碳水化合物的消化

碳水化合物的消化
碳水化合物的消化

碳水化合物的消化

(一)口腔内消化

碳水化合物的消化自口腔开始。口腔分泌的唾液中含有α-淀粉酶(α-amylase),又称唾液淀粉酶(ptyalin),唾液中还含此酶的激动剂氯离子,而且还具有此酶最合适pH6~7 的环境。α-淀粉酶能催化直链淀粉、支链淀粉及糖原分子中α-1,4-糖苷键的水解,但不能水解这些分子中分支点上的α-1,6-糖苷键及紧邻的两个α-1,4-糖苷键。水解后的产物可有葡萄糖、麦芽糖、异麦芽糖、麦芽寡糖以及糊精等的混合物。

(二)胃内消化由于食物在口腔停留时间短暂,以致唾液淀粉酶的消化作用不大。当口腔内的碳水化合

物食物被唾液所含的粘蛋白粘合成团,并被吞咽而进人胃后,其中所包藏的唾液淀粉酶仍可使淀粉短时继续水解,但当胃酸及胃蛋白酶渗入食团或食团散开后,pH 下降至1~2 时,不再适合唾液淀粉酶的作用,同时该淀粉酶本身亦被胃蛋白酶水解破坏而完全失去活性。胃液不含任何能水解碳水化合物的酶,其所含的胃酸虽然很强,但对碳水化合物也只可能有微少或极局限的水解,故碳水化合物在胃中几乎完全没有什么消化。

(三)肠内消化碳水化合物的消化主要是在小肠中进行。小肠内消化分肠腔消化和小肠粘膜上皮细胞表

面上的消化。极少部分非淀粉多糖可在结肠内通过发酵消化。

1. 肠腔内消化肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉

1.(amylopsin),其作用和性质与唾液淀粉酶一样,最适pH 为6.3~7.2,也需要氯离子作激动剂。胰淀粉酶对末端α-1,4-糖苷键和邻近α-1,6-糖苷键的α-1,4-糖苷键不起作用,但可随意水解淀粉分子内部的其他α-1,4-糖苷键。消化结果可使淀粉变成麦芽糖、麦芽三糖(约占65%)、异麦芽糖、α-临界糊精及少量葡萄糖等。α-临界糊精是由4~9 个葡萄糖基构成。

2.小肠粘膜上皮细胞表面上的消化淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠粘膜上皮细胞表面进一步彻底消化。小肠粘膜上皮细胞刷状缘上含有丰富的α-糊精酶(α-dextrinase)、糖淀粉酶(glycoamylase)、麦芽糖酶(mahase)、异麦芽糖酶(isomahase)、蔗糖酶(sucrase)及乳糖酶(|actase),它们彼此分工协作,最后把食物中可消化的多糖及寡糖完全消化成大量的葡萄糖及少量的果糖及半乳糖。生成的这些单糖分子均可被小肠粘膜上皮细胞吸收。

3.结肠内消化小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷气、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。碳水化合物在结肠发酵时,促进了肠道一些特定菌群的生长繁殖,如双歧杆菌、乳酸杆菌等。

单一碳水化合物比复合碳水化合物更易被身体吸收

单一碳水化合物比复合碳水化合物更易被身体吸收 碳水化合物是热量的主要来源,主要可分为复合碳水化合物和单一碳水化合物。复合碳水化合物主要存在于淀粉质食物中,例如谷物、面包、马铃薯、麦、豆和部蔬菜。单一碳水化合物比复合碳水化合物更易被身体吸收,主要存在于精制糖类,包括蔗糖、蜜糖、糖果及奶制品等。 专家建议淀粉质食物的摄入应该占餐单的1/3,最好每天能够摄取5种不同的蔬菜和水果。应该保持均衡的饮食,不应省略任何一类食物。 新加坡营养师也赞成均衡营养,他们认为,长期多吃肉无益身体健康。一般营养师和医生并不鼓励人们以高蛋白、低碳水化合物饮食来减肥。低碳水化合物之所以流行,是因为许多减肥者的体重会明显减轻,但这种减肥方法体重减轻的正原因是减少了体内水分和肌肉,而不是脂肪。所以低碳水化合物减肥法是不健康的,而其减肥效果也不能持久。 专家建议,要达到减肥目的,每天的饮食应以水果、蔬菜为主,要多喝水,还要多运动,最好一星期运动3次,每次30分钟。减轻体重不可操之过急,一个月减1公斤至1.5公斤,千万不要在短期间大幅度减轻体重。减肥并不难,最难的还是长期维持健康的体重。 编辑支招:如果你想要再瘦个几公斤,那可要抓紧啦!以下为你提供的10天减肥餐单,以蔬菜与水果为主,辅以必要的蛋白质及维生素,在保证基础营养的同时,可以达到清理肠胃、排除毒素的美容功效。 1、此餐单提供的热量不超过1000大卡,因此请勿长期使用,以免造成营养不良; 2、请完全遵守餐单组合,请勿随意增加或减少食物; 3、每周请泡澡或足浴最少2次,经常泡澡可以有效地促进新陈代谢,同时有利于皮肤的美容。 4、可选用合格的纤体消脂霜,每天按摩皮肤可以防止减肥带来的皮肤细纹。 如果你记住了以上事项,那么就赶快来看神奇的减肥餐单吧! Day 1-3 早餐:起床后先喝一大杯温水,再选择下列任何一个早餐组合。

碳水化合物的消化吸收与代谢

碳水化合物的消化吸收与代谢 碳水化合物的吸收和代谢有两个重要步骤:小肠中的消化和细菌帮助下的结肠发酵。这一认识改变了我们过去几十年对膳食碳水化合物消化吸收的理解。例如,我们现在知道淀粉并不能完全消化,实际上有些是非常难消化的。难消化的碳水化合物不仅只提供少量能量,最重要的是其发酵产物对人体有重要的生理价值。“糖”并不是对健康普遍不利的,而淀粉也不一定对血糖和血脂产生有利影响。这些研究结果充实和扩展了碳水化合物与人类健康关系的理论,使我们对碳水化合物消化和吸收的认识进入一个崭新的阶段。 4.3.1碳水化合物的消化和吸收 碳水化合物的消化是从口腔开始的,但由于停留时间短,消化有限;胃中由于酸的环境,对碳水化合物几乎不消化。因此其消化吸收主要有两种形式:小肠消化吸收和结肠发酵。消化吸收主要在小肠中完成。单糖直接在小肠中消化吸收;双糖经酶水解后再吸收;一部分寡糖和多糖水解成葡萄糖后吸收。在小肠不能消化的部分,到结肠经细菌发酵后再吸收(详见第1章)。 碳水化合物的类型不同,消化吸收率不同,引起的餐后血糖水平也不同。食物血糖生成指数(GI)表示某种食物升高血糖效应与标准食品(通常为葡萄糖)升高血糖效应之比。GI 值越高,说明这种食物升高血糖的效应越强。不同的碳水化合物食物在肠胃内消化吸收的速度不同,而消化、吸收的快慢与碳水化合物本身的结构(如支链和直链淀粉)、类型(如淀粉或非淀粉多糖)有关。此外,食物的化学成分和含量(如膳食纤维、脂肪、蛋白质的多少),加工方式,如颗粒大小、软硬、生熟、稀稠及时间、温度、压力等对GI都有影响。总之,越是容易消化吸收的食物,GI值就越高。高升糖指数的食物对健康不利。高“升糖指数”的碳水化合物食物则会造成血液中的葡萄糖和胰岛素幅度上下波动。低“升糖指数”的食品,能大幅减少心脏疾病的风险。一般果糖含量和直链淀粉含量高的食物,GI值偏低;膳食纤维高,一般GI值低,可溶性纤维也能降低食物GI值(如果胶和瓜尔豆胶),脂肪可延长胃排空和减少淀粉糊化,因此脂肪也有降低GI值作用。但是,值得注意的是,尽管含脂肪高的个别食物(如冰淇淋)GI值较低,但对糖尿病病人来说仍是应限制的食物。当血糖生成指数在55以下时,可认为该食物为低GI食物;当血糖生成指数在55~75时,该食物为中等GI食物;当血糖生成指数在75以上时,该食物为高GI食物。 4.3.2碳水化合物的分布和利用 碳水化合物经消化吸收后,在肠壁和肝脏几乎全部转变为葡萄糖,主要合成为肝糖原储存,也可氧化分解供给肝脏本身所需的能量。另一部分,则经肝静脉进入体循环,由血液运送到各组织细胞,进行代谢或合成糖原储存,或氧化分解供能,或转变成脂肪等。综上所述,糖的代谢包括氧化分解直接提供能量,合成糖原储存备用,转变成脂肪等,这些过程相互联系和制约,共同组成复杂而有序的糖代谢。 4.3.2.1直接利用 葡萄糖被称为“首要燃料”,可直接被机体组织所利用。尤其是大脑神经系统需要大量的能量来维持活动,约有1/5的总基础代谢发生在脑中,所以葡萄糖是机体中大脑的主要能源。在正常环境中,大脑的神经系统并不储存能量,而是直接利用葡萄糖来维持生命活动,所以脑中没有糖原这个中间物。如果注射过量的胰岛素,会使葡萄糖骤然减少,并很快引起神经系统变化。当然,饥饿状态下,大脑也可以利用其他形式的燃料来维持生命活动。 4.3.2.2转化成糖原 早在1850年,人类在动物体内第一次证明葡萄糖合成糖原。目前,人体中的糖代谢也已基本了解,肝脏是糖原最丰富的器官,骨骼肌的浓度比较低。但是,由于肌肉量多,肌肉仍是储存糖原的主要场所。正常情况下,人体碳水化合物储存的量是较少的。例如,如果在不进食情况下,一个成人走2~3h就几乎消耗全部储存。最后的呼吸商是0.75或更低,表明

碳水化合物的代谢试验

其原理为:由于细菌各自具有不同的酶系统,对糖的分解能力不同,有的能分解某些糖产生酸和气体,有的虽能分解糖产生酸,但不产生气体,有的则不分解糖。据此可对分解产物进行检测从而鉴别细菌。具体试验方法有:①糖类发酵试验是鉴定细菌最常用的生化反应,特别是对肠杆菌的鉴定尤为重要;②葡萄糖代谢类型鉴别试验;③七叶苷水解试验;④淀粉水解试验;⑤甲基红试验;⑥V-P试验;⑦β-半乳糖苷酶试验(ONPG试验)。 1.糖(醇、苷)类发酵试验(1)原理:由于各种细菌含有发酵不同糖(醇、苷)类的酶,故分解糖类的能力各不相同,有的能分解多种糖类,有的仅能分解l~2种糖类,还有的不能分解。细菌分解糖类后的终末产物亦不一致,有的产酸、产气,有的仅产酸,故可利用此特点以鉴别细菌。(2)培养基:在培养基中加入0.5%~l%的糖类(单糖、双糖或多糖)、醇类(甘露醇、肌醇等)、苷类(水杨苷等)。培养基可为液体、半固体、固体或微量生化管几种类型。(3)方法:将分离的纯种细菌,以无菌操作接种到糖(醇、苷)类发酵培养基中,置培养箱中培养数小时至两周后,观察结果。若用微量发酵管,或要求培养时间较长时,应保持湿度,以免培养基干燥。(4)结果:接种的细菌,若能分解培养基中的糖(醇、苷)类产酸时,培养基中的指示剂呈酸性反应。若产气可使液体培养基中倒管内或半固体培养基内出现气泡,固体培养基内有裂隙等现象。若不分解,培养基中除有细菌生长外,无任何其他变化。(5)应用:是鉴定细菌最主要和最基本的试验,特别对肠杆菌科细菌的鉴定尤为重要。 2.氧化-发酵试验(0/F试验)(1)原理:细菌在分解葡萄糖的过程中,必须有分子氧参加的,称为氧化型。氧化型细菌在无氧环境中不能分解葡萄糖。细菌在分解葡萄糖的过程中,可以进行无氧降解的,称为发酵型。发酵型细菌无论在有氧或无氧的环境中都能分解葡萄糖。不分解葡萄糖的细菌称为产碱型。利用此试验可区分细菌的代谢类型。(2)培养基HL:Hugh-Leifson培养基。(3)方法:将待检菌同时穿刺接种两支HL培养基,其中一支培养基滴加无菌的液体石蜡(或其他矿物油),高度不少于lcm.将培养基于35℃培养48h或更长。(4)结果:两支培养基均无变化为产碱型或不分解糖型;两支培养基均产酸为发酵型;若仅不加石蜡的培养基产酸为氧化型。(5)应用:主要用于肠杆菌科细菌与非发酵菌的鉴别,前者均为发酵型,而后者通常为氧化型或产碱型。也可用于葡萄球菌与微球菌间的鉴别。 3.β-半乳糖苷酶试验(ONPG试验)(1)原理:有的细菌可产生β-半乳糖苷酶,能分解邻-硝基酚-β-D-半乳糖苷(ONPG),而生成黄色的邻-硝基酚,在很低浓度下也可检出。(2)试剂:0.75MONPG溶液:取80mg溶于l5ml蒸馏水中,在加入缓冲液(6.9gNaH2P04溶于45ml蒸馏水中,用30%NaOH调整pH为7.0,再加水至50m1)5ml,置4℃冰箱中保存。0NPG溶液为无色,如出现黄色,则不应再用。(3)方法:从克氏双糖铁培养基上取菌,于0.25ml无菌生理盐水中制成菌悬液,加入一滴甲苯并充分振摇,使酶释放。将试管置37℃水浴5min,加入0.25mlONPG试剂,水浴20min~3h观察结果。(4)结果:菌悬液呈现黄色为阳性反应,一般在20~30min内显色。(5)应用:迅速及迟缓分解乳糖的细菌ONPG试验为阳性,而不发酵乳糖的细菌为阴性。本实验主要用于迟缓发酵乳糖菌株的快速鉴定。 4.七叶苷水解试验(1)原理:有的细菌可将七叶苷分解成葡萄糖和七叶素,七叶素与培养基中枸橼酸铁的二价铁离于反应,生成黑色的化合物,使培养基呈黑色。(2)培养基:七叶苷培养基、胆汁七叶苷培养基。(3)方法:将待检菌接种于七叶苷培养基中,培养后观察结果。(4)结果:培养基变为黑色为阳性,不变色者为阴性。(5)应用:主要用于D群链球菌与其他链球菌的鉴别,前者阳性,后者阴性。也可用于革兰阴性杆菌及厌氧菌的鉴别。 5.甲基红试验(1)原理:某些细菌在糖代谢过程中,分解葡萄糖产生丙酮酸,丙酮酸可进一步分解,产生甲酸、乙酸、乳酸等,使培养基的pH降至4.5以下,当加入甲基红试剂则呈红色,为甲基红试验阳性。若细菌分解葡萄糖产酸量少,或产生的酸进一步转化为其他物质(如醇、酮、醚、气体和水等),则培养基的酸度仍在pH6.2以上,故加入甲基红指示剂呈黄色,是为阴性。(2)培养基:葡萄糖蛋白胨水培养基。

最新碳水化合物教案

教案 第二章,第四节人体对碳水化合物的需要 教学目标: 1、通过本节教学,使学生了解碳水化合物的主要生理功能;常见活性多糖的生理功能;血糖指数( GI )的升高对糖类食物选择的重要作用。 2、通过学习掌握碳水化合物、膳食纤维概念、分类和食物来源; 3、理解糖类(碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用)、膳食纤维主要生理功能;了解常见活性多糖的生理功能;血糖指数( GI )的对糖类食物选择的重要作用。 4、通过对本节内容的学习,运用所学知识指导人们合理选取糖类,保障健康。 教学重点:碳水化合物、膳食纤维概念、营养分类和食物来源; 教学难点:碳水化合物节约蛋白质作用、碳水化合物的抗生酮作用、膳食纤维主要生理功能 新课导入:开运动会的时候,班里的班委会给运动员买点葡萄糖口服液来服用,还有前两年流行的PTT饮料,同学们想一下,这些现象说明了什么问题呢?由此引入要讲的内容。 教学内容:

一、碳水化合物的功能 1 、供能与的节约蛋白质作用 当摄入足够的碳水化合物时,可以防止体内和膳食中的蛋白质转变为葡萄糖,这是所谓的节约蛋白质作用。 2 、构成机体细胞的成分 碳水化合物是构成机体的重要物质,并参与细胞的许多生命活动。 3 、维持神经系统的功能 尽管大多数体细胞可由脂肪和蛋白质代替糖作为能源,但是脑、神经和肺组织却需要葡萄糖作为能源物质,若血中葡萄糖水平下降,脑缺乏葡萄糖可产生不良反应。 4、抗生酮作用 碳水化合物摄取不足,脂肪代谢产生脂肪酸,氧化增多,会产生较多的酮体,高过肾的回收能力时,会影响人的健康,即所谓的酸中毒。 5、提供膳食纤维,活性多糖果,有益肠道功能 如乳糖可促进肠中有益菌的生长,也可加强钙的吸收。低聚糖:有利于肠道菌群平衡。 6 、食品加工能够中的重要原、辐材料(对食品) 很多工业食品都含有糖,并且对食品的感官性状有重要作用。 二、碳水化合物 (carbohydrate) 的分类: 按其化学组成、生理作用和健康意义可分为: 1 、糖:包括单糖 (monosaccharide 、双糖 (disaccharide) 和糖醇。

31第三节碳水化合物的代谢

碳水化合物的消化 (一)口腔内消化 碳水化合物的消化自口腔开始。口腔分泌的唾液中含有α-淀粉酶(α-amylase),又称 唾液淀粉酶(ptyalin),唾液中还含此酶的激动剂氯离子,而且还具有此酶最合适pH6~7 的环境。α-淀粉酶能催化直链淀粉、支链淀粉及糖原分子中α-1,4-糖苷键的水解,但不能水解这些分子中分支点上的α-1,6-糖苷键及紧邻的两个α-1,4-糖苷键。水解后的产物可有葡萄糖、麦芽糖、异麦芽糖、麦芽寡糖以及糊精等的混合物。 (二)胃内消化 由于食物在口腔停留时间短暂,以致唾液淀粉酶的消化作用不大。当口腔内的碳水化合物食物被唾液所含的粘蛋白粘合成团,并被吞咽而进人胃后,其中所包藏的唾液淀粉酶仍可使淀粉短时继续水解,但当胃酸及胃蛋白酶渗入食团或食团散开后,pH 下降至1~2 时,不 再适合唾液淀粉酶的作用,同时该淀粉酶本身亦被胃蛋白酶水解破坏而完全失去活性。胃液不含任何能水解碳水化合物的酶,其所含的胃酸虽然很强,但对碳水化合物也只可能有微少或极局限的水解,故碳水化合物在胃中几乎完全没有什么消化。 (三)肠内消化 碳水化合物的消化主要是在小肠中进行。小肠内消化分肠腔消化和小肠粘膜上皮细胞表面上的消化。极少部分非淀粉多糖可在结肠内通过发酵消化。 1.肠腔内消化肠腔中的主要水解酶是来自胰液的α-淀粉酶,称胰淀粉酶(amylopsin),其作用和性质与唾液淀粉酶一样,最适pH 为6.3~7.2,也需要氯离子作激动剂。胰淀粉酶对末端α-1,4-糖苷键和邻近α-1,6-糖苷键的α-1,4-糖苷键不起作用,但可随意水解淀粉分子内部的其他α-1,4-糖苷键。消化结果可使淀粉变成麦芽糖、麦芽三糖(约占65%)、异麦芽糖、α-临界糊精及少量葡萄糖等。α-临界糊精是由4~9 个葡萄糖基构成。 2.小肠粘膜上皮细胞表面上的消化淀粉在口腔及肠腔中消化后的上述各种中间产物,可以在小肠粘膜上皮细胞表面进一步彻底消化。小肠粘膜上皮细胞刷状缘上含有丰富的α- 糊精酶(α-dextrinase)、糖淀粉酶(glycoamylase)、麦芽糖酶(mahase)、异麦芽糖酶(isomahase)、蔗糖酶(sucrase)及乳糖酶(|actase),它们彼此分工协作,最后把食物中可 消化的多糖及寡糖完全消化成大量的葡萄糖及少量的果糖及半乳糖。生成的这些单糖分子均可被小肠粘膜上皮细胞吸收。 3.结肠内消化小肠内不被消化的碳水化合物到达结肠后,被结肠菌群分解,产生氢气、甲烷气、二氧化碳和短链脂肪酸等,这一系列过程称为发酵。发酵也是消化的一种方式。所产生的气体经体循环转运经呼气和直肠排出体外,其他产物如短链脂肪酸被肠壁吸收并被机体代谢。碳水化合物在结肠发酵时,促进了肠道一些特定菌群的生长繁殖,如双歧杆菌、乳酸杆菌等。 二、碳水化合物的吸收 碳水化合物经过消化变成单糖后才能被细胞吸收。糖吸收的主要部位是在小肠的空肠。单糖首先进入肠粘膜上皮细胞,再进入小肠壁的毛细血管,并汇合于门静脉而进入肝脏,最后进入大循环,运送到全身各个器官。在吸收过程中也可能有少量单糖经淋巴系统而进人大循环。 单糖的吸收过程不单是被动扩散吸收,而是一种耗能的主动吸收。目前普遍认为,在肠粘膜上皮细胞刷状缘上有一特异的运糖载体蛋白,不同的载体蛋白对各种单糖的结合能力不同,有的单糖甚至完全不能与之结合,故各种单糖的相对吸收速率也就各异。

表9 常见食物碳水化合物含量表

高糖(碳水化合物)食物 碳水化合物是机体能量的主要来源,特别是提供唯一可被脑细胞及红血球所需的能量。不被使用的葡萄糖,可变成脂肪储存在体内。碳水化合物中含有一些不被消化的纤维,它有吸水及吸脂作用,所以有助清洗大肠及降低胆固醇,令大便畅通、体内废物顺利排出体外(见膳食纤维节)。 碳水化合物主要可分为糖、寡糖和多糖。糖主要存在于精制糖类中(如:蔗糖、蜜糖、糖果等)、蔬菜以至奶类制品。多糖则主要存在于淀粉类食物中,例如谷类、面包、土豆等。 高含量碳水化合物的食物很多,除了纯品(如糖类和淀粉)大约含量在90%~100%之外,碳水化合物含量高的食物主要是谷类(如面粉、大米、玉米等)和薯类(如白薯、土豆等)谷类食物一般含碳水化合物60%~80%;薯类脱水后高达80%左右;豆类为40%~60%。它们是血糖的主要来源。 我国营养学会建议,碳水化合物摄入量占总能量的55%左右,相当于一天摄入300g~500g的谷类食物。 表1—13 高碳水化合物食物含量表(以100g可食部计) 食物名称含量g 食物名称含量g 白砂糖 99.9 麦芽糖 82.0 冰糖 99.3 无核蜜枣 81.9 什绵糖 98.9 脱水洋葱(白) 81.9 绵白糖 98.9 籼米粉 81.5 酸梅晶 98.4 枣(干) 81.1 水晶糖 98.2 白薯粉 80.9 固体桔子饮料 97.5 脱水马铃薯 80.7 宝宝福 97.3 脱水洋葱(紫) 80.6 猕猴桃晶 97.1 白薯干 80.5 红塘 96.6 糜子米(炒) 80.5 桔子晶 96.5 牛奶饼干 80.3 山查晶 95.9 香油炒面 80.1 豌豆粉丝 91.7 芡食米 79.6 泡泡糖 89.8 南瓜粉 79.5 麻香糕 88.7 脱水百合 79.3 麻烘糕 87.2 陈皮 79.0 米花糖 85.8 五谷香 78.9 团粉/淀粉85.8—85.3 魔芋精粉 78.8 龙虾片 85.5 栗子(干) 78.4 苹果脯 84.9 红果(干) 78.4 奶糖 84.5 籼米 78.3 蜜枣 84.4 糯米(平均) 78.3 茯苓夹饼 84.3 江米条 78.1 豆腐粉 84.3 脱水胡萝卜 77.9 粉条 84.2 稻米(平均) 77.9 粉丝 83.7 小米面 77.7 葡萄干 83.4 干切面 77.7

牛羊对碳水化合物的吸收及代谢_李莉

四川畜牧兽医·2012·2期·总第256期 编辑S I C H U A N X U M U S H O U Y I 2 植物以CO 2和H 2O 为原料,通过光合作用合成碳水化合物。 碳水化合物分为粗纤维和无氮浸出物,粗纤维是细胞壁的主要组成成分,无氮浸出物主要存在于细胞内容物中,它们易被牛羊消化吸收,一般消化率在95%以上。 1牛羊对碳水化合物的消化吸收1.1 对粗纤维的消化吸收 粗 纤维由纤维素、 半纤维素、果胶、木质素、二氧化硅等组成。1.1.1 从植物细胞壁的最外层 往里数,第一层叫间隔层,分布的主要是果胶,牛羊消化道中的酶不能将其水解,其主要依赖肠道细菌的作用而被消化。1.1.2 从细胞壁往里数的第二 层叫初生壁,其含纤维素10%~20%,含半纤维素2.5%~10%,含木质素1.25%~2.5%。纤维素是葡萄糖分子的聚合物,半纤维素是戊糖和已糖的混聚物,其不溶解于水和盐酸。 瘤胃细菌能产生纤维素酶和半纤维素酶而将二者分解成挥发性脂肪酸。1.1.3 再往里的第三层叫次生 壁,其含纤维素10%~20%,含半纤维素7.5%~30%,含木质素3.75%~7.5%。木质素不是碳水化合物,它几乎不受瘤胃细菌的作用。试验表明,饲料中木质素每增加1%,牛羊对饲料有机质 的消化率就下降0.8%。1.2 对无氮浸出物的消化吸收 无氮浸出物包括淀粉、糖、多缩戊糖、配糖体、单宁物质、维生素C 等。1.2.1 牛羊前胃的特点牛羊的消化器官由口腔、 食管、胃(包括瘤胃、网胃、瓣胃和真胃,前三胃合称前胃)、小肠、大肠等组成。牛羊的瘤胃和网胃相当于发酵罐,是消化碳水化合物,特别是粗纤维的器官。瘤胃细菌区系中纤维分解菌约占瘤胃活菌的1/4,另外还有分解淀粉和糖的细菌存在。其次,瘤胃和网胃的容积大,如羊的前胃容纳内容物重量可达4~6kg , 牛的前胃容纳内容物重量达30~60kg 。饲料在前胃停留时间长,为细菌消化提供了条件。1.2.2 牛羊对碳水化合物的消化吸收 牛羊采食的碳水化合 物在口腔、食管内不发生变化,其进入瘤胃和网胃后,在细菌的作用下按以下步骤进行降解:第一步是高分子的碳水化合物降解为单糖。例如淀粉降解为糊精、麦芽糖至葡萄糖;纤维素降解为纤维多糖、纤维二糖至葡萄糖;半纤维素降解为纤维多糖、木糖和葡萄糖等。第二步是单糖进一步降解为以乙酸、丙酸和丁酸为主的挥发性脂肪酸以及CO 2、CH 4和H 2等。挥发性脂肪 酸被瘤胃壁吸收,而CH 4和H 2则随嗳气由口腔逸出。 在瘤胃中未被消化的碳水化合物和在其中合成的细菌多糖体通过真胃进入小肠。纤维素、半纤维素在小肠内不发生变化,淀粉、糖和细菌多糖体等经胰、肠碳水化合物酶的作用生成葡萄糖被吸收。小肠未消化吸收的碳水化合物和细菌多糖体进入大肠后,被细菌降解为挥发性脂肪酸。脂肪酸部分由大肠壁吸收,未被降解和吸收的碳水化合物随粪便排出。1.3 影响瘤胃挥发性脂肪酸之间摩尔浓度比例的因素 正常 情况下,碳水化合物在瘤胃内所形成的挥发性脂肪酸之间的摩尔浓度的比值是:乙酸70%(40.6%~74%)、丙酸20%(16.5%~39%)、丁酸10%(6.6%~13.9%)。当日粮精料比例较高时,瘤胃pH 值处于酸性,利于淀粉分解菌的活动,可使纤维分解菌受到抑制,其结果是丙酸产生量增多。反之,当日粮粗饲料的比例较高时,瘤胃pH 值处于近中性,适合纤维分解菌的活动,其结果为乙酸产量增加,丙酸减少。 提高丙酸的比例可提高饲料的利用率。一些饲料添加剂,例如瘤胃素可调节瘤胃发酵功能,提高丙酸比例,若用于肉牛,可提高饲料利用率10%以上。 牛羊对碳水化合物的吸收及代谢 李 莉 (四川省盐边县桐子林镇兽医站,四川盐边617100) 中图分类号:S858.215 文献标识码:C 文章编号:1001-8964(2012)02-0053-02 收稿日期:2012-01-10 动物保健 %%%%% %徐海鹰53

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素。 食物中含有的碳水化合物主要为淀粉,此外还包括少量的低聚糖和单糖。单糖分子无需消化可直接吸收,而低聚糖和淀粉必须经过消化酶水解成单糖后才能被机体吸收和利用。能消化淀粉的部位包括口腔和小肠。由于唾液中含有α-淀粉酶,摄入的淀粉首先在口腔中进行初步水解,产生少量的麦芽糖和葡萄糖,但因食物在口腔中的停留时间很短,因此这种水解量很小。拌和着唾液的食物经食道进入胃,由于胃酸能使淀粉酶失去活性,且胃中不存在水解淀粉的酶,故胃中不能消化淀粉。小肠是淀粉消化的主要场所。肠腔中由胰腺制造的胰α-淀粉酶是水解淀粉的最主要的酶,它能将进入小肠的淀粉水解为α-糊精、麦芽寡糖和麦芽糖。这些水解产物再经小肠液中的α-糊精酶、麦芽糖酶分别将α-糊精水解成葡萄糖,将麦芽寡糖和麦芽糖水解成葡萄糖。食物中所含的蔗糖和乳糖进入小肠后,分别在蔗糖酶和乳糖酶的催化下水解成葡萄糖等单糖。 食物中糖类经消化后几乎全部被水解成单糖,主要为葡萄糖,其次为果糖和半乳糖。这些单糖在小肠上部多以主动转运方式被吸收,但吸收速度各不相同。一般己糖吸收速度快于戊糖,糖醇类吸收最慢。吸收缓慢的糖到达肠的下部时,会与水结合,因此它有导泻作用,故摄入过量时会引起腹泻。果糖和木糖醇食用过多会发生腹泻就是这个道理。 碳水化合物主要的生理功能是构成机体的重要物质,提供热能,调节食品风味,维持大脑功能必须的能源,调节脂肪代谢,提供膳食纤维。膳食中缺乏碳水化合物将导致全身无力,疲乏、血糖含量降低,产生头晕、心悸、脑功能障碍等。严重者会导致低血糖昏迷。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。因此我们要严格注意碳水化合物的摄入。

食物中的碳水化合物含量表

食物中的碳水化合物含量表主食: 白糖99 红糖 93 藕粉 87 干粉 条 84 团粉 82 蜂蜜 80 麦乳 精 73 巧克力 66 蛋糕 65 牛乳 粉 55 茶叶 52 大米76糯米 76 高粱 米 75 青稞 72 小麦粉 72 玉米 72 面条 56 馒头 48 烙饼 油条 47 米饭 25 燕麦66 荞麦 66 薏米 64 大麦 63 赤小豆 61 绿豆 59 豌豆 57 蚕豆 48 扁豆 40 黑豆 27 黄豆 25 腐竹15 牛奶 5 豆腐 2.8 豆浆 1.5 面筋 1.3 豆腐 脑 0.5 水果: 葡萄干79 干枣 73 干龙 眼 65 干荔 枝 56 熟栗子 45 乌梅 42 鲜枣 23 山楂 22 花生 仁 22 甘蔗 21 香蕉 20 西瓜子20炒石榴 17 柿子 11 哈密 瓜 9 芒果15 鲜龙眼 15 桑椹 14 苹果 13 橄榄 12 柚子 12 无花 果 12 橙子 12 桔子 12 猕猴 桃 11 桃11 鲜葡萄 11 葵花 子 10炒 核桃 10 椰子 10 李子 9 柠檬 9 菠萝 9 梨 9 樱桃 9 木瓜 8 草莓6 杨梅 6 枇杷 6 甜瓜 6 杏 5 西瓜 4

蔬菜: 银耳78 平菇 70 木耳 66 黄花菜 60干 冬菇 60 香菇 59 海带 56 紫菜 49 猴头 菇 45 黑木 耳 34 地瓜30 百合 29 海藻 29 慈菇 26 大蒜 24 山芋 22 荸荠 21 藕 20 蚕豆 芽 20 土豆 17 莲子 16干 山药14 黄花菜 12鲜 芋头 12 蒜苗 10 姜 9 胡萝 卜 8 洋葱 8 黄豆芽 7 香菜 7 水萝 卜 7 毛豆 7 大葱6 马兰 6 冬笋 6 甜菜 6 四季豆 6 白萝 卜 6 丝瓜 5 茭白 5 辣椒 5青尖 芥菜 5 菜豆 5 空心菜 5 苋菜 5 春菜 4 刀豆 4 菜花 4 小葱 4 柿子 椒 4青 绿豆芽 4 圆白 菜 3 芥蓝 3 韭菜 3 韭黄3 生菜 3 莴笋 叶 3 龙须 菜 3芦笋 苤蓝 3 卷心 菜 3 菠菜 3 茄子 3 苦瓜 3 雪里 红 3 黄瓜 3 冬瓜2 芹菜 2 番茄 2 蘑菇 2 油菜 2 大白 菜 2 小白 菜 2 莴笋 2 南瓜 1 松蘑 0.4

常见碳水化合物含量表

常见碳水化合物含量表 食物名称碳水化合物食物名称碳水化合物食物名称碳水化合物稻米(东北)75.3素虾16.6白瓜子 3.8 稻米77.5芸豆54.2山核桃26.8 方便面60.9红薯23.1松子9 高粱米70.4胡萝卜7.7松子仁 2.2 挂面74.5姜7.6西瓜子9.7 花卷45.6萝卜4榛子14.7 黄米72.5马铃薯16.5杏仁 2.9 煎饼74.7油炸土豆片40面筋39.1 苦荞麦粉60.2藕15.2艾窝窝43.1 烙饼51藕粉92.9饼干69.2 馒头48.3山药11.6蛋糕61.2 面条58菠萝9.5豆汁 1.3 米饭25草莓6江米条77.7 米粥9.8橙10.5凉粉11.2 米粉78.2柑11.5绿豆糕72.2 糯米77.5甘蔗15.4驴打滚39.9 血糯米73.7桂圆16.2麻花51.9 烧饼62.7桂圆干62.8面包58.1 通心粉75.4果丹皮77.4月饼52.3 小麦粉71.5山楂22冰欺凌17.3 小米73.5橘子9.7茶叶50.3 小米粥8.4李子7.8橘汁23.2 燕麦片61.6梨7.3奶糖84.5 油饼40.4荔枝16.1巧克力51.9 玉米66.6芒果7芝麻南唐49.7 玉米面66.9苹果12.3苹果酱68.7

豇豆58.9核桃9.6炼乳55.4豆腐 3.8葡萄9.9母乳7.4豆腐干10.7柿子17.1奶酪 3.5豆腐皮18.6桃10.9牛奶 3.4豆浆粉64.6香蕉20.8牛乳粉51.9豆沙51杏7.5酸奶9.3腐乳7.6枣28.6羊乳 5.4腐竹21.3猕猴桃11.9豆奶粉68.7黄豆18.6白果72.6健儿粉82.7绿豆58.5花生17.3乳儿粉73.5素鸡 3.9花生仁16鹌鹑蛋 2.1豌豆54.3葵花籽13鸡蛋 1.3赤豆55.7莲子64.2松花蛋 4.5油豆腐 4.3栗子77.2鸭蛋 3.1香肠 5.9荷兰豆 3.5鹅蛋 2.8火腿肠15.6黄豆芽3甜面酱27.1狗肉 1.8鲜豇豆4味精26.5酱牛肉 3.2毛豆 6.5芝麻酱16.8驴肉0.4豌豆苗 2.8大头菜6 香菇 1.9芝麻21.7冬菜7 八宝菜10.2大白菜 3.1甘露 6.3马肉11菠菜 2.8腌黄瓜 2.2牛肉0.1菜花 3.4糖蒜25.9牛肉干 1.9油菜心 1.8腌雪里红 3.3牛肉松67.7大葱 5.2榨菜 4.4兔肉0.9大蒜26.5芫荽5 羊肉0.2茭白4油菜 2.7猪肝 5.6金针菜27.2西兰花 2.7猪肉 1.5韭菜 3.2白兰花 4.5

膳食纤维是一种不能被人体消化的碳水化合物

由吸收食物中有毒物质预防便秘和憩室炎,并且减低消化道中细菌排出的毒素。大多数植物都含有水溶性与非水溶性纤维,所以饮食均衡摄取水溶性与非水溶性纤维才能获得不同的益处。 每日摄入量标准 国际相关组织推荐的膳食纤维素日摄入量: 美国防癌协会推荐标准:每人每天30~40克; 欧洲共同体食品科学委员会推荐标准:每人每天30克。 世界粮农组织建议正常人群摄入量:每人27克/日。 中国营养学会提出中国居民摄入的食物纤维量及范围: 低能量饮食1800kcal为25g/天; 中等能量饮食2400kcal为30g/天; 高能量饮食2800 kcal为35g/天。 主要作用

2.降低血液中的胆固醇、甘油三酯,利于肥胖 3.清除体内毒素,预防色斑形成、青春痘等皮肤问题 4.减少糖类在肠道内的吸收,降低餐后血糖 5.促进肠道有益菌增殖,提高人体吸收能力 适宜人群 1.大便干结、习惯性便秘、腹胀、消化不良、肥胖者 3.糖尿病人士,特别是餐后血糖不稳定者 4.色斑沉着、面部暗黄、长痘者 食物来源 糙米和胚牙精米,以及玉米、小米、大麦、小麦皮(米糠)和麦粉(黑面包的材料)等 杂粮;此外,根菜类和海藻类中食物纤维较多,如牛蒡、胡萝卜、四季豆、红豆、豌豆、薯类和裙带菜等。膳食纤维是植物性成分,植物性食物是膳食纤维的天然食物来源。膳食纤维在蔬菜水果、粗粮杂粮、豆类及菌藻类食物中含量丰富。部分常见食物原料中膳食纤维的含量状况为:小白菜0 .7%、白萝卜0 .8%、空心菜1. 0%、茭白1 .1%、韭菜1. 1%、蒜苗1. 8%、黄豆芽1. 0%、鲜豌豆1 .3%、毛豆2 .1%、苦瓜1 .1%、生姜1 .4%、草莓1. 4%、苹果1. 2%、鲜枣1 .6%、枣(干)3 .1%、金针菜(干)6. 7%、山药0 .9%、小米1. 6%、玉米面1 .8%、绿豆4 .2%、口蘑6 .9%、银耳2 .6%、木耳7 .0%、海带9 .8%随着人们对膳

碳水化合物百度百科

碳水化合物 碳水化合物(carbohydrate)是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样,故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物,如纤维素,是人体必须的物质。 糖类化合物是一切生物体维持生命活动所需能量的主要来源。它不仅是营养物质,而且有些还具有特殊的生理活性。例如:肝脏中的肝素有抗凝血作用;血型中的糖与免疫活性有关。此外,核酸的组成成分中也含有糖类化合物——核糖和脱氧核糖。因此,糖类化合物对医学来说,具有更重要的意义。 自然界存在最多、具有广谱化学结构和生物功能的有机化合物。可用通式Cx(H2O)y来表示。有单糖、寡糖、淀粉、半纤维素、纤维素、复合多糖,以及糖的衍生物。主要由绿色植物经光合作用而形成,是光合作用的初期产物。从化学结构特征来说,它是含有多羟基的醛类或酮类的化合物或经水解转化成为多羟基醛类或酮类的化合物。例如葡萄糖,含有一个醛基、六个碳原子,叫己醛糖。果糖则含有一个酮基、六个碳原子,叫己酮糖。它与蛋白质、脂肪同为生物界三大基础物质,为生物的生长、运动、繁殖提供主要能源。是人类生存发展必不可少的重要物质之一。

发现历史 在人们知道碳水化合物的化学性质及其组成以前,碳水化合物已经得到很好的作用,如今含碳水化合物丰富的植物作为食物,利用其制成发酵饮料,作为动物的饲料等。一直到18世纪一名德国学者从甜菜中分离出纯糖和从葡萄中分离出葡萄糖后,碳水化合物研究才得到迅速发展。1812年,俄罗斯化学家报告,植物中碳水化合物存在的形式主要是淀粉,在稀酸中加热可水解为葡萄糖。1884年,另一科学家指出,碳水化合物含有一定比例的C、H、O三种元素,其中H和O的比例恰好与水相同为2:1,好像碳和水的化合物,故称此类化合物为碳水化合物,这一名称,一直沿用至今。 化学组成 糖类化合物由C,H,O三种元素组成,分子中H和O的比例通常为 2:1,与水分子中的比例一样,故称为碳水化合物。可用通式Cm (H2O )n表示。因此,曾把这类化合物称为碳水化合物。但是后来发现有些化合物按其构造和性质应属于糖类化合物,可是它们的组成并不符合Cm(H2O )n 通式,如鼠李糖(C6H12O5)、脱氧核

碳水化合物表

常见碳水化合物含量表 低碳水化合物减肥法主张不要摄取米饭、面食、马铃薯、面食、麦片、米粉、芋头等含淀粉量高的食物。 肉类、鱼类、蛋类、植物油(橄榄油或花生油)基本上不含碳水化合物。动物油脂不属于碳水化合物。 食物名称碳水化合物食物名称碳水化合物食物名称碳水化合物稻米(东北)75.3 素虾16.6 白瓜子 3.8 稻米77.5 芸豆54.2 山核桃26.8 方便面60.9 红薯23.1 松子9 高粱米70.4 胡萝卜7.7 松子仁 2.2 挂面74.5 姜7.6 西瓜子9.7 花卷45.6 萝卜 4 榛子14.7 黄米72.5 马铃薯16.5 杏仁 2.9 煎饼74.7 油炸土豆片40 面筋39.1 苦荞麦粉60.2 藕15.2 艾窝窝43.1 烙饼51 藕粉92.9 饼干69.2 馒头48.3 山药11.6 蛋糕61.2 面条58 菠萝9.5 豆汁 1.3 米饭25 草莓 6 江米条77.7 米粥9.8 橙10.5 凉粉11.2 米粉78.2 柑11.5 绿豆糕72.2 糯米77.5 甘蔗15.4 驴打滚39.9 血糯米73.7 桂圆16.2 麻花51.9 烧饼62.7 桂圆干62.8 面包58.1 通心粉75.4 果丹皮77.4 月饼52.3 小麦粉71.5 山楂22 冰欺凌17.3 小米73.5 橘子9.7 茶叶50.3 小米粥8.4 李子7.8 橘汁23.2 燕麦片61.6 梨7.3 奶糖84.5 油饼40.4 荔枝16.1 巧克力51.9 玉米66.6 芒果7 芝麻南唐49.7 玉米面66.9 苹果12.3 苹果酱68.7 豇豆58.9 核桃9.6 炼乳55.4

碳水化合物的代谢

碳水化合物的代谢 碳水化合物在体内分解过程中,首先经糖酵解途径降解为丙酮酸,在无氧情况下,丙酮酸在胞浆内还原为乳酸,这一过程称为碳水化合物的无氧氧化。由于缺氧时葡萄糖降解为乳酸的情况与酵母菌内葡萄糖“发酵”生成乙酸的过程相似,因而碳水化合物的无氧分解也称为“糖酵解”。在有氧的情况下,丙酮酸进入线粒体,氧化脱羧后进入三羧酸循环,最终被彻底氧化成二氧化碳及水,这个过程称为碳水化合物的有氧氧化。 (一)无氧分解 1.糖酵解过程由于葡萄糖降解到丙酮酸阶段的反应过程对于有氧氧化和糖酵解是共同的,因此把葡萄糖降解成丙酮酸阶段的具体反应过程单独地称为糖酵解途径。整个过程可分为两个阶段。第一阶段由 1 分子葡萄糖转变为2 分子磷酸丙糖,第二阶段由磷酸丙糖生成丙酮酸。第一阶段反应是一个耗能过程,消耗 2 分子ATP;第二阶段反应是产能过程,一分子葡萄糖可生成 4 分子的ATP,整个过程净生成2 分子ATP。 2.糖酵解作用的生理意义糖酵解产生的可利用能量虽然有限,但在某些特殊情况下具有重要的生理意义。例如重体力劳动或剧烈运动时,肌肉可因氧供应不足处于严重相对缺氧状态,这时需要通过糖酵解作用补充急需的能量。 (二)有氧氧化 葡萄糖的有氧氧化反应过程可归纳为三个阶段:第一阶段是葡萄糖降解为丙酮酸,此阶段的化学反应与糖酵解途径完全相同。第二阶段是丙酮酸转变成乙酰辅酶A。第三阶段是乙酰辅酶 A 进入三羧酸循环被彻底氧化成CO2 和H20,并释放出能量。三羧酸循环由一连串的反应组成。这些反应从有 4 个碳原子的草酰乙酸与 2 个碳原子的乙酰CoA 的乙酰基缩合成 6 个碳原子的柠檬酸开始,反复地脱氢氧化。通过三羧酸循环,葡萄糖被完全彻底分解。 糖有氧氧化的生理意义:有氧氧化是机体获取能量的主要方式。1 分子葡萄糖彻底氧化可净生成36~38 个ATP,是无氧酵解生成量的18~19 倍。有氧氧化不但释放能量的效率高,而且逐步释放的能量储存于ATP 分子中,因此能量的利用率也很高。

碳水化合物的来源及参考摄入量

碳水化合物的来源及参考摄入量 碳水化合物的营养学意义 碳水化合物是生命细胞结构的主要成分及主要供能物质,并且有调节细胞活动的重要功能。 (一)供给能量 膳食碳水化合物是人类获取能量的最主要、最经济的来源。碳水化合物在体内被消化后,能够迅速氧化给机体提供能量,每克葡萄糖在体内氧化可以产生4lkcal的能量,氧化的最终产物是二氧化碳和水。碳水化合物消化吸收后转变成的葡萄糖除了被机体直接利用,还以糖原的形式储存在肝脏和肌肉中,一旦机体需要,月干脏中的糖原即被分解成葡萄糖以提供能量。 碳水化合物释放能量较快,是火脑神经系统和肌肉的主要能源,对维持其生理功能有着非常重要的作用。中枢神经系统只能利用葡萄糖提供能量,婴儿时期缺少碳水化合物会影响脑细胞的生长发育。 (二)构成机体重要生命物质 碳水化合物是构成机体组织细胞的重要物质,并参与多种生理活动。细胞中的碳水化合物含量约为2%~10%,主要以糖脂、糖和蛋白结合物的形式存在于细胞膜、细胞器、细胞质和细胞间质中。核糖和脱氧核酸参与构成生命遗传物质核糖核酸和脱氧核糖核酸。维持机体正常生理功能的一些重要物质,如抗体、酶和激素也需碳水化合物参与构成。 (三)节氮作用 当碳水化合物摄人不足,能量供给不能满足机体需要时,膳食蛋白中会有一部分通过糖原异生分解成葡萄糖以满足机体对能量的需要,而不能参与构成机体需要的重要物质。摄入充足的碳水化合物则可以节约这一部分蛋白质的消耗,不需要动用蛋白质来供能,增加体内氮的潴留,这一作用被称为碳水化合物对蛋白质的节约作用或者节氮作用(sparing protein action)。 (四)抗生酮作用 脂肪在体内代谢也需要碳水化合物参与,因为脂肪代谢所产生的乙酚基需要与草酰乙酸结合进入三羧酸循环,才能最终被彻底氧化。草酰乙酸是葡萄糖在体内氧化的中间产物,如果膳食中碳水化合物供应不足,体内的草酰乙酸相应减少,脂肪酸不能被完全氧化而产生大量的酮体,酮体不能及时被氧化而在体内蓄积,会导致酮血症和酮尿症。膳食中充足的碳水化合物可避免脂肪不完全氧化而产生过量的酮体,这一作用称为碳水化合物的抗生酮作用(antiketogenesis)。 人体每天至少摄人50g的碳水化合物,可以防止这些由于低碳水化合物饮食所导致的代谢反应的发生。碳水化合物的调节血糖、节氮和抗生酮作用,对于维持机体的正常代谢、酸碱平衡、组织蛋白的合成与更新有非常重要的意义。 (五)解毒作用 肝脏中的葡萄糖醛酸是一种非常重要的解毒剂,它能与许多有害物质如细菌毒素、酒精、砷等结合并排出体外。不能消化的碳水化合物在肠道细菌作用下发酵产生的短链脂肪酸也有一定的解毒作用。 (六)增强肠道功能 非淀粉多糖如纤维素、果胶、抗性淀粉、功能性低聚糖等不易消化的碳水化合物,能刺激肠道蠕动,增加粪便容积,选择性地刺激肠道中有益菌群的生长,对于维持正常肠道功能,减少毒物与肠道细胞的接触时间,保护人体免受有害菌的侵袭有重要作用。

简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能

精品文档 . 简述碳水化合物的消化吸收过程及碳水化合物有哪些主要生理功能 碳水化合物是由碳、氢和氧三种元素组成,由于它所含的氢氧的比例为二比一,和水一样, 故称为碳水化合物。它是为人体提供热能的三种主要的营养素中最廉价的营养素。食物中的碳水化合物分成两类:人可以吸收利用的有效碳水化合物如单糖、双糖、多糖和人不能消化的无效碳水化合物如纤维素。 食物中含有的碳水化合物主要为淀粉,此外还包括少量的低聚糖和单糖。单糖分子无需消化可直接吸收,而低聚糖和淀粉必须经过消化酶水解成单糖后才能被机体吸收和利用。能消化淀粉的部位包括口腔和小肠。由于唾液中含有α-淀粉酶,摄入的淀粉首先在口腔中进行初步水解,产生少量的麦芽糖和葡萄糖,但因食物在口腔中的停留时间很短,因此这种水解量很小。拌和着唾液的食物经食道进入胃,由于胃酸能使淀粉酶失去活性,且胃中不存在水解淀粉的酶,故胃中不能消化淀粉。小肠是淀粉消化的主要场所。肠腔中由胰腺制造的胰α-淀粉酶是水解淀粉的最主要的酶,它能将进入小肠的淀粉水解为α-糊精、麦芽寡糖和麦芽糖。这些水解产物再经小肠液中的α-糊精酶、麦芽糖酶分别将α-糊精水解成葡萄糖,将麦芽寡糖和麦芽糖水解成葡萄糖。食物中所含的蔗糖和乳糖进入小肠后,分别在蔗糖酶和乳糖酶的催化下水解成葡萄糖等单糖。 食物中糖类经消化后几乎全部被水解成单糖,主要为葡萄糖,其次为果糖和半乳糖。这些单糖在小肠上部多以主动转运方式被吸收,但吸收速度各不相同。一般己糖吸收速度快于戊糖,糖醇类吸收最慢。吸收缓慢的糖到达肠的下部时,会与水结合,因此它有导泻作用,故摄入过量时会引起腹泻。果糖和木糖醇食用过多会发生腹泻就是这个道理。 碳水化合物主要的生理功能是构成机体的重要物质,提供热能,调节食品风味,维持大脑功能必须的能源,调节脂肪代谢,提供膳食纤维。膳食中缺乏碳水化合物将导致全身无力,疲乏、血糖含量降低,产生头晕、心悸、脑功能障碍等。严重者会导致低血糖昏迷。当膳食中碳水化合物过多时,就会转化成脂肪贮存于体内,使人过于肥胖而导致各类疾病如高血脂、糖尿病等。因此我们要严格注意碳水化合物的摄入。

食物中的碳水化合物含量表

食物中的碳水化合物含量表 主食 白砂糖99 红糖 93 藕粉 87 干粉 条 84 团粉 82 蜂蜜 80 麦乳 精 73 巧克力 66 蛋糕 65 牛乳 粉 55 茶叶 52 大米76糯米 76 高粱 米 75 青稞 72 小麦粉 72 玉米 72 面条 56 馒头 48 烙饼 油条 47 米饭 25 燕麦66 荞麦 66 薏米 64 大麦 63 赤小豆 61 绿豆 59 豌豆 57 蚕豆 48 扁豆 40 黑豆 27 黄豆 25 腐竹15 牛奶 5 豆腐 2.8 豆浆 1.5 面筋 1.3 豆腐 脑 0.5 水果 葡萄干79 干枣 73 干龙 眼 65 干荔 枝 56 熟栗子 45 乌梅 42 鲜枣 23 山楂 22 花生 仁 22 甘蔗 21 香蕉 20 西瓜子20炒石榴 17 柿子 11 哈密 瓜 9 芒果15 鲜龙眼 15 桑椹 14 苹果 13 橄榄 12 柚子 12 无花 果 12 橙子 12 桔子 12 猕猴 桃 11 桃11 鲜葡萄 11 葵花 子 10炒 核桃 10 椰子 10 李子 9 柠檬 9 菠萝 9 梨 9 樱桃 9 木瓜 8 草莓6 杨梅 6 枇杷 6 甜瓜 6 杏 5 西瓜 4

银耳78 平菇 70 木耳 66 黄花菜 60干 冬菇 60 香菇 59 海带 56 紫菜 49 猴头 菇 45 黑木 耳 34 地瓜30 百合 29 海藻 29 慈菇 26 大蒜 24 山芋 22 荸荠 21 藕 20 蚕豆 芽 20 土豆 17 莲子 16干 山药14 黄花菜 12鲜 芋头 12 蒜苗 10 姜 9 胡萝 卜 8 洋葱 8 黄豆芽 7 香菜 7 水萝 卜 7 毛豆 7 大葱6 马兰 6 冬笋 6 甜菜 6 四季豆 6 白萝 卜 6 丝瓜 5 茭白 5 辣椒 5青尖 芥菜 5 菜豆 5 空心菜 5 苋菜 5 春菜 4 刀豆 4 菜花 4 小葱 4 柿子 椒 4青 绿豆芽 4 圆白 菜 3 芥蓝 3 韭菜 3 韭黄3 生菜 3 莴笋 叶 3 龙须 菜 3芦笋 苤蓝 3 卷心 菜 3 菠菜 3 茄子 3 苦瓜 3 雪里 红 3 黄瓜 3 冬瓜2 芹菜 2 番茄 2 蘑菇 2 油菜 2 大白 菜 2 小白 菜 2 莴笋 2 南瓜 1 松蘑 0.4

相关文档
最新文档