最新上海市中考数学试卷(含答案解析)

最新上海市中考数学试卷(含答案解析)
最新上海市中考数学试卷(含答案解析)

2016年上海市中考数学试卷

一、选择题:本大题共6小题,每小题4分,共24分

1.(4分)如果a与3互为倒数,那么a是()

A.﹣3 B.3 C.﹣D.

2.(4分)下列单项式中,与a2b是同类项的是()

A.2a2b B.a2b2 C.ab2D.3ab

3.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()

A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3

4.(4分)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()

次数2345

人数22106

A.3次B.3.5次C.4次D.4.5次

5.(4分)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()

A.+B.﹣C.﹣+D.﹣﹣

6.(4分)如图,在Rt△ABC中,∠C=90°,AC=4,BC=7,点D在边BC上,CD=3,⊙A的半径长为3,⊙D与⊙A相交,且点B在⊙D外,那么⊙D的半径长r的取值范围是()

A.1<r<4 B.2<r<4 C.1<r<8 D.2<r<8

二、填空题:本大题共12小题,每小题4分,共48分

7.(4分)计算:a3÷a=.

8.(4分)函数y=的定义域是.

9.(4分)方程=2的解是.

10.(4分)如果a=,b=﹣3,那么代数式2a+b的值为.

11.(4分)不等式组的解集是.

12.(4分)如果关于x的方程x2﹣3x+k=0有两个相等的实数根,那么实数k的值是.

13.(4分)已知反比例函数y=(k≠0),如果在这个函数图象所在的每一个象限内,y的值随着x的值增大而减小,那么k的取值范围是.14.(4分)有一枚材质均匀的正方体骰子,它的六个面上分别有1点、2点、 (6)

点的标记,掷一次骰子,向上的一面出现的点数是3的倍数的概率是.15.(4分)在△ABC中,点D、E分别是边AB、AC的中点,那么△ADE的面积与△ABC的面积的比是.

16.(4分)今年5月份有关部门对计划去上海迪士尼乐园的部分市民的前往方式进行调查,图1和图2是收集数据后绘制的两幅不完整统计图.根据图中提供的信息,那么本次调查的对象中选择公交前往的人数是.

17.(4分)如图,航拍无人机从A处测得一幢建筑物顶部B的仰角为30°,测得底部C的俯角为60°,此时航拍无人机与该建筑物的水平距离AD为90米,那么该建筑物的高度BC约为米.(精确到1米,参考数据:≈1.73)

18.(4分)如图,矩形ABCD中,BC=2,将矩形ABCD绕点D顺时针旋转90°,点A、C分别落在点A′、C′处.如果点A′、C′、B在同一条直线上,那么tan∠ABA′的值为.

三、解答题:本大题共7小题,共78分

19.(10分)计算:|﹣1|﹣﹣+.

20.(10分)解方程:﹣=1.

21.(10分)如图,在Rt△ABC中,∠ACB=90°,AC=BC=3,点D在边AC上,且AD=2CD,DE⊥AB,垂足为点E,联结CE,求:

(1)线段BE的长;

(2)∠ECB的余切值.

22.(10分)某物流公司引进A、B两种机器人用来搬运某种货物,这两种机器人充满电后可以连续搬运5小时,A种机器人于某日0时开始搬运,过了1小时,B种机器人也开始搬运,如图,线段OG表示A种机器人的搬运量y A(千克)与时间x(时)的函数图象,线段EF表示B种机器人的搬运量y B(千克)与时间x(时)的函数图象.根据图象提供的信息,解答下列问题:

(1)求y B关于x的函数解析式;

(2)如果A、B两种机器人连续搬运5个小时,那么B种机器人比A种机器人多搬运了多少千克?

23.(12分)已知:如图,⊙O是△ABC的外接圆,=,点D在边BC上,AE∥BC,AE=BD.

(1)求证:AD=CE;

(2)如果点G在线段DC上(不与点D重合),且AG=AD,求证:四边形AGCE 是平行四边形.

24.(12分)如图,抛物线y=ax2+bx﹣5(a≠0)经过点A(4,﹣5),与x轴的负半轴交于点B,与y轴交于点C,且OC=5OB,抛物线的顶点为点D.

(1)求这条抛物线的表达式;

(2)连结AB、BC、CD、DA,求四边形ABCD的面积;

(3)如果点E在y轴的正半轴上,且∠BEO=∠ABC,求点E的坐标.

25.(14分)如图所示,梯形ABCD中,AB∥DC,∠B=90°,AD=15,AB=16,BC=12,点E是边AB上的动点,点F是射线CD上一点,射线ED和射线AF交于点G,且∠AGE=∠DAB.

(1)求线段CD的长;

(2)如果△AEG是以EG为腰的等腰三角形,求线段AE的长;

(3)如果点F在边CD上(不与点C、D重合),设AE=x,DF=y,求y关于x的函数解析式,并写出x的取值范围.

2016年上海市中考数学试卷

参考答案与试题解析

一、选择题:本大题共6小题,每小题4分,共24分

1.(4分)如果a与3互为倒数,那么a是()

A.﹣3 B.3 C.﹣ D.

【分析】根据乘积为1的两个数互为倒数,可得答案.

【解答】解:由a与3互为倒数,得

a是,

故选:D.

【点评】本题考查了倒数,分子分母交换位置是求一个数的倒数的关键.

2.(4分)下列单项式中,与a2b是同类项的是()

A.2a2b B.a2b2 C.ab2D.3ab

【分析】根据同类项的概念:所含字母相同,并且相同字母的指数也相同,结合选项解答即可.

【解答】解:A、2a2b与a2b所含字母相同,且相同字母的指数也相同,是同类项,故本选项正确;

B、a2b2与a2b所含字母相同,但相同字母b的指数不相同,不是同类项,故本选项错误;

C、ab2与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误;

D、3ab与a2b所含字母相同,但相同字母a的指数不相同,不是同类项,本选项错误.

故选A.

【点评】本题考查了同类项的知识,解答本题的关键是掌握同类项中相同字母的指数相同的概念.

3.(4分)如果将抛物线y=x2+2向下平移1个单位,那么所得新抛物线的表达式是()

A.y=(x﹣1)2+2 B.y=(x+1)2+2 C.y=x2+1 D.y=x2+3

【分析】根据向下平移,纵坐标相减,即可得到答案.

【解答】解:∵抛物线y=x2+2向下平移1个单位,

∴抛物线的解析式为y=x2+2﹣1,即y=x2+1.

故选C.

【点评】本题考查了二次函数的图象与几何变换,向下平移|a|个单位长度纵坐标要减|a|.

4.(4分)某校调查了20名男生某一周参加篮球运动的次数,调查结果如表所示,那么这20名男生该周参加篮球运动次数的平均数是()

次数2345

人数22106

A.3次 B.3.5次C.4次 D.4.5次

【分析】加权平均数:若n个数x1,x2,x3,…,x n的权分别是w1,w2,w3,…,w n,则(x1w1+x2w2+…+x n w n)÷(w1+w2+…+w n)叫做这n个数的加权平均数,依此列式计算即可求解.

【解答】解:(2×2+3×2+4×10+5×6)÷20

=(4+6+40+30)÷20

=80÷20

=4(次).

答:这20名男生该周参加篮球运动次数的平均数是4次.

【点评】本题考查的是加权平均数的求法.本题易出现的错误是求2,3,4,5这四个数的平均数,对平均数的理解不正确.

5.(4分)已知在△ABC中,AB=AC,AD是角平分线,点D在边BC上,设=,=,那么向量用向量、表示为()

2018年上海中考数学试卷含答案

2018年上海市初中毕业统一学业考试 数学试卷 考生注意: 1.本试卷共25题. 2.试卷满分150分,考试时间100分钟. 3.答题时,考生务必按答题要求在答题纸规定的位置上作答,在草稿纸、本试卷上答题一律无效. 4.除第一、二大题外,其余各题如无特殊说明,都必须在答题纸的相应位置上写出证明或计算的主要步骤. 一、选择题(本大题共6题,每题4分,满分24分) 1. ) A. 4 B.3 C. 2.下列对一元二次方程2 30x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根 3.下列对二次函数2y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴 C.经过原点 D.在对称轴右侧部分是下降的 4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( ) A.25和30 B.25和29 C.28和30 D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥ 6.如图1,已知30POQ ∠=?,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的A 与直线OP 相切,半径长为3的 B 与A 相交,那么OB 的取值范围是( ) A. 59OB << B. 49OB << C. 37OB << D. 2 二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:2 2 (1)a a +-= . 9.方程组20 2x y x y -=??+=? 的解是 . 10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的 代数式表示).

高考数学试题分类大全

2015年高考数学试题分类汇编及答案解析(22个专题) 目录 专题一集合..................................................................................................................................................... 专题二函数..................................................................................................................................................... 专题三三角函数............................................................................................................................................ 专题四解三角形............................................................................................................................................ 专题五平面向量............................................................................................................................................ 专题六数列..................................................................................................................................................... 专题七不等式................................................................................................................................................. 专题八复数..................................................................................................................................................... 专题九导数及其应用................................................................................................................................... 专题十算法初步............................................................................................................................................ 专题十一常用逻辑用语 .............................................................................................................................. 专题十二推理与证明................................................................................................................................... 专题十三概率统计 ....................................................................................................................................... 专题十四空间向量、空间几何体、立体几何...................................................................................... 专题十五点、线、面的位置关系 ............................................................................................................ 专题十六平面几何初步 .............................................................................................................................. 专题十七圆锥曲线与方程.......................................................................................................................... 专题十八计数原理 ..................................................................................................................................... 专题十九几何证明选讲 ............................................................................................................................ 专题二十不等式选讲.................................................................................................................................

试论近三年高考数学试卷分析

HR Planning System Integration and Upgrading Research of A Suzhou Institution 近三年高考数学试卷分析 陈夏明 近三年的数学试卷强调了对基础知识的掌握、突出运用所学知识解决实际问题的能力.整套试卷遵照高考考试大纲的要求,从题型设置、考察知识的范围和运算量,书写量等方面保持相对稳定,体现了考查基础知识、基本运算方法和基本数学思想方法的特点.好多题都能在课本上找到影子,是课本题的变形和创新.这充分体现了高考数学试题“来源于课本”的命题原则,同时,也注重了知识之间内在的联系与综合,在知识的交汇点设计试题的原则。 2009年高考数学考试大纲与往年对比,总体保持平稳,个别做了修改,修改后更加适合中学实际和现代中学生的实际水平,从大纲来看,高考主干知识八大块:1.函数;2.数列;3.平面向量;4.不等式(解与证);5.解析几何;6.立体几何;7.概率与统计。仍为考查的重点,其中函数是最核心的主干知识. 考试要求有变化: 今年数学大纲总体保持平稳,并在平稳过渡中求试题创新,试题难度更加适合中学教学实际和现代中学生的实际水平;适当加大文理卷的差异,力求文理学生成绩平衡,文科试题“适当拉大试题难度的分布区间,试题难度的起点应降低,而试题难度终点应与理科相同”。 试题难度没有太大变化,但思维量进一步加大,更加注重基础知识、基本技能的考查.注重通性通法,淡化特殊技巧,重视数学思想方法的考查.不回避重点知识的考查。函数、数列、概率(包括排列、组合)、立体几何、解析几何等知

识仍是考查的重点内容.保持高考改革的连续性、稳定性,严格遵循《考试大纲》命题. 针对高考变化教师应引导学生: 1.注重专题训练,找准薄弱环节 2.关注热点问题进行有针对性的训练 3.重视高考模拟试题的训练 4.回归课本,查缺补漏。 5.重视易错问题和常用结论的归纳总结 6.心理状态的调整与优化 (1)审题与解题的关系: 我建以审题与解题的关系要一慢一快:审题要慢,做题要快。 (2)“会做”与“得分”的关系: 解题要规范,俗话说:“不怕难题不得分,就怕每题都扣分”所以务必将解题过程写得层次分明,结构完整.这非常重要,在平时训练时要严格训练. (3)快与准的关系: 在目前题量大、时间紧的情况下,“准”字则尤为重要。只有“准”才能得分,只有“准”才可不必考虑再花时间检查,而“快”是平时训练的结果. (4)难题与容易题的关系: 拿到试卷后,应将全卷通览一遍,一般来说应按先易后难、先简后繁的顺序作答。近年来考题的顺序并不完全是难易的顺序,因此不要在某个卡住的题上打“持久战”,特别不要“小题大做”那样既耗费时间又未心能拿分,会做的题又被耽误了。这几年,数学试题已从“一题把关”转为“多题把关”,而且解答题都设置了层次分明的“台阶”,入口宽,入手易,但是深入难,解到底难。 因此,我建议答题应遵循: 三先三后: 1.先易后难 2.先高(分)后低(分) 3.先同后异。

2018年上海中考数学试卷

2018年上海市初中毕业统一学业考试数学试卷 一、选择题(本大题共6题,每题4分,满分24分) 1. 的结果是( ) A. 4 B.3 C. D. 2.下列对一元二次方程230x x +-=根的情况的判断,正确的是( ) A.有两个不相等的实数根 B.有两个相等的实数根 C.有且只一个实数根 D.没有实数根 3.下列对二次函数2 y x x =-的图像的描述,正确的是( ) A.开口向下 B.对称轴是y 轴 C.经过原点 D.在对称轴右侧部分是下降的 4.据统计,某住宅楼30户居民五月份最后一周每天实行垃圾分类的户数依次是:27,30,29,25,26,28,29.那么这组数据的中位数和众数分别是( ) A.25和30 B.25和29 C.28和30 D.28和29 A.A B ∠=∠ B. A C ∠=∠ C. AC BD = D. AB BC ⊥ 6.如图1,已知30POQ ∠=?,点A 、B 在射线OQ 上(点A 在点O 、B 之间),半径长为2的 A 与直线OP 相切,半径长为3的 B 与A 相交,那么OB 的取 值范围是( ) A. 59OB << B. 49OB << C. 3 <27OB << 二、填空题(本大题共12题,每题4分,满分48分) 7. -8的立方根是 . 8. 计算:22 (1)a a +-= .

9.方程组2 02 x y x y -=?? +=?的解是 . 10.某商品原价为a 元,如果按原价的八折销售,那么售价是 元(用含字母a 的代数式表示). 11.已知反比例函数1 k y x -= (k 是常数,1k ≠ 的取值范围是 . 12.某学校学生自主建立了一个学习用品义卖平 台,已知九年级200名学生义卖所得金额分布 直方图如图2所示,那么20-30元这个小组 的组频率是 . 13.从 2,, 7 π这三个数中任选一个数, 选出的这个数是无理数的概率为 . 14.如果一次函数3y kx =+(k 是常数,0k ≠)的图像经过点(1,0),那么y 的值随着x 的增大而 (填“增大”或“减小”) 15.如图3,已知平行四边形ABCD ,E 是边BC 的中点,联结DE 并延长, 与AB 的延长线交于点F ,设DA =a ,DC =b ,那么向量DF 用向量a b 、 表示为 . 16.通过画出多边形的对角线,可以把多边形内角和问题转化为三角形内角和问题,如果从某个多边形的一个顶点出发的对角线共有2条,那么该多边形的内角和是 度. 17.如图4,已知正方形DEFG 的顶点D 、E 在ABC ?的边BC 上,顶点G 、F 分别在边AB 、AC 上,如果BC =4,ABC ?的面积是6,那么这个正方形的边长是 . y 金额(元) 图2 图4 图3 图5 图6

2017高考数学(理)(全国II卷)详细解析

绝密★启用前 2017年普通高等学校招生全国统一考试 新课标II卷 理科数学 一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项 是符合题目要求的. 1. A.B.C.D. 【答案】D 2.设集合,.若,则 A.B.C.D. 【答案】C 【解析】 试题分析:由得,即是方程的根,所以,,故选C. 【考点】交集运算、元素与集合的关系 【名师点睛】集合中元素的三个特性中的互异性对解题影响较大,特别是含有字母的集合,在求出字母的值后,要注意检验集合中的元素是否满足互异性.两个防范:①不要忽视元素的互异性;②保证运算的准确性. 3.我国古代数学名著《算法统宗》中有如下问题:“远望巍巍塔七层,红光点点倍加增,共灯三百八十一,请问尖头几盏灯?”意思是:一座7层塔共挂了381盏灯,且相邻两层中的下一层灯数是上一层灯数的2倍,则塔的顶层共有灯 A.1盏B.3盏C.5盏D.9盏

4.如图,网格纸上小正方形的边长为1,粗实线画出的是某几何体的三视图,该几何体由一平面将一圆柱截去一部分后所得,则该几何体的体积为 A. B. C. D. 【答案】B 【解析】 试题分析:由题意,该几何体是一个组合体,下半部分是一个底面半径为3,高为4的圆柱, 其体积,上半部分是一个底面半径为3,高为6的圆柱的一半,其体积 ,故该组合体的体积.故选B. 【考点】三视图、组合体的体积 【名师点睛】在由三视图还原为空间几何体的实际形状时,要从三个视图综合考虑,根据三视图的规则,空间几何体的可见轮廓线在三视图中为实线,不可见轮廓线在三视图中为虚线.在还原空间几何体实际形状时,一般是以正视图和俯视图为主,结合侧视图进行综合考虑.求解以三视图为载体的空间几何体的体积的关键是由三视图确定直观图的形状以及直观图中线面的位置关系和数量关系,利用相应体积公式求解. 5.设,满足约束条件,则的最小值是 A.B.C.D.

高考真题理科数学解析版

理科数学解析 一、选择题: 1.C【解析】本题考查集合的概念及元素的个数. 容易看出只能取-1,1,3等3个数值.故共有3个元素. 【点评】集合有三种表示方法:列举法,图像法,解析式法.集合有三大特性:确定性,互异性,无序性.本题考查了列举法与互异性.来年需要注意集合的交集等运算,Venn图的考查等. 2.D【解析】本题考查常有关对数函数,指数函数,分式函数的定义域以及三角函数的值域. 函数的定义域为,而答案中只有的定 义域为.故选D. 【点评】求函数的定义域的依据就是要使函数的解析式有意义的自变量的取值范围.其求解根据一般有:(1)分式中,分母不为零;(2)偶次根式中,被开方数非负;(3)对数的真数大于0:(4)实际问题还需要考虑使题目本身有意义.体现考纲中要求了解一些简单函数的定义域,来年需要注意一些常见函数:带有分式,对数,偶次根式等的函数的定义域的求法. 3.B【解析】本题考查分段函数的求值. 因为,所以.所以. 【点评】对于分段函数结合复合函数的求值问题,一定要先求内层函数的值,因为内层函数的函数值就是外层函数的自变量的值.另外,要注意自变量的取值对应着哪一段区间,就使用

哪一段解析式,体现考纲中要求了解简单的分段函数并能应用,来年需要注意分段函数的分段区间及其对应区间上的解析式,千万别代错解析式. 4.D【解析】本题考查三角恒等变形式以及转化与化归的数学思想. 因为,所以.. 【点评】本题需求解正弦值,显然必须切化弦,因此需利用公式转化;另外,在转化过程中常与“1”互相代换,从而达到化简的目的;关于正弦、余弦的齐次分式,常将正弦、余弦转化为正切,即弦化切,达到求解正切值的目的.体现考纲中要求理解三角函数的基本关系式,二倍角公式.来年需要注意二倍角公式的正用,逆用等. 5.B【解析】本题以命题的真假为切入点,综合考查了充要条件,复数、特称命题、全称命题、二项式定理等. (验证法)对于B项,令,显然,但不互为共轭复数,故B为假命题,应选B. 【点评】体现考纲中要求理解命题的概念,理解全称命题,存在命题的意义.来年需要注意充要条件的判断,逻辑连接词“或”、“且”、“非”的含义等. 6.C【解析】本题考查归纳推理的思想方法. 观察各等式的右边,它们分别为1,3,4,7,11,…, 发现从第3项开始,每一项就是它的前两项之和,故等式的右

2017上海中考数学试卷

2017年上海市初中毕业统一学业考试 数学试卷 一、选择题:(本大题共6题,每题4分,满分24分) 1.下列实数中,无理数是 A.0 B.2 C.-2 D. 7 2 2.下列方程中,没有实数根的是 A.0x 2-x 2= B.01-x 2-x 2= C.01x 2-x 2=+ D.02x 2-x 2=+ 3.如果一次函数y=kx+b (k 、b 是常数,k ≠0)的图像经过第一、二、四象限,那么k 、b 应满足的条件是 A.k >0,且b >0 B.k <0,且b >0 C.k >0,且b <0 D.k <0,且b <0 4.数据2、5、6、0、6、1、8的中位数和众数分别是 A.0和6 B.0和8 C.5和6 D.5和8 5.下列图形中,既是轴对称图形又是中心对称图形的是 A.菱形 B.等边三角形 C.平行四边形 D.等腰梯形 6.已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是 A.∠BAC=∠DCA B.∠BAC=∠DAC C.∠BAC=∠ABD D.∠BAC=∠ADB 二、填空题:(本大题共12题,每题4分,满分48分) 7.计算:2a.a 2= . 8.不等式组???2 2-x 6x 2>,>的解集是 . 9.方程13-x 2=的根是 . 10.如果反比例函数x k y =(k 是常数,k ≠0)的图像经过点(2,3),那么在这个函数图像所在的每个象限内,y 的值随x 的值增大而 。(填“增大”或

“减小”) 11.某市前年PM2.5的年均浓度为50毫克/立方米,去年比前年下降了10%。如果今年PM2.5的年均浓度比去年也下降10%,那么今年PM2.5的年均浓度将是 毫克/立方米。 12.不透明的布袋里有2个黄球,3个红球,5个白球,它们除颜色外其它都相同,那么从布袋中任意摸出一个球恰好为红球的概率是 。 13.已知一个二次函数的图像开口向上,顶点坐标为(0,-1),那么一个二次函数的解析式可以是 。(只需写一个) 14.某企业今年第一季度各月份产值占这个季度总产值的百分比如图1所示,又知二月份产值是72万元,那么该企业第一季度月产值的平均数是 万元。 15.如图2,已知AB ∥CD ,CD=2AB ,AD 、BC 相交于点E 。设=,=,那么向量用向量表示为 。 16.一副三角尺按图3的位置摆放(顶点C 与F 重合,边CA 与边FE 重合,顶点B 、 C 、 D 在一条直线上)。将三角尺DEF 绕着点F 按顺时针方向旋转n °后(0<n <180),如果EF ∥AB ,那么n 的值是 。 17.如图4,已知Rt △ABC ,∠C=90°,AC=3,BC=4,分别以点A 、B 为圆心画圆,如果点C 在☉A 内,点B 在☉A 外,且☉B 与☉A 内切,那么☉B 的半径长r 的取值范围是 。 18.我们规定:一个正n 边形(n 为整数,n ≥4)的最短对角线与最长对角线长度的比值叫做这个正n 边形的“特征值”,记为λn ,那么λ6= 。 图1

三年高考(2016-2018)数学(理)真题分类解析:专题14-与数列相关的综合问题

专题14 与数列相关的综合问题 考纲解读明方向 分析解读 1.会用公式法、倒序相加法、错位相减法、裂项相消法、分组转化法求解不同类型数列的和.2.能综合利用等差、等比数列的基本知识解决相关综合问题.3.数列递推关系、非等差、等比数列的求和是高考热点,特别是错位相减法和裂项相消法求和.分值约为12分,难度中等. 2018年高考全景展示 1.【2018年浙江卷】已知成等比数列,且 .若 , 则 A. B. C. D. 【答案】B 【解析】分析:先证不等式,再确定公比的取值范围,进而作出判断. 详解:令则 ,令 得,所以当时, ,当 时, ,因此 , 若公比 ,则 ,不合题意;若公比 ,则

但,即 ,不合题意;因此, ,选B. 点睛:构造函数对不等式进行放缩,进而限制参数取值范围,是一个有效方法.如 2.【2018年浙江卷】已知集合,.将的所有元素从小到大依次排列构成一个数列.记为数列的前n项和,则使得成立的n的最小值为________. 【答案】27 【解析】分析:先根据等差数列以及等比数列的求和公式确定满足条件的项数的取值范围,再列不等式求满足条件的项数的最小值. 点睛:本题采用分组转化法求和,将原数列转化为一个等差数列与一个等比数列的和.分组转化法求和的常见类型主要有分段型(如),符号型(如),周期型(如). 3.【2018年理数天津卷】设是等比数列,公比大于0,其前n项和为,是等差数列.已知,,,.

(I)求和的通项公式; (II)设数列的前n项和为, (i)求; (ii)证明. 【答案】(Ⅰ),;(Ⅱ)(i).(ii)证明见解析. 【解析】分析:(I)由题意得到关于q的方程,解方程可得,则.结合等差数列通项公式可得(II)(i)由(I),有,则. (ii)因为,裂项求和可得. 详解:(I)设等比数列的公比为q.由可得.因为,可得,故.设等差数列的公差为d,由,可得由,可得 从而故所以数列的通项公式为,数列的通项公式为 (II)(i)由(I),有,故 . (ii)因为, 所以. 点睛:本题主要考查数列通项公式的求解,数列求和的方法,数列中的指数裂项方法等知识,意在考查学生的转化能力和计算求解能力.

2018高考江苏数学试题与答案解析[解析版]

2017年普通高等学校招生全国统一考试(卷) 数学I 一、填空题:本大题共14小题,每小题5分,共计70分. 请把答案填写在答题卡相应位置上......... (1)【2017年,1,5分】已知集合}2{1A =,,23{},B a a =+.若{}1A B =I ,则实数a 的值为_______. 【答案】1 【解析】∵集合}2{1A =,,23{},B a a =+.{}1A B =I ,∴1a =或231a +=,解得1a =. 【点评】本题考查实数值的求法,是基础题,解题时要认真审题,注意交集定义及性质的合理运用. (2)【2017年,2,5分】已知复数()()1i 12i z =-+,其中i 是虚数单位,则z 的模是_______. 【答案】10 【解析】复数()()1i 12i 123i 13i z =-+=-+=-+,∴() 2 21310z = -+=. 【点评】本题考查了复数的运算法则、模的计算公式,考查了推理能力与计算能力,属于基础题. (3)【2017年,3,5分】某工厂生产甲、乙、丙、丁四种不同型号的产品,产量分别为200,400,300,100 件.为检验产品的质量,现用分层抽样的方法从以上所有的产品中抽取60件进行检验,则应从丙种型号的产品中抽取_______件. 【答案】18 【解析】产品总数为2004003001001000+++=件,而抽取60辆进行检验,抽样比例为606 1000100 = ,则应从丙 种型号的产品中抽取6 30018100 ?=件. 【点评】本题的考点是分层抽样.分层抽样即要抽样时保证样本的结构和总体的结构保持一致,按照一定的比例, 即样本容量和总体容量的比值,在各层中进行抽取. (4)【2017年,4,5分】如图是一个算法流程图:若输入x 的值为1 16 ,则输出y 的值是_______. 【答案】2- 【解析】初始值116 x =,不满足1x ≥,所以41 216 222log 2log 2y =+=-=-. 【点评】本题考查程序框图,模拟程序是解决此类问题的常用方法,注意解题方法的积累,属于 基础题. (5)【2017年,5,5分】若1tan 46πα? ?-= ?? ?.则tan α=_______. 【答案】7 5 【解析】tan tan tan 114tan 4tan 161tan tan 4 π απααπαα--??-= == ?+? ?+Q ,∴6tan 6tan 1αα-=+,解得7tan 5α=. 【点评】本题考查了两角差的正切公式,属于基础题. (6)【2017年,6,5分】如如图,在圆柱12O O 有一个球O ,该球与圆柱的上、下底面及母线均相 切。记圆柱12O O 的体积为1V ,球O 的体积为2V ,则12 V V 的值是________. 【答案】3 2 【解析】设球的半径为R ,则球的体积为:3 43 R π,圆柱的体积为:2322R R R ππ?=.则313223423 V R R V ππ==. 【点评】本题考查球的体积以及圆柱的体积的求法,考查空间想象能力以及计算能力. (7)【2017年,7,5分】记函数2()6f x x x =+- 的定义域为D .在区间[45]-,上随机取一个数x ,则x ∈D

2017年高考数学试题分项版解析几何解析版

2017年高考数学试题分项版—解析几何(解析版) 一、选择题 1.(2017·全国Ⅰ文,5)已知F 是双曲线C :x 2 -y 2 3 =1的右焦点,P 是C 上一点,且PF 与x 轴垂直,点A 的坐标是(1,3),则△APF 的面积为( ) A .13 B .12 C .23 D .32 1.【答案】D 【解析】因为F 是双曲线 C :x 2- y 2 3 =1的右焦点,所以F (2,0). 因为PF ⊥x 轴,所以可设P 的坐标为(2,y P ). 因为P 是C 上一点,所以4-y 2P 3=1,解得y P =±3, 所以P (2,±3),|PF |=3. 又因为A (1,3),所以点A 到直线PF 的距离为1, 所以S △APF =12×|PF |×1=12×3×1=32. 故选D. 2.(2017·全国Ⅰ文,12)设A ,B 是椭圆C :x 23+y 2 m =1长轴的两个端点.若C 上存在点M 满 足∠AMB =120°,则m 的取值范围是( ) A .(0,1]∪[9,+∞) B .(0,3]∪[9,+∞) C .(0,1]∪[4,+∞) D .(0,3]∪[4,+∞) 2.【答案】A 【解析】方法一 设焦点在x 轴上,点M (x ,y ). 过点M 作x 轴的垂线,交x 轴于点N , 则N (x,0). 故tan ∠AMB =tan(∠AMN +∠BMN ) =3+x |y |+3-x |y |1-3+x |y |· 3-x |y |=23|y |x 2+y 2-3. 又tan ∠AMB =tan 120°=-3, 且由x 23+y 2m =1,可得x 2 =3-3y 2 m , 则23|y |3-3y 2m +y 2-3=23|y |(1-3m )y 2=- 3.

上海中考数学试卷

2017年上海中考数学试卷 一. 选择题 1. 下列实数中,无理数是( ) A. 0 B. C. 2- D. 27 2. 下列方程中,没有实数根的是( ) A. 220x x -= B. 2210x x --= C. 2210x x -+= D. 2220x x -+= 3. 如果一次函数y kx b =+(k 、b 是常数,0k ≠)的图像经过第一、二、四象限,那么k 、 b 应满足的条件是( ) A. 0k >且0b > B. 0k <且0b > C. 0k >且0b < D. 0k <且0b < 4. 数据2、5、6、0、6、1、8的中位数和众数分别是( ) A. 0和6 B. 0和8 C. 5和6 D. 5和8 5. 下列图形中,既是轴对称又是中心对称图形的是( ) A. 菱形 B. 等边三角形 C. 平行四边形 D. 等腰梯形 6. 已知平行四边形ABCD ,AC 、BD 是它的两条对角线,那么下列条件中,能判断这个平行四边形为矩形的是( ) A. BAC DCA ∠=∠ B. BAC DAC ∠=∠ C. BAC ABD ∠=∠ D. BAC ADB ∠=∠ 二. 填空题 7. 计算:22a a ?= . 8. 不等式组2620x x >??->? 的解集是 . 9. 1=的解是 . 10. 如果反比例函数k y x = (k 是常数,0k ≠)的图像经过点(2,3),那么在这个函数图象 所在的每个象限内,y 的值随x 的值增大而 .(填“增大”或“减小”) 11. 某市前年PM2.5的年均浓度为50微克/立方米,去年比前年下降了10%,如果今年PM2.5 的年均浓度比去年也下降了10%,那么今年PM2.5的年均浓度将是 微克/立方米. 12. 不透明的布袋里有2个黄球、3个红球、5个白球,他们除颜色外其他都相同,那么从

高考数学试题分类汇编个专题

2017年高考数学试题分类汇编及答案解析(22个专题)目录 专题一 集合 ............................................................................................................................................................................... 1 专题二 函数 ............................................................................................................................................................................... 6 专题三 三角函数...................................................................................................................................................................... 21 专题四 解三角形...................................................................................................................................................................... 32 专题五 平面向量...................................................................................................................................................................... 40 专题六 数列 ............................................................................................................................................................................. 48 专题七 不等式 ......................................................................................................................................................................... 68 专题八 复数 ............................................................................................................................................................................. 80 专题九 导数及其应用 .............................................................................................................................................................. 84 专题十 算法初步.................................................................................................................................................................... 111 专题十一 常用逻辑用语 ........................................................................................................................................................ 120 专题十二 推理与证明 ............................................................................................................................................................ 122 专题十三 概率统计 ................................................................................................................................................................ 126 专题十四 空间向量、空间几何体、立体几何 .................................................................................................................... 149 专题十五 点、线、面的位置关系 ........................................................................................................................................ 185 专题十六 平面几何初步 ........................................................................................................................................................ 186 专题十七 圆锥曲线与方程 .................................................................................................................................................... 191 专题十八 计数原理 .............................................................................................................................................................. 217 专题十九 几何证明选讲 ...................................................................................................................................................... 220 专题二十 不等式选讲 .......................................................................................................................................................... 225 专题二十一 矩阵与变换 ........................................................................................................................................................ 229 专题二十二 坐标系与参数方程 .. (230) 专题一 集合 1.(15年北京文科)若集合{}52x x A =-<<,{} 33x x B =-<<,则A B =I ( ) A .{} 32x x -<< B .{} 52x x -<< C .{} 33x x -<< D .{} 53x x -<< 【答案】A 考点:集合的交集运算. 2.(15年广东理科) 若集合{|(4)(1)0}M x x x =++=,{|(4)(1)0}N x x x =--=,则M N =I A .? B .{}1,4-- C .{}0 D .{}1,4

2016年高考数学试卷分析

2016年高考数学试卷分析 随着2016年高考的结束,,作为一线教师,也应该是对今年的高考试题进行一番细致的研究了。陕西省是即课改后首次使用全国卷。2015年的陕西卷已经为下一年的平稳过度做好了铺垫。首先在题型设置上,与全国卷保持一致,这已给师生做好了思想工作,当2016年的高考数学进入人们眼帘的时候,似乎也不是很陌生,很有老朋友相见的感觉。 今年的全国卷数学试题从试题结构与去年相比变化不大,严格遵守考试大纲说明,五偏题,怪题现象。试卷难度呈阶梯型分布,试题更灵活。入口容易出口难,有利于高校选拔新生。 一、总体分析: 1,试题的稳定性: 从文理试卷整体来看,考查的内容注重基础考查,又在一定的程度上进行创新。知识覆盖全面且突出重点。高中知识“六大板块”依旧是考查的重点。无论大小体目90%均属于常规题型,难度适中。是学生训练时的常见题型。其中,5,15,18注重考查了数学在实际中的应用能力。这就提示我们数学的教学要来源实际,回归生活,既有基础与创新的结合,又能增

加学生的自信心,发挥自己的最佳水平。 试题的变化: 有些复课中的重点“二项式定理”,“线性规划”,“定积分”。“均值不等式”等知识点并没有被纳入,而“条件概率”则出现在大题中,这也对试题的难度进行区分。 在难度方面,选择题的12题,填空题的16题,对学生造成较大困扰。这也有利于对人才的选拔。解答题中的20,21题第一问难度适中,第二问都提高了难度。这也体现了入口易,出口难,对人才的选拔非常有利。 今年的高考数学试题更注重了试题的广度,而简化了试题的深度。而这对陕西高考使用全国卷的过度上起到了承上启下的作用。平稳过度已是事实。给学生,教师都增加了信心。 试题的详细分析: 选择题部分 (1),考查复数,注重的是知识点的考查。对负数的运算量则降低要求,这要求我们不仅要求对运算过关,更强调知识点的全面性(2)集合的运算:集合的交并补三种运算应是同等对待。在平时的教学中,出现的交集运算比较多,。并集,补集易被忽略。(而

2013年上海市中考数学试卷及答案

2013年上海市中考数学试卷 一、选择题:(本大题共6题,每题4分,满分24分)【下列各题的四个选项中,有且只有一个选项是正确的,选择正确项的代号并填涂在答题纸的相应位置上.】 .C D. 2 5.(4分)(2013?上海)如图,已知在△ABC中,点D、E、F分别是边AB、AC、BC上的点,DE∥BC,EF∥AB,且AD:DB=3:5,那么CF:CB等于() 6.(4分)(2013?上海)在梯形ABCD中,AD∥BC,对角线AC和BD交于点O,下列条件中,能判断梯形ABCD 二、填空题:(本大题共12题,每题4分,满分48分)[请将结果直接填入答题纸的相应位置] 7.(4分)(2013?上海)分解因式:a2﹣1=_________. 8.(4分)(2013?上海)不等式组的解集是_________. 9.(4分)(2013?上海)计算:=_________. 10.(4分)(2013?上海)计算:2(﹣)+3=_________. 11.(4分)(2013?上海)已知函数,那么=_________.

12.(4分)(2013?上海)将“定理”的英文单词theorem中的7个字母分别写在7张相同的卡片上,字面朝下随意放在桌子上,任取一张,那么取到字母e的概率为_________. 13.(4分)(2013?上海)某校报名参加甲、乙、丙、丁四个兴趣小组的学生人数如图所示,那么报名参加甲组和丙组的人数之和占所有报名人数的百分比为_________. 14.(4分)(2013?上海)在⊙O中,已知半径长为3,弦AB长为4,那么圆心O到AB的距离为_________. 15.(4分)(2013?上海)如图,在△ABC和△DEF中,点B、F、C、E在同一直线上,BF=CE,AC∥DF,请添加一个条件,使△ABC≌△DEF,这个添加的条件可以是_________.(只需写一个,不添加辅助线) 16.(4分)(2013?上海)李老师开车从甲地到相距240千米的乙地,如果油箱剩余油量y(升)与行驶里程x(千米)之间是一次函数关系,其图象如图所示,那么到达乙地时油箱剩余油量是_________升. 17.(4分)(2013?上海)当三角形中一个内角α是另一个内角β的两倍时,我们称此三角形为“特征三角形”,其中α称为“特征角”.如果一个“特征三角形”的“特征角”为100°,那么这个“特征三角形”的最小内角的度数为 _________. 18.(4分)(2013?上海)如图,在△ABC中,AB=AC,BC=8,tanC=,如果将△ABC沿直线l翻折后,点B落在边AC的中点处,直线l与边BC交于点D,那么BD的长为_________.

相关文档
最新文档