周期离散运行,同时计算机也不能处理( -R, + R)这样一个时间段。 为此将把s(t)按区间T, T截短为 2 2 S T(t),再对S T(t)按时间间隔△ t均匀取样,得到取样 点数为: 仿真时用这个样值集合来表示信号 T Nt t s(t)。显然△ t反映了仿真系统对信号波形的分辨 率, (3-1) △ t越小则仿真的精确度越高。据通信原理所学,信号被取样以后,对应的频谱时频率的周期函数,其重复周期是—。如果信号的最高频率为f H,那么必须有f H W 丄才能保证不发 t 2 t 生频域混叠失真。设 1 B s 2 t 则称B s为仿真系统的系统带宽。如果在仿真程序中设定的采样间隔是△ (3-2) t,那么不能用

移动通信课程设计——帧同步提取

课程设计报告 课题名称帧同步提取 学院 专业 班级 学号 姓名 指导教师 定稿日期: 2014 年 06月13 日

目录 摘要 (1) 一、前言 (2) 1.1 CDMA帧同步背景 (2) 二、帧同步提取基本原理 (3) 2.1 CDMA含义 (3) 2.2基本原理 (3) 2.2.1发端用户数据成帧 (3) 2.2.2 收端帧同步提取 (3) 三、帧同步提取设计 (6) 3.1课程设计分析 (6) 3.2帧同步提取测试设计步骤 (7) 3.2.1实验箱设置 (7) 3.2.2“发端数据成帧”测量步骤 (7) 3.3单片机程序流程图如下 (9) 四、帧同步提取测试结果 (10) 4.1课程设计实物链接图 (10) 4.2“发端数据成帧”实验过程 (10) 4.3实测收端帧同步误码: (11) 五、课设总结 (12) 参考文献 (13) 附录(源程序) (14)

摘要 在当今这个信息高速发展的时代,移动通信已经成为生活中不可或缺的一部分。在移动环境下点对点的传输问题已经得到解决,那么对于给定资源应该采用什么多址技术使得有限的资源能传输更大容量的信息?移动通信系统的发展经历了第一代模拟移动通信系统、第二代数字移动通信系统和第三代移动通信系统(IMT-2000)。第一代移动通信系统包括AMPS、TACS和NMT等体制。第二代数字移动通信系统包括GSM、IS-136(DAMPS)、PDC、IS-95等体制。一个典型的数字蜂窝移动通信系统包括:移动台(MS)、基站分系统(BSS)、移动交换中心(MSC)、原籍(归属)位置寄存器(HLR)、访问位置寄存器(VLR)、设备标识寄存器(EIR)、认证中心(AUC)和操作维护中心(OMC)。而这其中,多址技术便主要解决众多用户如何高效共享给定频谱资源的问题。常规的多址方式有三种:频分多址(FDMA)、时分多址(TDMA)和码分多址(CDMA)。数字通信时,一般总是以一定数目的码元组成一个个的“字”或“句”,即组成一个个的“群”进行传输,因此群同步信号的频率很容易由位同步信号经分频而得出,但是每群的开头和末尾时刻却无法由分频器的输出决定。群同步的任务就是要给出这个“开头”和“末尾”的时刻。群同步有时也称为帧同步。本次课程设计主要研究帧同步的提取及实现方法。 关键词:CDMA 帧同步移动通信

通信系统综合实验

目录 实验一语音传输 (1) 1.1实验简介 (1) 1.2实验目的 (1) 1.3实验器材 (1) 1.4实验原理 (1) 1.4.1脉冲编码调制 (2) 1.4.2连续可变斜率增量调制 (3) 1.4.3随机错误和突发错误 (4) 1.4.4内部通话与数据传输的工作过程 (4) 1.5实验内容 (5) 1.6实验结果及数据分析 (6) 1.6.1三种调制方式在相同参数下的量化编码 (6) 1.6.2相同参数下的波形 (6) 1.6.3不同频率相同随机错误与突发错误的波形 (8) 1.6.4蓝牙建立和断开语音链路的过程 (10) 1.6.5自己进行A律PCM和CVSD的编程程序 (11) 1.7实验思考题 (13) 实验二数字基带仿真 (14) 2.1实验简介 (14) 2.2实验目的 (14) 2.3实验器材 (14) 2.4实验原理 (14) 2.4.1差错控制的基本原理 (14) 2.4.2跳频扩频的基本原理 (15) 2.4.3保密通信原理 (15) 2.5实验内容及结果分析 (16) 2.5.1蓝牙基带包的差错控制技术实验 (16) 2.5.2蓝牙系统的跳频实验 (19)

2.5.3数据流的加密与解密实验 (20) 2.5.4编程实验 (23) 2.6思考题 (26) 实验三通信传输的有效性与可靠性分析 (28) 3.1实验简介 (28) 3.2实验目的 (28) 3.3实验器材 (28) 3.4实验原理 (28) 3.5实验内容及结果分析 (29) 3.6思考题 (35) 实验四无线多点组网 (37) 4.1实验简介 (37) 4.2实验目的 (37) 4.3实验器材 (37) 4.4实验原理 (37) 4.4.1通信网络拓扑结构 (37) 4.4.2路由技术及组播和广播 (38) 4.4.3Ad hoc网络 (38) 4.5实验内容及结果分析 (39) 4.6思考题 (41) 参考文献 (42)

通信原理实验报告

实验一常用信号的表示 【实验目的】 掌握使用MATLAB的信号工具箱来表示常用信号的方法。 【实验环境】 装有MATLAB6.5或以上版本的PC机。 【实验内容】 1. 周期性方波信号square 调用格式:x=square(t,duty) 功能:产生一个周期为2π、幅度为1 ±的周期性方波信号。其中duty表示占空比,即在信号的一个周期中正值所占的百分比。 例1:产生频率为40Hz,占空比分别为25%、50%、75%的周期性方波。如图1-1所示。 clear; % 清空工作空间内的变量 td=1/100000; t=0:td:1; x1=square(2*pi*40*t,25); x2=square(2*pi*40*t,50); x3=square(2*pi*40*t,75); % 信号函数的调用subplot(311); % 设置3行1列的作图区,并在第1区作图plot(t,x1); title('占空比25%'); axis([0 0.2 -1.5 1.5]); % 限定坐标轴的范围 subplot(312); plot(t,x2); title('占空比50%'); axis([0 0.2 -1.5 1.5]); subplot(313); plot(t,x3); title('占空比75%'); axis([0 0.2 -1.5 1.5]);

图1-1 周期性方波 2. 非周期性矩形脉冲信号rectpuls 调用格式:x=rectpuls(t,width) 功能:产生一个幅度为1、宽度为width、以t=0为中心左右对称的矩形波信号。该函数横坐标范围同向量t决定,其矩形波形是以t=0为中心向左右各展开width/2的范围。Width 的默认值为1。 例2:生成幅度为2,宽度T=4、中心在t=0的矩形波x(t)以及x(t-T/2)。如图1-2所示。 t=-4:0.0001:4; T=4; % 设置信号宽度 x1=2*rectpuls(t,T); % 信号函数调用 subplot(121); plot(t,x1); title('x(t)'); axis([-4 6 0 2.2]); x2=2*rectpuls(t-T/2,T); % 信号函数调用

通信实验思考题

通信原理实验指导书思考题答案 实验一思考题P1-4: 1、位同步信号和帧同步信号在整个通信原理系统中起什么作用? 答:位同步和帧同步是数字通信技术中的核心问题,在整个通信系统中,发送端按照确定的时间顺序,逐个传输数码脉冲序列中的每个码元,在接收端必须有准确的抽样判决时刻(位同步信号)才能正确判决所发送的码元。位同步的目的是确定数字通信中的各个码元的抽样时刻,即把每个码元加以区分,使接收端得到一连串的码元序列,这一连串的码元序列代表一定的信息。通常由若干个码元代表一个字母(符号、数字),而由若干个字母组成一个字,若干个字组成一个句。帧同步的任务是把字、句和码组区分出来。尤其在时分多路传输系统中,信号是以帧的方式传送的。克服距离上的障碍,迅速而准确地传递信息,是通信的任务,因此,位同步信号和帧同步信号的稳定性直接影响到整个通信系统的工作性能。 2、自行设计一个码元可变的NRZ码产生电路并分析其工作过程。 答:设计流程图如下。 提示:若设计一个32位的NRZ码,即要求对位同步信号进行32分频,产生一路NRZ码的帧同步信号,码型调节模块对32位码进行设置,可得到可变的任何32位码型,通过帧同步倍锁存设置的NRZ码,通过NRZ码产生器模块把32位并行数据进行并串转换,用位同步信号进行一位一位输出,循环输出32位可变NRZ码即我们的设计完毕。 实验二思考题P2-4: 1、实验时,串/并转换所需的帧同步信号高电平持续时间必须小于一位码元的宽度,为什么? 答:如果学生认真思考,可以提出没有必要一定小于一位码元的宽度。如24位的数据在串行移位时,当同步信号计数到第24位时,输出帧信号,通过帧信号的上升沿马上锁存这一帧24位数据,高电平没有必要作要求。主要检查学生是否认真考虑问题。 2、是否还有更好的方法实现串/并转换?请设计电路,并画出电路原理图及各点理论上的波形图。 答:终端模块采用移位锁存的方法实现串/并转换,此方法目前是最好的方法了。 实验四思考题P4-6: 1、在分析电路的基础上回答,为什么本实验HDB3编、解码电路只能在输入信号是码长为24位的周期性NRZ码时才能 正常工作? 答:因为该电路采用帧同步控制信号,而1帧包含24位,所以当NRZ码输入电路到第24位时,帧同步信号给一个脉冲,使得电路复位。HDB3码再重新对NRZ码进行编译。且HDB3码电路对NRZ进行编译的第一位始终是固定的值。 因此HDB3编译码电路只能在输入信号是码长为24位的周期性NRZ码才能正常工作。但是由于HDB3码很有特点,现在为了使学生更好的观察HDB3如何进行编译码,我们对电路进行了改正,去掉了帧同步控制信号,所以现在对任意位的NRZ码都可以进行编码。 2、自行设计一个HDB3码编码电路,画出电路原理图并分析其工作过程。 答:根据HDB3的编码规则,CPLD电路实现四连“0”的检测电路,并根据检测出来的结果确定破坏点“V”脉冲的加入,再根据取代节选择将“B”脉冲填补进去。原理框图如下: 3

基于simulink的综合通信实验报告

湖南科技大学 信息与电气工程学院《课程设计报告》 题目:综合通信系统课程设计 专业:*** 班级:*** 姓名:*** 学号:***

任务书 题目综合通信系统课程设计 时间安排第七学期的第19-20两周 目的: 1、掌握通信系统的基本构成; 2、掌握通信系统工作原理; 3、了解通信系统设计的基本过程;掌握基本理论和解决实际问题的方法,锻炼学生综合分析问题解决问题的能力。 4、为学生的毕业设计和以后的工作打下良好的基础。 要求: 课程设计前,学生必须知道课程设计的目的以及教师所规定的任务及其具体要求,有针对性地进行预习和设计。课程设计时,学生必须遵守实验室纪律,严格考勤登记,服从指导老师和实验室工作人员的安排。课程设计结束后,学生必须向所指导教师提交课程设计报告,且课程设计报告要求字迹清楚,版面整洁,报告内容包括调试过程和结果以及心得体会。 总体方案实现:本课程设计主要是利用simulink、通信系统工具箱以及信号处理工具箱来完成通信系统的设计与仿真。Simulink是MATLAB提供的实现动态系统建模和仿真的一个软件包,许多工具箱里的模块都被封装成了Simulink模块。MATLAB中的通信系统工具箱是一个运算函数和仿真模块的集合体,可以用来进行通信领域的研究、开发、系统设计和仿真。使用MATLAB软件,设计通信系统,配置各个通信组成部分的参数,通过仿真可以得到仿真波形,很明显的可以观察到参数不同仿真结果不尽相同。 指导教师评语:

一、设计目的和任务 综合通信系统课程设计是电子信息工程专业和通信工程专业教学的一个实践性与综合性环节,是电子信息工程专业及通信工程专业各门课程的综合以及通信、信息、信号处理等基本理论与实践相结合的部分。主要是为了让学生利用所学的专业理论知识以及实践环节所积累的经验,结合实际的通信系统的各个环节,设计出一个完整综合通信系统,并进一步加深学生对通信系统的深入理解,培养学生设计通信系统的能力,为毕业设计和以后的工作打下良好的基础。 1、设计目的: 1、掌握通信系统的基本构成; 2、掌握通信系统工作原理; 3、了解通信系统设计的基本过程;掌握基本理论和解决实际问题的方法,锻炼学生综合分析问题解决问题的能力。 5、为学生的毕业设计和以后的工作打下良好的基础。 2、设计任务: 1、设计通信系统的各个环节; 2、将上述设计好的各个环节设计成一个综合通信系统。 二、设计工具介绍 本课程设计主要是利用simulink、通信系统工具箱以及信号处理工具箱来完成通信系统的设计与仿真。 1、Simulink Simulink是MATLAB提供的实现动态系统建模和仿真的一个软件包。它让用户把精力从编程转向模型的构造,经常与其它工具箱一起使用,实际上,许多工具箱里的模块都被封装成了Simulink模块。 2、通信系统工具箱及其功能 2.1 通信系统工具箱概述 MATLAB中的通信系统工具箱是一个运算函数和仿真模块的集合体,可以用来进行通信领域的研究、开发、系统设计和仿真。通信系统工具箱中包含的模块

帧同步提取试验

帧同步提取系统实验 一.实验目的 1、了解帧同步的机理 2、熟悉帧同步的性能 3、熟悉帧失步对数据业务的影响 二.实验内容 1、帧同步过程观察; 2、误码环境下的帧同步性能测试; 3、帧失步下对接受帧内的数据信号传输的定性观测。 三.实验仪器 1、JH5001通信原理综合实验系统一台 2、20MHz双踪示波器一台四.原理与电路 在TDM复接系统中,要保证接收端分路系统和发送端一致,必须要有一个同步系统,以实现发送端和接收端同步。帧定位同步系统是复接/解复接设备中最重要的部分。在帧定位系统中要解决的设计问题有:1)同步搜索方法;2)帧定位码型设计;3)帧长度的确定;4)帧定位码的码长选择;5)帧定位保护方法;6)帧定位保护参数的选择;等等。这些设计完成后就确定了复接系统的下列技术性能:1)平均同步搜捕时间;2)平均发现帧时间;3)平均确认同步时间;4)平均发生失帧的时间间隔;5)平均同步持续时间;6)失帧引入的平均误码率,等等。 通常帧定位同步方法有两种:逐码移位同步搜索法和置位同步搜索法。通信原理综合实验系统中的解复接同步搜索方法采用逐码移位同步法。逐码移位同步搜索法的基本工作原理是调整收端本地帧定位码的相位,使之与收到的总码流中的帧定位码对准。同步后用收端各

分路定时脉冲就可以对接收到的码流进行正确的分路。如果本地帧同步码的相位没有对准码流接收信号码流的帧定位码位,则检测电路将输出一个一定宽度的扣脉冲,将接收时钟扣除一个,这等效将数据码流后移一位码元时间,使帧定位检测电路检测下一位信码。如果下一位检测结果仍不一致,则再扣除一位时钟,这过程称“同步搜索”。搜索直至检测到帧定位码为止。因接收码流除有帧定位码型外,随机的数字码流也可能存在与帧定位码完全相同的码型。因此,只有在同一位置,多次连续出现帧定位码型,方可算达到并进入同步。这一部分功能由帧定位检测电路内的校核电路完成。 无论多么可靠的同步电路,由于各种因素(例如强干扰、短促线路故障等),总会破坏同步工作状态,使帧失步。从帧失步到重新获得同步的这段时间(亦称同步时间)将使通信中断。误码也将会造成帧失步。因此,从同步到下一次失步的时间因尽量长一些,否则将不断的中断通信。这一时间的长短表示TDM同步系统的抗干扰能力。抗误码造成的帧失步主要由帧定位检测电路内的保护记数电路完成,只有当在一定的时间内在帧定位码位置多次检测不到帧定位码,才可判定为帧失步,需重新进入同步搜索状态。逐码移位同步搜索法系统组成框图见图1所示。 语音信号的中断时间短于100ms,将不易被人耳分辨出来。但对某些数据终端传输却是不允许的。为能让学生能深入了解在有误码的环境下帧失步、同步和抗误码性能,在复接模块内专门设计了一个错码产生器(3种类型误码),通过错码设置跳线开关SWB02(E_SEL0,E_SEL1)选择不同的信道误码率(分别约为4×10—3、1.6×10—2和1×10—1)。学生能够观测到复接/解复接具有抗误码性能,即在小误码时帧同步锁定状态,加大误码帧帧失步,进入帧同步搜索(扫描)状态;另可测试不同误码和帧失步对话音业务的影响和观测对数据业务的影响。 五.实验步骤 准备工作:首先将解复接模块内的输入信号和时钟选择跳线开关KB01、KB02设置LOOP(自环)位置,使复接模块和解复接模块连接成自环测试方式;将复接模块内的工作状态选择跳线开关SBW02的m序列选择跳线开关M_SEL1、M_SEL2拔下,使m序列发生器产生全0码,将错码选择跳线开关E_SEL0、E_SEL1拔下,不在传输帧中插入误码。

通信综合实验

第二篇 通信原理实训部分

一、三模块工作过程 1.1PCM/ADPCM模块 PCM/ADPCM编译码电路在JH5001-4通信原理实验系统的PCM/PAM模块中。 PCM/ADPCM编译码电路对模拟信号进行PCM/ADPCM编译码处理。实验时采用ADPCM模式:进行ADPCM编译码(编码速率32kbps)。 在通信原理通信原理实验部分中,PCM/ADPCM电路对用户接口2的信号进行PCM编码,并将译码后的模拟信号送入用户接口1。其功能组成框图见图2.2.1所示。 图2.2.1 PCM/ADPCM电路框图 PCM/ADPCM电路原理图见图2.2.2。 PCM/ADPCM模块电路工作原理:该模块由编码电路、译码电路组成。在编码电路上发送信号经运放U501A(TL082)放大后进入U502(MC145540)进行PCM或ADPCM编码,编码主时钟为BCLK(256KHz),编码输出为DT_ADPCM(FSX为编码输出的帧脉冲信号),编码之后的信号送入: (1)PCM/ADPCM译码单元; (2)送入复接解复接模块; 在译码电路部分,对输入的PCM或ADPCM编码信号进行译码,在接收帧脉冲FSX和编码主时钟为BCLK主时钟的作用下送入U502(MC145540)译码,译码之后的模拟信号经运放U501B放大输出,送到用户接口模块1。 U503是20.48MHz晶体振荡器,供MC145540内部信号处理使用。 实验时ADPCM模块各跳线开关设置如下: 1、跳线开关K501(用于选择正常的发送话音信号还是测试信号),当K501置于1_2 时(左端),选择来自用户2接口单元的话音信号;当K501置于2_3时(右端)选

通信原理实验报告

通信原理实验报告 一.实验目的 熟悉掌握MATLAB软件的应用,学会对一个连续信号的频谱进行仿真,熟悉sigexpand(x2,ts2/ts1)函数的意义和应用,完成抽样信号对原始信号的恢复。 二.实验内容 设低通信号x(t)=cos(4pi*t)+1.5sin(6pi*t)+0.5cos(20pi*t); (1)画出该低通信号的波形 (2)画出抽样频率为fs=10Hz(亚采样)、20Hz(临界采样)、50Hz(过采样)的抽样序列 (3)抽样序列恢复出原始信号 (4)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的时域波形的差异。 原始信号与恢复信号的时域波形之差有何特点?有什么样的发现和结论? (5)三种抽样频率下,分别分析对比模拟信号、离散采样信号、恢复信号的频域特性的差异。 原始信号与恢复信号的频域波形之差有何特点?有什么样的发现和结论? 实验程序及输出结果 clear; close all; dt=0.05; t=-2:dt:2 x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); N=length(t); Y=fft(x)/N*2; fs=1/dt; df=fs/(N-1); f=(0:N-1)*df; subplot(2,1,1) plot(t,x) title('抽样时域波形') xlabel('t') grid; subplot(2,1,2) plot(f,abs(Y)); title('抽样频域信号 |Y|'); xlabel('f'); grid;

定义sigexpand函数 function[out]=sigexpand(d,M) N=length(d); out=zeros(M,N); out(1,:)=d; out=reshape(out,1,M*N); 频域时域分析fs=10Hz clear; close all; dt=0.1; t0=-2:0.01:2 t=-2:dt:2 ts1=0.01 x0=cos(4*pi*t0)+1.5*sin(6*pi*t0)+0.5*cos(20*pi*t0); x=cos(4*pi*t)+1.5*sin(6*pi*t)+0.5*cos(20*pi*t); B=length(t0); Y2=fft(x0)/B*2; fs2=1/0.01; df2=fs2/(B-1); f2=(0:B-1)*df2; N=length(t); Y=fft(x)/N*2;

通信原理实验 自定义帧结构的帧形成及其传输 自定义帧结构的帧同步系统 实验报告

姓名:学号:班级: 第周星期第大节实验名称:自定义帧结构的帧形成及其传输/自定义帧结构的帧同步系统 一、实验目的 1.加深对PCM30/32系统帧结构的理解。 2.加深对PCM30/32路帧同步系统及其工作过程的理解。 3.加深对PCM30/32系统话路、信令、帧同步的告警复用和分用过程的理解。 二、实验仪器 1.ZH5001A通信原理综合实验系统 2.20MHz双踪示波器 三、实验内容 (一)自定义帧结构的帧形成及其传输 1.发送传输帧结构观测 (1)(2) m序列输入的序列为全0 所找的帧在图上标注了。 (3)调整开关信号。 箭头所指为改变的开关信号。

(4)调整m序列 什么都不接是全0可以看清,接时,可以看清。接M_SEL1和两2.发送帧同步指示的观测 可以观测到已经同步 3.解复接开关信号输出的观测 4.解复接m序列数据输出观测 接M_SEL0 & M_SEL1 接M_SEL0 接M_SEL1 全不接 只要接M_SEL0接收就看不清,全1(M_SEL0)和全0(都不接)都可以

(二)自定义帧结构的帧同步系统 1.帧同步过程观测 (1)输入全0码 可以同步 可以同步 (3)将开关信号设置为帧定位信号,将KB01拔出插入 左边是假同步,右边是真同步。说明开关序列边位帧同步序列以后会影响

2.在误码环境下的帧同步性能测试和数据传输的定性测试(1)通过设置,使信道的误码率为1*10^-1 无法同步,同时观察LED灯,发现LED灯闪烁无规律。 (2)通过设置,使信道的误码率为1.6*10^-2 仍旧不能同步。 (3)通过设置,使信道的误码率为4*10^-3 在误码率较小的情况下,可以同步。

通信综合实训系统实验报告

. 通信综合实训系统实验 (程控交换系统实验) 学生姓名 学号 专业班级通信工程班 指导老师 年月日

实验1 局内呼叫处理实验 一、实验目的 1.通过对模拟用户的呼叫追踪,加深对程控交换机呼叫处理过程的理解; 2.掌握程控交换机配置数据的意义及原理; 3.根据设计要求,完成对程控交换机本局数据的配置。 二、实验内容 1.学习ZXJ10程控交换机本局数据配置方法; 2.模拟用户动态跟踪,深入分析交换机呼叫流程; 3.按照实验指导书的步骤配置本局数据,电话号码7000000~7000023分配到ASLC板 卡的0~23端口,并用7000000拨打7000001电话,按照实验指导书方法创建模拟用户呼叫跟踪,观察呼叫动态迁移,理解单模块呼叫流程。 4.本局数据配置需要配置如下: 局信息配置 局容量数据配置 交换局配置 物理配置 号码管理、号码分析 三、实验仪器 程控交换机1套 维护终端若干 电话机若干 四、实验步骤 (一)、启动后台维护控制中心 启动程控交换机网管终端计算机,点击桌面快捷方式的,启动后的维护控制中心如下图2-1(利用众友开发软件CCTS可省略该步骤): (二)、启动操作维护台 选中后台维护系统控制中心,单击右键,选中【启动操作维护平台】,出现如下的对话框,输入操作员名【SYSTEM】,口令为空,单击【确定】后,将会登陆操作维护系统。

(三)、告警局配置 打开“系统维护(C)”----“告警局配置(B)”,点击“局信息配置(B)”后,弹出如下界面。 输入该局的区号532,局号1,然后点击【写库】。 (四)、局容量数据配置 打开【基本数据管理】-【局容量数据配置】,点击后弹出如下操作界面(分别进行全局容量、各模块容量进行规划设置),点击【全局规划】,出现如下的对话框. 点击【全部使用建议值】,当前值自动填上系统默认的数值,点击【确定】后返回容量规划界面,点击【增加】, 模块号2,MP内存128,普通外围、远端交换模块,填写完,点击【全部使用建议值】。 (五)、交换局配置 在后台维护系统打开[数据管理→基本数据管理→交换局配置]弹出如下的对话框,按照图示,只填写【本交换局】-【交换局配置数据】,点击设置。 (六)、物理配置 在后台维护系统打开[数据管理→基本数据管理→物理配置]:

通信原理实验习题解答

实验一 1. 根据实验观察和纪录回答: (1)不归零码和归零码的特点是什么 (2)与信源代码中的“1”码相对应的AMI码及HDB3码是否一定相同 答: 1)不归零码特点:脉冲宽度等于码元宽度Ts 归零码特点:<Ts 2)与信源代码中的“1”码对应的AMI码及HDB3码不一定相同。因信源代码中的“1”码对应的AMI码“1”、“-1”相间出现,而HDB3码中的“1”,“-1”不但与信源代码中的“1”码有关,而且还与信源代码中的“0”码有关。举例: 信源代码 1 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 1 AMI 1 0 0 0 0 -1 1 0 0 0 0 -1 0 0 0 0 0 1 HDB3 1 0 0 0 1 -1 1 -1 0 0 -1 1 0 0 0 1 0 -1 2. 设代码为全1,全0及0111 0010 0000 1100 0010 0000,给出AMI及HDB3码的代码和波形。 答: 信息代码 1 1 1 1 1 11 AMI 1 -1 1 -1 1-1 1 HDB3 1 -1 1 -1 1 -1 1 信息代码0 0 0 0 0 0 0 0 0 0 0 0 0 AMI0 0 0 0 0 0 0 0 0 0 0 0 0 HDB3 0 0 0 1-10 0 1-1 0 0 1 -1 信息代码 0 1 1 1 0 0 1 0 0 0 0 0 1 1 0 0 0 0 1 0 0 0 0 0 AMI0 1 -1 1 0 0 -1 0 0 0 0 0 1 -1 0 0 0 0 1 0 0 0 0 0 HDB30 1 -1 1 0 0 -1 0 0 0-1 0 1 -1 1 0 0 1 -1 0 0 0 –1 0 3. 总结从HDB3码中提取位同步信号的原理。 答: 位同步信号HDB3 整流窄带带通滤波器整形移相 HDB3中不含有离散谱f S(f S在数值上等于码速率)成分。整流后变为一个占空比等于的单极性归零码,其连0个数不超过3,频谱中含有较强的离散谱f S成分,故可通过窄带带通滤波器得到一个相位抖动较小的正弦信号,再经过整形、移相后即可得到合乎要求的位同步信号。

通信原理实验报告一

实验一信号源实验 一、实验目的 1、了解通信系统的一般模型及信源在整个通信系统中的作用。 2、掌握信号源模块的使用方法。 二、实验内容 1、对应液晶屏显示,观测DDS信源输出波形。 2、观测各路数字信源输出。 3、观测正弦点频信源输出。 4、模拟语音信源耳机接听话筒语音信号。 三、实验仪器 1、信号源模块一块 2、20M双踪示波器一台 四、实验原理 信号源模块大致分为DDS信源、数字信源、正弦点频信源和模拟语音信源几部分。 1、DDS信源 DDS直接数字频率合成信源输出波形种类、频率、幅度及方波B占空比均可通过“DDS信源按键”调节(具体的操作方法见“实验步骤”),并对应液晶屏显示波形信息。 正弦波输出频率范围为1Hz~200KHz,幅度范围为200mV~4V。 三角波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 锯齿波输出频率范围为1Hz~20KHz,幅度范围为200mV~4V。 方波A输出频率范围为1Hz~50KHz,幅度范围为200mV~4V,占空比50%不变。 方波B输出频率范围为1Hz~20KHz,幅度范围为200mV~4V,占空比以5%步进可调。 输出波形如下图1-1所示。

正弦波:1Hz-200KHz 三角波:1Hz-20KHz 锯齿波:1Hz-20KHz 方波A:1Hz-50KHz(占空比50%) 方波B:1Hz-20KHz(占空比0%-100%可调) 图1-1 DDS信源信号波形 2、数字信源 (1)数字时钟信号 24.576M:钟振输出时钟信号,频率为24.576MHz。 2048K:类似方波的时钟信号输出点,频率为2048 KHz。64K:方波时钟信号输出点,频率为64 KHz。 32K:方波时钟信号输出点,频率为32KHz。 8K:方波时钟信号输出点,频率为8KHz。 输出时钟如下图1-2所示。

相关文档
最新文档