医用高等数学第一单元 函数与极限-答案

医用高等数学第一单元  函数与极限-答案
医用高等数学第一单元  函数与极限-答案

第一单元 函数与极限

一、填空题

1、当→x ∞ 时,(

)2

1ln x

y +=为无穷大。

2、=-+→∞)

1()34(lim

22

x x x x 0 。解:分子的次数 < 分母的次数,结果为0 3、0→x 时,x x sin tan -是x 的 高 阶无穷小。 解:0tan sin lim 0x x x

x

→-=

4、01

sin

lim 0

=→x

x k

x 成立的k 为 0k > 解: 0,(0,0)sin k x k x x →>→当时,

有界

5、=-∞

→x e x

x arctan lim 0 。解: 0,arctan ()2

x

e

x x π

-→→

→∞当时,

6、???≤+>+=0

,0

,1)(x b x x e x f x 在0=x 处连续,则=b 2。

解:b b x x f x x =+=--→→)(lim )(lim 0

Θ,

2)1(lim )(lim 0

=+=++→→x

x x e x f Θ,,)0(b f = 2=∴b 。 7、+→x

x x 6)

13ln(lim

0 1/2 。解:ln(13)~3(0)x x

x +→

8、若105lim(1)

kx x e x

--→∞+=,

则k=2 解:551055lim (1)2k

x

k x e e k x ---→∞??+==?=??????

9、知222lim 22

x x ax b

x x →++=--,则a =_____2___,b =_____-8___.

解:

10、设a 是非零常数,则2lim(

)________x

a x x a e x a

→∞

+=-。 11、已知当0→x 时,1)1(3

12-+ax 与1cos -

x 是等价无穷小,则常数3

____

2

a =-

。 12、函数)(x f =

1

ln -x x

的间断点是_______2,1,0______

13、lim

_0_n =

14、设8)2(

lim =-+∞

→x

x a

x a x ,则=a _____2ln ___。

15、)2)(1(lim n n n n n -++++∞

→=_______2_____。

16

、n →∞

=___1/2_____.

17、1111242lim 1111393

n

n n

→∞++++=++++L L _____43___. 18、已知25

lim

232

n an bn n →∞++=+,则a =_0_______,b =___6_____. 19、设3e )21(lim -∞

→=+

kx x x ,则=k _____3

2

-________. 20、203050(23)(32)lim (51)x x x x →+∞-+=+__2030

50235

______. 21、=+∞→x

x

x x sin lim

1 .

22、1

lim()(0,10,0)0x x ax b a b x →+>>>>= ________. 23、如果0x →时,要无穷小量(1cos )x -与2

sin

2

x

a 等价,a 应等于___2_____. 24、设

2

0()()0

ax b

x f x a b x x x +≥?=?++

25、2

1/0

()0

x

e x

f x a

x -??≠=?

=??,则0

lim ()x f x →=____0____;若无间断点,则a =___0_____.

二、选择题

1、列极限计算正确的是( C ).

(A )e )11(lim 0=+→x x x (B )e )1(lim 1

=+∞→x x x ( C )11sin lim =∞→x x x ( D )1sin lim =∞→x

x x

2、x

x

x +-=

11)(α,31)(x x -=β,则当1→x 时有 C 。 (A)α是比β高阶的无穷小; (B)α是比β低阶的无穷小; (C )α与β是同阶无穷小; (D )βα~。

解:1/32/31/32/31111/(1)(1)1/(1)(1)3

lim lim 112x x x x x x x x x x x →→→-+?+++?++===-

3、函数??

???=-≥≠-+-+=0)1(0,1

111)(3x k x x x x x f 在0=x 处连续,则=k A 。

(A)

23; (B)3

2

; (C )1; (D )0。

3

1~/1~/3,((0)2

x x x x f k →→===

4、数列极限=--∞

→]ln )1[ln(lim n n n n B 。

(A)1; (B)1-; (C )∞; (D )不存在但非∞。

解:11111ln(1)~lim [ln(1)ln ]lim ln(1)lim ()1n n n n n n n n n n

n n n

→∞

→∞

→∞

--→--=-=-=-(当0时)

5、???

?

???>=<+=0

1cos 00

0sin )(x x x x x x x x x f ,则0=x 是)(x f 的 C 。

(A)连续点;(B)可去间断点;(C )跳跃间断点;(D )振荡间断点 6

、若3

1

169

x x →=-

-,则 f (x ) = ( c ) . (A) x +1 (B) x +5

7、 |

|sin lim

0x x

x →= ( D )

(A) 1; (B) -1; (C ) 0; (D ) 不存在。 8、 =-→x

x x 10

)1(lim (D )

(A) 1; (B) -1; (C) e ; (D) 1

-e 。

9、)(x f 在0x 的某一去心邻域内有界是)(lim 0

x f x x →存在的(C )

(A)充分必要条件;(B) 充分条件;(C )必要条件;(D )既不充分也不必要条件. 10、 =-+∞

→)1(lim 2

x x x x Θ(C )

(A) 1; (B) 2; (C )

2

1

; (D ) 0。 11、设}{},{},{n n n c b a 均为非负数列,且∞===∞

→∞

→∞

→n n n n n n c b a lim ,1lim ,0lim ,则必有(D )

(A )n n b a <对任意n 成立; (B )n n c b <对任意n 成立;

(C )极限n n n c a ∞

→lim 不存在 ; (D )极限n n n c b ∞

→lim 不存在。

12、当1→x 时,函数

1

1

21

1---x e x x 的极限( C ) (A)等于2; (B)等于0; (C)为∞; (D)不存在但不为∞。

13、下列数列发散的是( D )。 a 、0.9,0.99,0.999,0.9999,…… b 、

5

4

,45,32,23…… c 、()n f =???????-+n n n

n 2

12212 为偶数为奇数n n d 、()n f =?

????-+n n n n 11 为偶数为奇数n n

14、当∞→x 时,arctgx 的极限( D )。 a 、2

π=

b 、2

π-

= c 、∞= d 、不存在,但有界

15、1

1lim

1

--→x x x ( D )。

a 、1-=

b 、1=

c 、=0

d 、不存在

16、当0→x 时,下列变量中是无穷小量的有( C )。 a 、x 1sin

b 、x

x sin c 、12--x

d 、x ln 17、下列变量在给定的变化过程中是无穷大量的有( A )。

a 、()+

→0lg x x b 、()1lg →x x c 、1

3

2

+x x ()+∞→x d 、()1

x e x →∞ 18、如果()∞=→x f x x 0

lim ,()∞=→x g x x 0

lim ,则必有( D )。

a 、()()[]∞=+→x g x f x x 0

lim b 、()()[]0lim 0

=-→x g x f x x

c 、()()

01

lim

=+→x g x f x x d 、()∞=→x kf x x 0lim (k 为非零常数)

19、()=--→1

1sin lim

21x x x ( D )。 a 、1 b 、2 c 、0 d 、2

1

20、下列等式中成立的是( B )。

a 、e n n

n =??

?

??+∞

→21lim b 、e n n n =?

?? ??++∞→2

11lim

c 、e n n n =??? ??+∞→211lim

d 、

e n n

n =??

?

??+∞

→211lim

21、当0→x 时,x cos 1-与x x sin 相比较(B )。

a 、是低阶无穷小量

b 、是同阶无穷小量

c 、是等阶无穷小量

d 、是高阶无穷小量

22、函数()x f 在点0x 处有定义,是()x f 在该点处连续的( C )。 a 、充要条件 b 、充分条件 c 、必要条件 d 、无关的条件 23、若数列{x n }有极限a ,则在a 的ε邻域之外,数列中的点(B ).

(A )必不存在 (B )至多只有有限多个

(C )必定有无穷多个 (D )可以有有限个,也可以有无限多个

24、设0, 0(), lim ()

, 0x x e x f x f x ax b x →?≤=?+>?若存在, 则必有( D ) .

(A) a = 0 , b = 0 (B) a = 2 , b = -1 (C) a = -1 , b = 2 (D)a 为任意常数, b = 1

25、数列0,

13,24,35,4

6

,……( B ). (A )以0为极限 (B )以1为极限 (C )以

2

n n

-为极限 (D )不存在极限 26、 数列{y n }有界是数列收敛的 ( D ) .

(A )必要条件 (B) 充分条件 (C) 充要条件 (D)无关条件 27、当x —>0 时,( C )是与sin x 等价的无穷小量. (A) tan2 x

(B)

x

(C)1

ln(12)2x + (D) x (x +2)

28、若函数()f x 在某点0x 极限存在,则( C ).

(A )()f x 在0x 的函数值必存在且等于极限值 (B )()f x 在0x 的函数值必存在,但不一定等于极限值

(C )()f x 在0x 的函数值可以不存在 (D )如果0()f x 存在则必等于极限值 29、如果0

lim ()x x f x →+

与0

lim ()x x f x →-

存在,则( C ).

(A )0

lim ()x x

f x →存在且00

lim ()()x x

f x f x →=

(B )0

lim ()x x

f x →存在但不一定有00

lim ()()x x

f x f x →=

(C )0

lim ()x x

f x →不一定存在

(D )0

lim ()x x

f x →一定不存在

30、无穷小量是( C ).

(A )比0稍大一点的一个数 (B )一个很小很小的数 (C )以0为极限的一个变量 (D )0数 31、无穷大量与有界量的关系是( B ).

(A )无穷大量可能是有界量 (B )无穷大量一定不是有界量 (C )有界量可能是无穷大量 (D )不是有界量就一定是无穷大量 32、指出下列函数中当0x +

→时( D )为无穷大量.

(A )21x

-- (B )sin 1sec x x

+ (C )x

e - (D )1

x e

33、当x →0时,下列变量中( B )是无穷小量。

x x sin .A

x e 1.B - x x x .C 2

- x )x 1ln(.D +

34、下列变量中( D )是无穷小量。

0) (x e .A x

1-→

0)

(x x 1

sin

.B → )3 (x 9x 3x .C 2→-- )1x (x ln .D →

35、=∞→x

x

x 2sin lim

( B )

A.1

B.0

C.1/2

D.2

26、下列极限计算正确的是(B )

e x 11lim .A x

0x =??? ??+→ 1x 1sin x lim .B x =∞→ 1x 1sin x lim .C 0x =→ 1x x sin lim .D x =∞→

37、下列极限计算正确的是( C )

1x x sin lim .A x =∞→ e x 11lim .B x

0x =??? ??+→ 5126x x 8x lim .C 232x =-+-→ 1x x lim .D 0x =→

A. f(x)在x=0处连续

B. f(x)在x=0处不连续,但有极限

C. f(x)在x=0处无极限

D. f(x)在x=0处连续,但无极限 39、若0

lim ()0x x

f x →=,则( C ).

(A )当()g x 为任意函数时,才有0

lim ()()0x x

f x

g x →=成立

(B )仅当0

lim ()0x x

g x →=时,才有0

lim ()()0x x

f x

g x →=成立

(C )当()g x 为有界时,有0

lim ()()0x x

f x

g x →=成立

(D )仅当()g x 为常数时,才能使0

lim ()()0x x

f x

g x →=成立

40、设0

lim ()x x

f x →及0

lim ()x x

g x →都不存在,则( D ).

(A )0

lim[()()]x x

f x

g x →+及0

lim[()()]x x

f x

g x →-一定都不存在

(B )0

lim[()()]x x

f x

g x →+及0

lim[()()]x x

f x

g x →-一定都存在

)

( , 0 x 1 x 2 0 x 1 x ) x ( f . 38、 2 A 则下列结论正确的是 设 ?

? ? ≥ + < + =

(C )0

lim[()()]x x

f x

g x →+及0

lim[()()]x x

f x

g x →-中恰有一个存在,而另一个不存在

(D )0

lim[()()]x x

f x

g x →+及0

lim[()()]x x

f x

g x →-有可能都存在

41、22212lim(

)n n n n n →∞+++=L ( C ). (A )22212lim lim lim 0000n n n n

n n n →∞→∞→∞+++=+++=L L

(B )212lim n n

n

→∞+++=∞L (C )2

(1)12lim 2

n n n

n →∞+= (D )极限不存在 42、201sin

lim

sin x x x x

→的值为( D ). (A )1 (B )∞ (C )不存在 (D )0

43、1

lim sin x x x

→∞=( C ).

(A )∞ (B )不存在 (C )1 (D )0

44、221sin (1)

lim

(1)(2)

x x x x →-=++( C ). (A )13 (B )13- (C )0 (D )23

45、21lim(1)

x

x x

→∞

-=( A ).

(A )2

e - (B )∞ (C )0 (D )

12

46、无穷多个无穷小量之和( D ).

(A )必是无穷小量 (B )必是无穷大量

(C )必是有界量 (D )是无穷小,或是无穷大,或有可能是有界量 47、两个无穷小量α与β之积αβ仍是无穷小量,且与α或β相比( A ).

(A )是高阶无穷小 (B )是同阶无穷小

(C )可能是高阶无穷小,也可能是同阶无穷小 (D )与阶数较高的那个同阶

48、设1

sin

0()3

0x x f x x a

x ?≠?=??=?,要使()f x 在(,)-∞+∞处连续,则a =( C ). (A )0 (B )1 (C )1/3 (D )3

49、点1x =是函数311()1131x x f x x x x -

==??->?

的( B ).

(A )连续点 (B )第一类非可去间断点 (C )可去间断点 (D )第二类间断点 50*、方程4

10x

x --=至少有一个根的区间是( D ).

(A )(0,1/2) (B )(1/2,1) (C ) (2,3) (D )(1,2)

三、计算解答 1、计算下列极限 (1

)解:

lim lim

1x x →+∞

==;

(2)解:2

12lim sin cos 1lim sin cos sin 1lim cot csc lim 22

0000==-=-

==→→→→x x x x x x x x x x x x x x x x (3)解:11

lim )1(lim 1

=?

=-∞→∞

→x

x e x x x

x 。; (4)解:21

3211

2

2

22122lim lim 1lim 1212121x x

x x x x x x e e x x x -?+++→∞→∞

→∞

+???

??

?=+=+= ? ? ?---????

??

(5)解:)1)(cos 1cos 2()

1cos 4)(1cos 2(lim 1cos cos 21cos 2cos 8lim 3

223

+-+-=-+--→

→x x x x x x x x x x ππ

212

112141

cos 1

cos 4lim 3

=++?

=

++=→

x x x π

(6)解:)cos sin 1(tan cos sin 1lim

tan cos sin 1lim

00

x x x x x x

x x x x x x x x x ++-+=-+→→ 202020

2cos 1lim 2sin lim 2cos 1sin lim

x x x x x x x x x x x x -+=-+=→→→4

34121=+=。 (7);解:])1(1321211[

lim +++?+?∞

→n n x Λ)]1

1

1()3121()211[(lim +-++-+-=∞→n n x Λ

1)1

1

1(lim =+-

=∞

→n x

(8)。解:331

2323

2323241

)21(lim 42lim 4arctan )

21ln(lim =

+=--=--+→→→x x

x

x x x x x (9

)解:4

443

x x →→==)) (10)解:102020

3030(2)(31)3lim

(23)2

x x x x →∞-+=+

3*、试确定b a ,之值,使21

11lim 2=???

? ??--+++∞→b ax x x x 。 解:1

)(1lim )11(lim 222+-+--+=--+++∞→+∞→x b

x b a ax x b ax x x x x Θ

2

11)1()()1(lim 2=+-++--=+∞→x b x b a x a x ?????=+-=-∴21)(01b a a ???

???-==231b a 。

4*、利用极限存在准则求极限

(1)n n n n 1

3121111131211lim ++++++++++

∞→ΛΛ。 .Θ1111211111312111++<+++++++++<

n n

n n ΛΛ 而 1111lim =+++∞→n x 11

3121111131211lim =++++++

++++∴+∞→n

n n x ΛΛ

(2)设01>>a x ,且),2,1(1Λ==+n ax x n n ,证明n n x →∞

lim 存在,并求此极限值。

先证有界(数学归纳法)

1=n 时,a a a ax x =?>=12

设k n =时,a x k >, 则 a a ax x k k =>=

+21

数列}{n x 有下界, 再证}{n x 单调减,

11<==+n

n

n n n x a

x ax x x Θ

且 0>n x n n x x <∴+1即}{n x 单调减,n n x ∞

→∴lim 存在,设A x n n =∞

→lim ,

则有 aA A =

?0=A (舍)或a A =,a x n n =∴∞

→lim

5*、讨论函数x

x x

x n n n n n x f --∞→+-=lim )(的连续性,若有间断点,指出其类型。

解:先求极限 得 0

001

01

11lim )(22<=>?

??

??-=+-=∞→x x x n n x f x

x

n 而 1)(lim 0

=+→x f x 1)(lim 0

-=-→x f x 0)0(=f

)(x f ∴的连续区间为),0()0,(+∞-∞Y

0=x 为跳跃间断点.。

6*、设)(x f 在],[b a 上连续,且b x f a <<)(,证明在),(b a 内至少有一点ξ,使ξξ=)(f 。 解:令x x f x F -=)()(, 则 )(x F 在 ],[b a 上连续

而0)()(>-=a a f a F 0)()(<-=b b f b F

由零点定理,),(b a ∈?ξ使0)(=ξF 即 0)(=-ξξf ,亦即 ξξ=)(f 。

函数与数列的极限的强化练习题答案(含详细分析)

第一讲:函数与数列的极限的强化练习题答案 一、单项选择题 1.下面函数与y x =为同一函数的是() 2 .A y= .B y= ln .x C y e =.ln x D y e = 解:ln ln x y e x e x === Q,且定义域 () , -∞+∞,∴选D 2.已知?是f的反函数,则() 2 f x的反函 数是() () 1 . 2 A y x ? =() .2 B y x ? = () 1 .2 2 C y x ? =() .22 D y x ? = 解:令() 2, y f x =反解出x:() 1 , 2 x y =?互 换x,y位置得反函数() 1 2 y x =?,选A 3.设() f x在() , -∞+∞有定义,则下列函数 为奇函数的是() ()() .A y f x f x =+- ()() .B y x f x f x =-- ?? ?? () 32 .C y x f x = ()() .D y f x f x =-? 解:() 32 y x f x = Q的定义域() , -∞+∞且 ()()()()() 3232 y x x f x x f x y x -=-=-=- ∴选C 4.下列函数在() , -∞+∞内无界的是() 2 1 . 1 A y x = + .arctan B y x = .sin cos C y x x =+.sin D y x x = 解: 排除法:A 2 1 122 x x x x ≤= + 有界, B arctan 2 x π <有界, C sin cos x x +≤ 故选D 5.数列{}n x有界是lim n n x →∞ 存在的() A 必要条件 B 充分条件 C 充分必要条件 D 无关条件 解:Q{}n x收敛时,数列n x有界(即 n x M ≤),反之不成立,(如() {}11n--有界, 但不收敛, 选A 6.当n→∞时,2 1 sin n 与 1 k n 为等价无穷小, 则k= () A 1 2 B 1 C 2 D -2 解:Q 2 2 11 sin lim lim1 11 n n k k n n n n →∞→∞ ==,2 k=选C 二、填空题(每小题4分,共24分) 7.设() 1 1 f x x = + ,则() f f x ?? ??的定义域 为

高等数学函数的极限与连续习题及答案

1、函数 ()12 ++=x x x f 与函数()11 3--=x x x g 相同. 错误 ∵当两个函数的定义域和函数关系相同时,则这两个函数是相同的。 ∴ ()12 ++=x x x f 与()113--=x x x g 函数关系相同,但定义域不同,所以()x f 与() x g 是不同的函数。 2、如果()M x f >(M 为一个常数),则()x f 为无穷大. 错误 根据无穷大的定义,此题是错误的。 3、如果数列有界,则极限存在. 错误 如:数列()n n x 1-=是有界数列,但极限不存在 4、a a n n =∞ →lim ,a a n n =∞ →lim . 错误 如:数列()n n a 1-=,1) 1(lim =-∞ →n n ,但n n )1(lim -∞ →不存在。 5、如果()A x f x =∞ →lim ,则()α+=A x f (当∞→x 时,α为无穷小). 正确 根据函数、极限值、无穷小量的关系,此题是正确的。 6、如果α~β,则()α=β-αo . 正确 ∵1lim =α β ,是 ∴01lim lim =?? ? ??-=-αβαβα,即βα-是α的高阶无穷小量。 7、当0→x 时,x cos 1-与2 x 是同阶无穷小. 正确 ∵2122sin 412lim 2sin 2lim cos 1lim 2 02 2020=????? ? ????==-→→→x x x x x x x x x 8、 01 sin lim lim 1sin lim 000=?=→→→x x x x x x x . 错误 ∵x x 1 sin lim 0→不存在,∴不可利用两个函数乘积求极限的法则计算。 9、 e x x x =?? ? ??+→11lim 0 . 错误 ∵e x x x =?? ? ??+∞ →11lim 10、点0=x 是函数x x y =的无穷间断点. 错误 =-→x x x 00lim 1lim 00-=--→x x x ,=+→x x x 00lim 1lim 00=+→x x x ∴点0=x 是函数x x y =的第一类间断点. 11、函数()x f x 1 =必在闭区间[]b a ,内取得最大值、最小值.

医用高等数学题库复习课程

医用高等数学题库 第一章函数与极限 1.设,求,并作出函数的图形。 2.设,,求,并作出这两个函数的图形。 3.设,求。 4.试证下列函数在指定区间内的单调性: (1) (2) 5.下列函数中哪些是是周期函数?对于周期函数,指出其周期: (1) (2) 6.设。试求下列复合函数,并指出x的取值范围。 7.已知对一切实数x均有,且f(x)为单调增函数,试证:

8.计算下列极限: (1) (2) (3) 9.(1)设,求常数a,b。 (2)已知,求a,b。10.计算下列极限: (1) (2)(x为不等于零的常数) (3) (4) (5)(k为正整数) 11.计算下列极限:

(1) (2) (3) (4)(k为常数) (5) (6) (7) (8)(a>0,b>0,c>0)(9) (10) (11) (12)

(13)(14)(15)(16)(17)(18)(19)(20)(21)(22)(23)

(24) 12.当时,无穷小1-x和(1)(2)是否同阶?是否等价? 13.证明:当时,有(1)(2) 14.利用等价无穷小的性质求下列极限: (1)(n,m为正整数) (2) 15.试确定常数a,使下列各函数的极限存在: (1) (2) 16.讨论下列函数的连续性:

(1)的连续性 (2)在x=0处的连续性 17.设函数在[0,2a]上连续,,试证方程在[0,a]内至少存在一个实根。 18.设函数在开区间(a,b)内连续,,试证:在开区间(a,b)内至少有一点c,使得(其中)。 第二章导数与微分 1.讨论下列函数在x=0处的连续性与可导性: (1) (2) 2.设存在,求 3.设,问a,b为何值时,在x=0处可导? 4.已知,求及,并问:是否存在?

函数与极限习题与答案计算题(供参考)

高等数学 二、计算题(共 200 小题,) 1、设x x x f +=12)(,求)(x f 的定义域及值域。 2、设x x x f -+= 11)(,确定)(x f 的定义域及值域。 3、设)ln(2)(22x x x x x f -+-= ,求)(x f 的定义域。 4、的定义域,求设)(sin 51 2arcsin )(x f x x x f π+-=。 5、的定义域,求设??? ??++-=x f x f x x x f 1)(22ln )(。 6、的定义域求函数22112arccos )(x x x x x f --++=。 7、设)(x f 的定义域为[) )()()(m x f m x f x F b a ++-=,.,)0(++=。 19、及其定义域,求, 设)(02)(ln 2x f x x x x f +∞<<+-=。

定义证明二重极限_1

定义证明二重极限 定义证明二重极限就是说当点(x,y)落在以(x0,y0)点附近的一个小圈圈内的时候,f(x,y)与A的差的绝对值会灰常灰常的接近。那么就说f(x,y)在(x0,y0)点的极限为A关于二重极限的定义,各类数学教材中有各种不同的表述,归纳起来主要有以下三种:定义1设函数在点的某一邻域内有定义(点可以除外),如果对于任意给定的正数。,总存在正数,使得对于所论邻域内适合不等式的一切点P(X,y)所对应的函数值都满足不等式那末,常数A就称为函数当时的极限.定义2设函数的定义域为是平面上一点,函数在点儿的任一邻域中除见外,总有异于凡的属于D的点,若对于任意给定的正数。,总存在正数a,使得对D内适合不等式0户几卜8的一切点P,有不等式V(P)一周。成立,则称A为函数人P)当P~P。时的极限.定义3设函数X一人工,”的定义域为D,点产人工。,人)是D的聚点,如果对于任意给定的正数。,总存在正数8,使得对于适合不等式的一切点P(X,…ED,都有成立,则称A为函数当时的极限.以上三种定义的差异主要在于对函数的前提假设不尽相同.定义1要求人X,…在点P 入x。,汕)的某去心邻域内有定义,而定义2允许人工,y)在点P。(X。,入)的任一去心邻域内都有使人X,y)无定义的点,相应地,定义I要求见的去心邻域内的点P都适合/(P)一A卜利用极限存在准则证明:(1)当x趋近于正无穷时,(Inx/x^2)的极限为0;(2)证明数列{Xn},其中a0,Xo0,Xn=[(Xn-1) (a/Xn-1)]/2,n=1,2,…收敛,并求其极限。1)用夹逼准则:x大于1时,lnx0,x^20,故lnx/x^20且lnx1),lnx/x^2(x-1)/x^2.而(x-1)/x^2极限为0故(Inx/x^2)的极限为02)用单调有界数列收敛:分三种情况,x0=√a时,显然极限为√ax0√a时,Xn-X(n-1)=[-(Xn-1) (a/Xn-1)]/20,单调递减且Xn=[(Xn-1) (a/Xn-1)]/2√a,√a为数列下界,则极限存在.设数列极限为A,Xn和X(n-1)极限都为A.对原始两边求极限得A=[A (a/A)]/2.解得A=√a同理可求x0√a时,极限亦为√a综上,数列极限存在,且为√(一)时函数的极限:以时和为例引入.介绍符号: 的意义, 的直观意义.定义( 和. )几何意义介绍邻域其中为充分大的正数.然后用这些邻域语言介绍几何意义.例1验证例2验证例3验证证……(二)时函数的极限:由考虑时的极限引入.定义函数极限的“ ”定义.几何意义.用定义验证函数极限的基本思路.例4 验证例5 验证例6验证证由=为使需有为使需有于是, 倘限制, 就有例7验证例8验证( 类似有(三)单侧极限:1.定义:单侧极限的定义及记法.几何意义: 介绍半邻域然后介绍等的几何意义.例9验证证考虑使的2.单侧极限与双侧极限的关系:Th类似有: 例10证明: 极限不存在.例11设函数在点的某邻域内单调. 若存在, 则有= §2 函数极限的性质(3学时)教学目的:使学生掌握函数极限的基本性质。教学要求:掌握函数极限的基本性质:唯一性、局部保号性、不等式性质以及有理运算性等。教学重点:函数极限的性质及其计算。教学难点:函数极限性质证明及其应用。教学方法:讲练结合。一、组织教学:我们引进了六种极限: , .以下以极限为例讨论性质. 均给出证明或简证.二、讲授新课:(一)函数极限的性质:以下性质均以定理形式给出.1.唯一性:2.局部有界性:3.局部保号性:4.单调性( 不等式性质):Th 4若和都存在, 且存在点的空心邻域,使,都有证设= ( 现证对有)註:若在Th 4的条件中, 改“ ”为“ ”, 未必就有以举例说明.5.迫敛性:6.四则运算性质:( 只证“ ”和“ ”)(二)利用极限性质求极限:已证明过以下几个极限:(注意前四个极限中极限就是函数值)这些极限可作为公式用. 在计算一些简单极限时, 有五组基本极限作为公式用,我们将陆续证明这些公式.利用极限性质,特别是运算性质求极限的原理是:通过有关性质, 把所求极限化为基本极限,代入基本极限的值, 即计算得所求极限.例1( 利用极限和)例2例3註:关于的有理分式当时的极限.例4 [ 利用公式]例5例6例7

函数极限的十种求法

函数极限的十种求法 信科2班江星雨20140202250 函数极限可以分成而运用ε-δ定义更多的见诸于已知极限值的证明题中。掌握这类证明对初学者深刻理解运用极限定义大有裨益。以的极限为例,f(x) 在点以A为极限的定义是:对于任意给定的正数ε(无论它多么小),总存在正数,使得当x满足不等式时,对应的f(x)函数值都满足不等式:,那么常数A就叫做函数f(x)当x→x。时的极限。 1.利用极限的四则运算法则: 极限四则运算法则的条件是充分而非必要的,因此,利用极限四则运算法则求函数极限时,必须对所给的函数逐一进行验证它是否满足极限四则运算法则条件,满足条件者。方能利用极限四则运算法则进行求之。不满足条件者,不能直接利用极限四则运算法则求之。但是,井非不满足极限四则运算法则条件的函数就没有极限,而是需将函数进行恒等变形,使其符合条件后,再利用极限四则运算法则求之。而对函数进行恒等变形时,通常运用一些技巧如拆项、分子分母同时约去零因子、分子分母有理化、通分、变量替换等等。例 1 求lim( x 2 ? 3x + 5). x→ 2 解:lim( x 2 ? 3x + 5) = lim x 2 ? lim 3x + lim 5 = (lim x) 2 ? 3 lim x + lim 5 = 2 2 ? 3 ? 2 + 5 = 3. x→2 x →2 x →2 x →2 x →2 x →2 x →2 2.利用洛必达法则 洛必达(L 'Hopital)法则是在一定条件下通过分子分母分别求导再求极限来确定未定式值的方法.简单讲就是,在求一个含分式的函数的极限时,分别对分子和分母求导,在求极限,和原函数的极限是一样的。一般用在求导后为零比零或无穷比无穷的类型。 利用洛必达求极限应注意以下几点: 设函数f(x)和F(x)满足下列条件: (1)x→a时,lim f(x)=0,lim F(x)=0; (2)在点a的某去心邻域内f(x)与F(x)都可导,且F(x)的导数不等于0; (3)x→a时,lim(f'(x)/F'(x))存在或为无穷大 则x→a时,lim(f(x)/F(x))=lim(f'(x)/F'(x)) 例1: 1-cosx = 1-{1-2[sin(x/2)]^2} = 2[sin(x/2)]^2 xsinx = 2xsin(x/2)cos(x/2) 原式= lim 2[sin(x/2)]^2 / [2xsin(x/2)cos(x/2)] = tgx / x 对分子分母同时求导(洛必达法则) (tgx)' = 1 / (cosx)^2 (x)' = 1 原式= lim 1/(cosx)^2 当x --> 0 时,cosx ---> 1 原式= 1 3.利用两个重要极限: 应用第一重要极限时,必须同时满足两个条件: ①分子、分母为无穷小,即极限为0 ; ②分子上取正弦的角必须与分母一样。 应用第二重要极限时,必须同时满足四个条件:

高等数学函数极限练习题

设 f ( x ) 2 x , 求 f ( x ) 的 定 义 域 及 值 域 。 1 x 设 f ( x) 对一切实数 x 1, x 2 成立 f ( x 1 x 2 ) f ( x 1 ) f ( x 2 ),且 f (0 ) 0, f (1) a , 求 f (0 )及 f ( n).(n 为正整数 ) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 f ( x) 表 示 将 x 之 值 保 留 二 位小数,小数第 3 位起以后所有数全部舍去,试用 表 示 f ( x) 。 I ( x) 定 义 函 数 I ( x) 表 示 不 超 过 x 的 最 大 整 数 叫 做 x 的 取 整 函 数 ,若 g ( x) 表 示 将 x 依 4 舍 5 入 法 则 保 留 2 位 小 数 , 试 用 I ( x) 表 示 g ( x) 。 在某零售报摊上每份报纸的进价为 0.25 元,而零售价为 0.40 元,并且如果报纸当天未售 出 不 能 退 给 报 社 ,只 好 亏 本 。若 每 天 进 报 纸 t 份 ,而 销 售 量 为 x 份 ,试 将 报 摊 的 利 润 y 表 示 为 x 的函数。 定义函数 I ( x)表示不超过 x 的最大整数叫做 x 的取整函数,试判定 ( x) x I ( x )的周期性。 判定函数 x x ln( 1 x x )的奇偶性。 f ( x ) ( e 1) 设 f ( x ) e x sin x , 问 在 0 , 上 f ( x ) 是 否 有 界 ? 函 数 y f ( x ) 的 图 形 是 图 中 所 示 的 折 线 O BA , 写 出 y f ( x) 的 表 达 式 。 x 2 , 0 x ; x , x ; 设 f ( x) 2 ( x) 0 4 求 f ( x ) 及f ( x ) . x x 4 x x , . , . 2 2 2 4 6 设 f ( x ) 1, x 0 ; ( x ) 2 x 1, 求 f ( x ) 及 f ( x) . 1 , x 0 . e x , x ; 0 , x 0 ; 设 f ( x ) 求 f ( x )的反函数 g ( x ) 及 f ( x ) . x x ( x) x 2, x 0 , . . 1 x ) , ( x ) x , x 0 ; 求 f ( x ) . 设 f ( x )( x x 2 , x 2 0 . 2 x , x 0 ; 求 f f ( x ) 设 f ( x ) x 0. . 2 , 0 , x ; x , x ; ( x ) 求 f ( x) ( x ). 设 f ( x ) x , x 0 . x , x . 1

高等数学(同济五版)第一章 函数与极限知识点

第一章函数与极限 一、对于函数概念要注意以下几点: (1) 函数概念的本质特征是确定函数的两个要素:定义域和对应法则。定义域是自变量和因变量能相互联系构成函数关系的条件,无此条件,函数就没意义。对应法则是正确理解函数概念的关键。函数关系不同于一般的依赖关系,“y是x的函数”并不意味着y随x的变化而变化。函数关系也不同于因果关系。例如一昼夜的气温变化与时间变化是函数关系,但时间变化并不是气温变化的实际原因。y=f(x)中的“f”表示从x到y的对应法则,“f”是一个记号,不是一个数,不能把f(x)看作f乘以x。如果函数是用公式给出的,则“f”表示公式里的全部运算。 (2) 函数与函数表达式不同。函数表达式是表示函数的一种形式,表示函数还可以用其他的形式,不要以为函数就是式子。 (3) f(x)与f(a)是有区别的。f(x)是函数的记号,f(a)是函数值的记号,是f(x)当x=a时的函数值。 (4)两个函数,当其定义域相同,对应法则一样时,此二函数才是相同的。 二、函数的有界性、单调性、周期性和奇偶性: 对函数的有界性、单调性、周期性和奇偶性的学习应注意以下几点: (1) 并不是函数都具有这些特性,而是在研究函数时,常要研究函数是否具有这些特性。 (2) 函数是否“有界”或“单调”,与所论区间有关系。 (3) 具有奇、偶性的函数,其定义域是关于原点对称的。如果f(x)是奇函数,则f(0)=0。存在着既是奇函数,又是偶函数的函数,例f(x)=0。f(x)+f(-x)=0是判别f(x)是否为奇函数的有效方法。 (4) 周期函数的周期通常是指其最小正周期,但不是任何周期函数都有最小周期。

两个重要极限的证明

两个重要极限的证明第六节极限存在准则、两个重要极限 教学目的:1 使学生掌握极限存在的两个准则;并会利用它们求极限; 2使学生掌握利用两个重要极限求极限的方法; 教学重点:利用两个重要极限求极限 教学过程: 一、讲授新课: 准则I:如果数列满足下列条件: (i)对 ; (ii) 那么,数列的极限存在,且。 证明:因为,所以对,当时,有,即 ,对,当时,有,即,又因为,所以当时,有, 即有:,即,所以。 准则I′如果函数满足下列条件: (i)当时,有。 (ii)当时,有。 那么当时,的极限存在,且等于。 第一个重要极限: 作为准则I′的应用,下面将证明第一个重要极限:。 证明:作单位圆,如下图: 设为圆心角,并设见图不难发现:,即:,即, (因为,所以上不等式不改变方向) 当改变符号时,及1的值均不变,故对满足的一切 ,有。 又因为, 所以而,证毕。 【例1】。 【例2】。 【例3】。 【例4】。 准则Ⅱ:单调有界数列必有极限 如果数列满足:,就称之为单调增加数列;若满足:,就称之为单调减少数列;同理亦有严格单增或单减,以上通称为单减数列和严格单减数列。 如果,使得:,就称数列为有上界;若,使得:,就称有下界。 准则Ⅱ′:单调上升,且有上界的数列必有极限。 准则Ⅱ″: 单调下降,且有下界的数列必有极限。 注1:由前已知,有界数列未必有极限,若加单调性,就有极限。 2:准则Ⅱ,Ⅱ′,Ⅱ″可推广到函数情形中去,在此不一一陈述了。 第二个重要极限: 作为准则Ⅱ的一个应用,下面来证明极限是不存在的。 先考虑取正整数时的情形:对于,有不等式:,即:, 即: (i)现令,显然,因为将其代入,所以,所以为单调数列。 (ii)又令,所以, 即对,又对所以{ }是有界的。 由准则Ⅱ或Ⅱ′知存在,并使用来表示,即

高等数学1.3-函数的极限

第三节 函数的极限(一) 教学目的:(1)理解函数极限和左、右极限的概念; (2)理解无穷小概念,掌握其性质 教学重点:函数极限的概念,无穷小概念 教学难点:函数极限的概念的理解与应用 教学方法:讲授法 教学时数:2课时 本节我们将数列极限的概念推广到一元实值函数,然后研究函数极限的性质及其运算法则. 一、函数极限的概念 1.自变量x 趋于无穷大时函数的极限 1)+∞→x 时的极限: +∞→x 读作“x 趋于正无穷大”,表示x 无限增加,0x > . 例:对于x x f 1)(= ,当自变量+∞→x 时,x x f 1 )(=与常数0无限接近 . 复习数列极限的定义:数列{}n x 以a 为极限即a x n n =∞ →lim ? 0>?ε,N ?,N n >时,ε<-a x n . 令()n f x n =,则()?=∞ →a n f n lim 0>?ε,N ?,当N n >时,()ε<-a n f .将n 换成连续变量x ,将a 改记为A ,就可以得到x →+∞时,()A x f →的极限的定义及其数学上的精确描述 . 定义3.1:设函数)(x f 在),(+∞a 内有定义,,A ∈若0>?ε,0X ?>,当x X >时,有()ε<-A x f ,则称数A 为函数()x f 当x →+∞时的极限,记作()lim x f x A →+∞ =, 或()A x f →,(x →+∞) . 几何意义:对任意给定的0ε>,在轴上存在一点X ,使得函数的图象 {(,)|(),(,)}x y y f x x a =∈+∞在X 右边的部分位于平面带形),(),(εε+-?+∞A A X 内 . 2)x →-∞时的极限: x →-∞读作“x 趋于负无穷大”,表示x 无限增加,0x < . 定义:设函数)(x f 在),(a -∞内有定义,,A ∈若0>?ε,0X ?>,当x X <-时,有()ε<-A x f ,则称数A 为函数()x f 当x →-∞时的极限,记作()lim x f x A →-∞ =

函数与极限测试题及答案(一)

函数与极限测试题(一) 一、 填空题 1、若1ln 1 1ln x f x x +??= ?-??,则()f x =_____。 2、函数()f x 的定义域为[],a b ,则()21f x -的定义域为_____。 3、若0x →时,无穷小2 21ln 1x x -+与2sin a 等价,则常数a =_____。 4、设()()2 1lim 1 n n x f x nx →∞ -=+,则()f x 的间断点为x =_____。 二、 单选题 1、当0x →时,变量 2 11 sin x x 是( ) A 、无穷小 B 、无穷大 C 、有界的,但不是无穷小 D 、无界的,也不是无穷大 2、设函数()bx x f x a e =+在(),-∞+∞上连续,且()lim 0x f x →-∞=,则常数,a b 满足( ) A 、0,0a b << B 、0,0a b >> C 、0,0a b ≥< D 、0,0a b ≤> 3、设()232x x f x =+-,则当0x →时( ) A 、()f x 与x 是等价无穷小 B 、()f x 与x 是同阶但非等价无穷小 C 、()f x 是x 的高阶无穷小 D 、()f x 是x 的低阶无穷小 4、设对任意的x ,总有()()()x f x g x ?≤≤,且()()lim 0x g x x ?→∞ -=????, 则()lim x f x →∞ 为( ) A 、存在且等于零 B 、存在但不一定等于零 C 、一定不存在 D 、不一定存在

例:()()()11 ,,22 1 x x f x x g x x x x ?==+ =+ ++ 三、 求下列极限 1 、 lim x 2、()2 21212lim 1x x x x x -→?? ?+?? 四、 确定,a b 的值,使() 32 2ln 10 011ln 0 1ax x f x b x x x x x x x ?+<==??-+?>++?? 在(),-∞+∞内连续。 五、 指出函数()1 11x x x e e f x e e --= -的间断点及其类型。 六、 设1234,,,a a a a 为正常数,证明方程 31240123 a a a a x x x x +++=---有且仅有三个实根。 七、 设函数()(),f x g x 在[],a b 上连续,且满足()()()(),f a g a f b g b ≤≥,证明: 在[],a b 内至少存在一点ξ,使得()()f g ξξ=。 函数与极限测试题答案(一) 一、1、 11x x e -+; 2、 11, 2 2a b ++?? ???? ; 3、 4-; 4、0 ; 二、1—4、DCBD 三、1 、解:原式lim 3x ==;

二元函数极限证明

二元函数极限证明 设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:’ (1)两个二次极限都不存在而二重极限仍有可能存在 (2)两个二次极限存在而不相等 (3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0) 根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有|f(x)-a|<ε 而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ) 又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1 再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。

1,y以y=x^2-x的路径趋于0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。 4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 显然有y->0,f->(x^2/|x|)*sin(1/x)存在 当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在 而当x->0,y->0时 由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|) 而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2 所以|f|<=|x|+|y| 所以显然当x->0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 5

函数与极限习题与答案

第一章 函数与极限 (A ) 一、填空题 1、设x x x f lg lg 2)(+-= ,其定义域为 。 2、设)1ln()(+=x x f ,其定义域为 。 3、设)3arcsin()(-=x x f ,其定义域为 。 4、设)(x f 的定义域是[0,1],则)(sin x f 的定义域为 。 5、设)(x f y =的定义域是[0,2] ,则)(2x f y =的定义域为 。 6、43 2lim 23=-+-→x k x x x ,则k= 。 7、函数x x y sin = 有间断点 ,其中 为其可去间断点。 8、若当0≠x 时 ,x x x f 2sin )(= ,且0)(=x x f 在处连续 ,则=)0(f 。 9、=++++++∞→)21(lim 222 n n n n n n n n 。 10、函数)(x f 在0x 处连续是)(x f 在0x 连续的 条件。 11、=++++∞→352352) 23)(1(lim x x x x x x 。 12、3) 2 1(lim -∞ →=+e n kn n ,则k= 。 13、函数2 31 22+--=x x x y 的间断点是 。 14、当+∞→x 时, x 1 是比3-+x 15、当0→x 时,无穷小x --11与x 相比较是 无穷小。 16、函数x e y 1=在x=0处是第 类间断点。 17、设1 1 3 --= x x y ,则x=1为y 的 间断点。 18、已知33=?? ? ??πf ,则当a 为 时,函数x x a x f 3sin 31sin )(+=在3π=x 处连续。

19、设?? ???>+<=0)1(02sin )(1x ax x x x x f x 若)(lim 0 x f x →存在 ,则a= 。 20、曲线2sin 2 -+=x x x y 水平渐近线方程是 。 21、1 14)(2 2-+ -= x x x f 的连续区间为 。 22、设?? ?>≤+=0 ,cos 0 ,)(x x x a x x f 在0=x 连续 ,则常数 a= 。 二、计算题 1、求下列函数定义域 (1)2 11 x y -= ; (2)x y sin = ; (3)x e y 1= ; 2、函数)(x f 和)(x g 是否相同?为什么? (1)x x g x x f ln 2)(,ln )(2 == ; (2)2)(,)(x x g x x f = = ; (3)x x x g x f 22tan sec )(, 1)(-== ; 3、判定函数的奇偶性 (1))1(2 2 x x y -= ; (2)3 2 3x x y -= ;

考研数学高数公式:函数与极限解读

考研数学高数公式:函数与极限 第一章:函数与极限 第一节:函数 函数属于初等数学的预备知识,在高数的学习中起到铺垫作用,直接考察的内容比较少,但是如果这章节有所缺陷对以后的学习都会有所影响。 基础阶段: 1.理解函数的概念,能在实际问题的背景下建立函数关系; 2.掌握并会计算函数的定义域、值域和解析式; 3.了解并会判断函数的有界性、单调性、周期性、奇偶性等性质; 4.理解复合函数和反函数的概念,并会应用它们解决相关的问题; 强化阶段: 1.了解函数的不同表现形式:显式表示,隐式表示,参数式,分段表示; 2.掌握基本初等函数的性质及其图形,了解初等函数的概念。 冲刺阶段: 1.综合应用函数解决相关的问题; 2.掌握特殊形式的函数(含极限的函数,导函数,变上限积分,并会讨论它们的相关性质。 第二节:极限

极限可以说是高等数学的基础,极限的计算也是高等数学中最基本的运算。在考试大纲中明确要求考生熟练掌握的基本技能之一。虽在考试中站的分值不大。但是在其他的试题中得到广泛应用。因此这部分学习直接营销到整个学科的复习结果 基础阶段 1.了解极限的概念及其主要的性质。 2.会计算一些简单的极限。 3.了解无穷大量与无穷小量的关系,了解无穷小量的比较方法,记住常见的等价无穷小量。 强化阶段: 1.理解极限的概念,理解函数左右极限的概念及其与极限的关系(数一数二/了解数列 极限和函数极限的概念(数三; ▲2.掌握计算极限的常用方法及理论(极限的性质,极限的四则运算法则,极限存在的两个准则,两个重要极限,等价无穷小替换,洛必达法则,泰勒公式; 3.会解决与极限的计算相关的问题(确定极限中的参数; 4.理解无穷大量和无穷小量的概念及相互关系,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用(数一数二/理解无穷小量的概念,会进行无穷小量的比较,记住常见的等价无穷小量并能在计算极限时加以应用,了解无穷大量的概念及其与无穷小量的关系(数三。 冲刺阶段: 深入理解极限理论在微积分中的中心地位,理解高等数学中其它运算(求导,求积分与极限之间的关系,建立完整的理论体系。

关于函数极限如何证明

关于函数极限如何证明 函数极限的性质是怎么一回事呢?这类的性质该怎么证明呢?下面就是学习啦给大家的函数极限的性质证明内容,希望大家喜欢。 X1=2,Xn+1=2+1/Xn,证明Xn的极限存在,并求该极限求极限我会 |Xn+1-A| 以此类推,改变数列下标可得|Xn-A| |Xn-1-A| …… |X2-A| 向上迭代,可以得到|Xn+1-A| 只要证明{x(n)}单调增加有上界就可以了。 用数学归纳法: ①证明{x(n)}单调增加。 x(2)=√[2+3x(1)]=√5>x(1); 设x(k+1)>x(k),则 x(k+2)-x(k+1))=√[2+3x(k+1)]-√[2+3x(k)](分子有理化) =[x(k+1)-3x(k)]/【√[2+3x(k+1)]+√[2+3x(k)]】>0。 ②证明{x(n)}有上界。 x(1)=1<4, 设x(k)<4,则 x(k+1)=√[2+3x(k)]<√(2+3*4)<4。

当0 构造函数f(x)=x*a^x(0 令t=1/a,则:t>1、a=1/t 且,f(x)=x*(1/t)^x=x/t^x(t>1) 则: lim(x→+∞)f(x)=lim(x→+∞)x/t^x =lim(x→+∞)[x'/(t^x)'](分子分母分别求导) =lim(x→+∞)1/(t^x*lnt) =1/(+∞) =0 所以,对于数列n*a^n,其极限为0 3.根据数列极限的定义证明: (1)lim[1/(n的平方)]=0 n→∞ (2)lim[(3n+1)/(2n+1)]=3/2 n→∞ (3)lim[根号(n+1)-根号(n)]=0 n→∞ (4)lim0.999…9=1 n→∞n个9 5几道数列极限的证明题,帮个忙。。。Lim就省略不打了。。。 n/(n^2+1)=0

高等数学函数极限练习试题

设x x x f += 12)(,求)(x f 的定义域及值域。 ,,,且成立,对一切实数设a f f x f x f x x f x x x f =≠=+)1(0)0()()()()(212121)()()0(为正整数.及求n n f f 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x f 表示将x 之值保留二位小数,小数第3位起以后所有数全部舍去,试用)(x I 表示)(x f 。 定义函数)(x I 表示不超过x 的最大整数叫做x 的取整函数,若)(x g 表示将x 依4舍5入法则保留2位小数,试用)(x I 表示)(x g 。 在某零售报摊上每份报纸的进价为0.25元,而零售价为0.40元,并且如果报纸当天未售出不能退给报社,只好亏本。若每天进报纸t 份,而销售量为x 份,试将报摊的利润y 表示为x 的函数。 的取整函数,试判定的最大整数叫做表示不超过定义函数x x x I )(的周期性。)()(x I x x -=? 的奇偶性。 判定函数)1ln()1()(x x e x f x x -+?-=+ [ )设,问在,上是否有界?f x e x f x x ()sin ()=+∞0 函数的图形是图中所示的折线,写出的表达式。y f x OBA y f x ==()() ???≤≤-<≤=????≤≤+<≤=., ; ,.,;, 设64240)(42220)(2 x x x x x x x x x x f [][].及求)()(x f x f ?? [][]设,; ,. ,求及.f x x x x x f x f x ()()()()=-≤>???=-101021??? ???>-≤=????>≤-=. ,; ,., ;,设000)(00)(2 x x x x x x x e x f x [].及的反函数求)()()(x f x g x f ? []设,,;,.求.f x x x x x x x x f x ()()()()=+=<≥???1 2002?? []设,; , .求.f x x x x f f x ()()=+<≥???2020 .求.,; ,.,;,设)()( 111)(000)(x x f x x x x x x x x x f ?+? ??≥<+=????≥<=

二元函数极限证明

经典合同 二元函数极限证明姓名:XXX 日期:XX年X月X日

二元函数极限证明 目录 第一篇:二元函数极限证明 第二篇:二元函数的极限 第三篇:二元函数极限的研究 第四篇:二元函数的极限与连续 第五篇:函数极限的证明 正文 第一篇:二元函数极限证明 二元函数极限证明 设p=f(x,y),p0=(a,b),当p→p0时f(x,y)的极限是x,y同时趋向于a,b时所得到的称为二重极限。 此外,我们还要讨论x,y先后相继地趋于a,b时的极限,称为二次极限。 我们必须注意有以下几种情形:’ (1)两个二次极限都不存在而二重极限仍有可能存在 (2)两个二次极限存在而不相等 (3)两个二次极限存在且相等,但二重极限仍可能不存在 2 函数f(x)当x→x0时极限存在,不妨设:limf(x)=a(x→x0) 根据定义:对任意ε>0,存在δ>0,使当|x-x0|<δ时,有 |f(x)-a|<ε 而|x-x0|<δ即为x属于x0的某个邻域u(x0;δ) 第 2 页共 26 页

又因为ε有任意性,故可取ε=1,则有:|f(x)-a|<ε=1,即:a-1 再取m=max{|a-1|,|a+1|},则有:存在δ>0,当任意x属于x0的某个邻域u(x0;δ)时,有|f(x)| 证毕 3首先,我的方法不正规,其次,正确不正确有待考察。 1,y以y=x^2-x的路径趋于 0limitedsin(x+y)/x^2=limitedsinx^2/x^2=1而y=x的路径趋于0结果是无穷大。 2,3可以用类似的方法,貌似同济书上是这么说的,二元函数在该点极限存在,是p(x,y)以任何方式趋向于该点。 4 f(x,y)={(x^2+y^2)/(|x|+|y|)}*sin(1/x) 显然有y->0,f->(x^2/|x|)*sin(1/x)存在 当x->0,f->(y^2/|y|)*sin(1/x),sin(1/x)再0处是波动的所以不存在 而当x->0,y->0时 由|sin(1/x)|<=1得|f|<=(x^2+y^2)/(|x|+|y|) 而x^2+y^2<=x^2+y^2+2*|x||y|=(|x|+|y|)^2 所以|f|<=|x|+|y| 所以显然当x->0,y->0时,f的极限就为0 这个就是你说的,唯一不一样就是非正常极限是不存在而不是你说的 正无穷或负无穷或无穷,我想这个就可以了 就我这个我就线了好久了 第 3 页共 26 页

高等数学函数与极限试的题目

高等数学第一章函数与极限试题 一. 选择题 1.设F(x)是连续函数f(x)的一个原函数,""N M ?表示“M 的充分必要条件是N ”,则必有 (A ) F(x)是偶函数?f(x)是奇函数. (B ) F(x)是奇函数?f(x)是偶函数. (C ) F(x)是周期函数?f(x)是周期函数. (D ) F(x)是单调函数?f(x)是单调函数 2.设函数,1 1)(1 -= -x x e x f 则 (A ) x=0,x=1都是f(x)的第一类间断点. (B ) x=0,x=1都是f(x)的第二类间断点 (C ) x=0是f(x)的第一类间断点,x=1是f(x)的第二类间断点. (D ) x=0是f(x)的第二类间断点,x=1是f(x)的第一类间断点. 3.设f (x)=x x 1 -,x ≠0,1,则f [)(1 x f ]= ( ) A ) 1-x B ) x -11 C ) X 1 D ) x 4.下列各式正确的是 ( ) A ) lim + →x )x 1 +1(x =1 B ) lim + →x )x 1 +1(x =e C ) lim ∞ →x )x 1 1-(x =-e D ) lim ∞ →x )x 1 +1(x -=e 5.已知9)( lim =-+∞→x x a x a x ,则=a ( )。 A.1; B.∞; C.3ln ; D.3ln 2。 6.极限:=+-∞→x x x x )1 1( lim ( ) A.1; B.∞; C.2 -e ; D.2 e 7.极限:∞ →x lim 3 32x x +=( ) A.1; B.∞; C.0; D.2. 8.极限:x x x 11lim 0-+→=( ) A.0; B.∞; C 2 1; D.2.

(完整版)函数极限与连续习题含答案,推荐文档

基本初等函数是实变量或复变量的指数函数、对数函数、幂函数、三角函数和反三角函数经过有限次四则运算及有限次复合后所构成的函数类。 函数的极限与连续训练题 1、已知四个命题:(1)若在点连续,则在点必有极限 )(x f 0x )(x f 0x x →(2)若在点有极限,则在点必连续 )(x f 0x x →)(x f 0x (3)若在点无极限,则在点一定不连续 )(x f 0x x →)(x f 0x x =(4)若在点不连续,则在点一定无极限。 )(x f 0x x =)(x f 0x x →其中正确的命题个数是( B ) A 、1 B 、2 C 、3 D 、42、若,则下列说法正确的是( C ) a x f x x =→)(lim 0A 、在处有意义 B 、)(x f 0x x =a x f =)(0 C 、在处可以无意义 D 、可以只从一侧无限趋近于)(x f 0x x =x 0 x 3、下列命题错误的是( D ) A 、函数在点处连续的充要条件是在点左、右连续 0x 0x B 、函数在点处连续,则)(x f 0x )lim ()(lim 00x f x f x x x x →→=C 、初等函数在其定义区间上是连续的 D 、对于函数有)(x f )()(lim 00 x f x f x x =→4、已知,则的值是( C )x x f 1)(= x x f x x f x ?-?+→?)()(lim 0A 、 B 、 C 、 D 、21x x 21x -x -5、下列式子中,正确的是( B )A 、 B 、 C 、 D 、1lim 0=→x x x 1)1(21lim 21=--→x x x 111lim 1=---→x x x 0lim 0=→x x x 6、,则的值分别为( A )51lim 21=-++→x b ax x x b a 、A 、 B 、 C 、 D 、67和-67-和67--和6 7和7、已知则的值是( C ),2)3(,2)3(-='=f f 3)(32lim 3--→x x f x x A 、 B 、0 C 、8 D 、不存在4-8、( D ) =--→33lim a x a x a x

相关文档
最新文档