注射成型氧化铝陶瓷工艺研究

注射成型氧化铝陶瓷工艺研究
注射成型氧化铝陶瓷工艺研究

英文翻译(精密注射成型技术进展)

英文原文: P recision injection molding technology of progress using precision injection molding machine to replace conventional injection molding machine Precision injection molding machine generally larger injection power, in addition to such injection pressure and injection to meet the requirements in terms of speed, power itself will be on the injection products improve the accuracy of a certain role. Precision injection molding machine control systems generally have high control precision, it is requested by the products themselves. High accuracy can be guaranteed control of injection process parameters has good accuracy, precision products in order to avoid fluctuations due process parameters change. Therefore precision injection molding machine generally of the injection, injection pressure, injection rate and pressure-pressure, back-pressure and screw speed process parameters such as a multi-level feedback control. Precision Injection requirements of its modulus system has sufficient rigidity, accuracy or products will be a model for the elastic deformation decreased. Second-Die-Die of the system must be able to accurately control the size, or too large or too small a model of precision products will have an adverse impact. So in the design, it should be considered Die rigidity, stiffness, as well as a model system in order to accurately control the size of the precision products, especially flat-panel thin-wall products. When Die larger, must-oriented column deflection check. Precision injection molding machine also must be able to work in the hydraulic circuit precise temperature control, work to prevent the oil due to temperature changes caused viscosity and flow changes, further injection process parameters leading to fluctuations而使products would lose their accuracy. 1. parts molding cycle time consistency General typical injection molding machine with three modes: manual, semi-automatic and fully automatic. As the influence of various factors, each of the previous two models molding cycle time may be different, it would affect the temperature and materials to die in the Liaodong stay, thereby affecting the accuracy of parts, in precision Molding should try to use the automatic mode. 2. precision injection molding machine screw temperature control and the design of new

氧化铝陶瓷的制备与应用

论文题目:氧化铝陶瓷的制备与应用 学院:材料科学与工程学院 专业班级:材料化学2班 学号:20090488 姓名:王杰 日期:2011-10-19

氧化铝陶瓷的制备与应用 摘要:氧化铝陶瓷是用途最广泛的陶瓷材料中的一种,它可用作机器及设备制造中的耐腐蚀材料、化工专业中的抗腐蚀材料、电工及电子技术中的绝缘材料、热工技术中的耐高温材料以及航空、国防等领域中的某些特种材料。 Abstract: the alumina ceramics is the most widely use of one of the ceramic material, it can be used as the machine and equipment manufacture of corrosion resistant material, chemical corrosion materials in the professional, electrical and electronic technology of thermal insulation materials, high temperature resistant materials and technologies in the aerospace, defense, etc to some of the special material. 关键词:氧化铝陶瓷耐磨性机械强度耐化学腐蚀 Keywords: alumina ceramics Wear resistance Mechanical strength Chemical corrosion-resistant 氧化铝陶瓷是一种用途广泛的陶瓷。因为其优越的性能,在现代社会的应用已经越来越广泛,满足于日用和特殊性能的需要。[1] 1.硬度大经中科院上海硅酸盐研究所测定,其洛氏硬度为HRA80-90,硬度仅次于金刚石,远远超过耐磨钢和不锈钢的耐磨性能。 2.耐磨性能极好经中南大学粉末冶金研究所测定,其耐磨性相当于锰钢的266倍,高铬铸铁的171.5倍。根据我们十几年来的客户跟踪调查,在同等工况下,可至少延长设备使用寿命十倍以上。

反应注射成型技术在聚氨酯材料合成中的研究与应用

反应注射成型技术在聚氨酯材料合成中的研究与应用 摘要:主要介绍反应型注射技术,以及在聚氨酯合成中的研究与应用,并对几种不同的类型的RIM-PU注射成型技术进行介绍 关键词:反应型注射聚氨酯自增强 1. 前言: 反应注射成型,简称RIM( Reaction Injection Molding),是将两种或两种以上具有反应性的液体组分在一定温度下注入模具型腔内,在其中直接生成聚合物的成型技术。即将聚合与成型加工一体化,或者说,直接从单体得到制品的“ 一步法注射技术”。和传统的热塑性注射成型(TIM)不同,RIM是单体在模具中聚合而形成固体聚合物,而TIM是聚合物在模具中冷却才成型。其它反应成型加工方法,如单体浇铸成型、热固性塑料的注射成型,虽然也是在形成部件的形状后完成聚合反应。而在RIM中,单体和模具的温度没有很大的不同,而是靠基体激烈撞击混合来活化反应。和各种聚合物加工方法相比RIM制品最节能,RIM 是目前聚合物加工领域中引人注目的新方向。 RIM技术可用于聚氨酯、硅橡胶、环氧树脂和尼龙的成型加工。RIM聚氨酯发展尤为迅速,现已用于制造汽车内饰件、机器外壳和家具等。汽车行业为了获得高模量的聚氨酯制品,又发展了增强反应注射成型(RRIM)。聚氨酯(PU) 反应注射成型(RIM) 近年来发展十分迅速,其主要原料有A料和B料。A料通常为低分子量聚酯或聚醚,有时也加入其他添加剂。B料为各种异氰酸酯,目前国内外常用二苯甲烷二异氰酸酯(MDI )或液化改性MDI (L—MDI)。反应注射成型聚氨醋( RIM—PU) 是70年代初聚合物加工领域中研制开发的一门新型交叉成型技术,它是由低粘度高活性的异氰酸酯和多元醇经高压碰撞混合,通过化学、物理等变化而成型的。它具有成型温度和压力低、能耗少、材料性能优良等优点,近年来发展和应用极为迅速。 2. RIM在聚氨酯方面的发展 聚氨酯RIM聚氨酯制品(RIM—PUR) 是世界上开发最早且首先达到实用

多孔氧化铝陶瓷的研究进展

多孔氧化铝陶瓷的研究进展 李环亭1 孙晓红1 陈志伟1,2 (1国家陶瓷与耐火材料产品质量监督检验国家质检中心 山东淄博 255063) (2山东理工大学分析测试中心 山东淄博 255049) 摘 要 综合论述了国内外多孔氧化铝陶瓷的制备方法及性能的研究进展,并对目前存在的问题及将来的研究方向进行了展望。 关键词 多孔氧化铝陶瓷 制备方法 性能 Research Progress of Porous A lumina Ceramics Li Huanting1,Sun Xiaohon g1,Chen Zhiwei1,2(1National Quality Supervision and Inspection Center for Ceramics and Refractories,Shan dong,Zibo,255063)(2Analysis and Testing Center of Shandong Uni versity of Technology,Shandong,Zibo,255049) Abstract:The paper reviewed the research progress of porous alumina ceramics home and broad.The preparation methods and the proer ties were summaried.Finally,the research direction in the future is given on the porous alumina ceramics. Key words:Porous alu mina ceramics;Preparation methods;Properties 前言 多孔氧化铝陶瓷是指以氧化铝为骨料,通过在材料成形与高温烧结过程中,内部形成大量彼此相通或闭合的微孔或孔洞。较高的孔隙率的特性,使其对液体和气体介质具有有选择的透过性,较低的热传导性能,再加上陶瓷材料固有的耐高温、抗腐蚀、高的化学稳定性的特点,使其在气体和液体过滤、净化分离、化工催化载体、生物植入材料、吸声减震和传感器材料等众多领域有着广泛的应用前景。多孔氧化铝陶瓷上述优异的性能和低廉的制造成本,引起了科学界的高度关注。笔者就目前国内外多孔氧化铝陶瓷的制备方法、性能的研究进展进行综述。 1 多孔氧化铝陶瓷的制备方法 多孔氧化铝陶瓷的制备工艺主要包括孔结构的形成,坯体的成形和坯体的烧结3个方面。关于孔结构形成的方法既有传统的通过机械挤出成孔法、颗粒堆积形成气孔法、添加造孔剂成孔法、发泡工艺成孔法、有机泡沫浸渍成孔法[1],也有新型的铝板阳极氧化法、溶胶-凝胶法等。关于坯体成形工艺主要有模压成形法[2]、凝胶注模成形法[3]、固体粒子烧结法[4]、挤压成形法[5]等。如何得到高的气孔率,且能较好地控制孔径及其分布、形状、三维排列等,则需要选择合适的方法和工艺。下面介绍几种氧化铝多孔陶瓷常用的制备方法。 1.1 造孔剂成孔+凝胶注模法+高温烧结法 造孔剂成孔法是将一定量的造孔剂添加到陶瓷坯料中,造孔剂在坯体中会占据一定的空间,经过低温烧结后,造孔剂离开基体形成气孔得到多孔陶瓷。造孔剂的种类分为有无机和有机两大类。无机造孔剂有碳酸铵、碳酸氢铵、氯化铵等高温可分解的盐类,以及煤粉、碳粉等;有机造孔剂主要是天然纤维、高分子聚合物[6]和有机酸等,如淀粉、尼龙纤维等。目前应用较多的是加入有机造孔剂,且效果较好。由于造孔剂颗粒的大小及形状决定最终成孔的大小和形状,且造孔剂 基金项目:山东省科技攻关项目(耐火材料快速分析方法研究及应用,项目编号:2006GG1108097-06;陶瓷原料综合评价方法建立及应用研究,项目编号2007GG10003047)

浅析先进陶瓷材料的研究现状及发展趋势

龙源期刊网 https://www.360docs.net/doc/de17705424.html, 浅析先进陶瓷材料的研究现状及发展趋势 作者:孙彬 来源:《科技资讯》2017年第27期 摘要:随着现阶段各种高新技术日新月异的发展,先进陶瓷材料已经成为了新材料领域 中的翘楚,也是很多技术创新领域需要用到的关键材料,受到了很多发达国家和工业化企业的极大关注,先进材料的发展以及应用也在很大程度上对于工业的发展和进步产生一定的影响。本文旨在探讨先进陶瓷材料的研究现状及发展趋势。 关键词:工业陶瓷材料先进研究环保发达国家 中图分类号:TQ174.7 文献标识码:A 文章编号:1672-3791(2017)09(c)-0217-02 随着先进陶瓷的各种优势越来越明显,很多自动化控制、人工智能、电子智能技术领域都需要先进陶瓷的入驻,可以说,先进陶瓷的市场产量和覆盖范围已经发展到了一个不可忽视的阶段。 1 先进陶瓷的具体应用以及性能优势对比 先进陶瓷,根据各自的优点以及应用范围,大体可以分为两大类,也就是功能陶瓷和结构陶瓷,具体的应用范围以及性能优势,如表1所示。 2 国内外对于先进陶瓷材料的研究现状 2.1 国外对于先进陶瓷材料的研究现状 现阶段,全球各个国家对于先进陶瓷材料进行研究应用的趋势越来越明显。 举例来说,以美国和日本为代表,在对于先进陶瓷材料的研究和应用方面远远领先于其他国家。美国的宇航局和航空局大规模的应用了先进陶瓷。比如说在航空发动机上用陶瓷来替代其他材料;提出了关于先进陶瓷的多个计划,在每年对于先进材料的研究和应用上,投入多达35亿美元。这些都是为了提高他们在国际上的综合竞争能力。而日本也提出了对于先进陶瓷 研究和开发的一项计划,名曰“月光计划”,另外,欧盟各国尤其是以工业闻名的德国,都对先进陶瓷进行了研究和开发,法国也紧随其后,主要集中在对新能源材料进行重点的研究和突破。 综合来说,这些发达国家,比如美国、日本、欧盟,它们在先进陶瓷领域每年的平均增长率高达12%,其中欧盟较为领先,多达15%~18%,美国则是9.29%,日本是7.2%。现阶 段,全球先进陶瓷的最大市场集中在美国和日本,其次就是欧盟国家,甚至可以说,先进陶瓷在发达国家更加受到重视和人们的欢迎。

什么叫做精密注塑成型

什么叫做精密注塑成型

一、什么叫做精密注塑成型? 精密注塑成型,从严格意义上来说,指的是通过注塑机设备生产出来的塑胶制品的尺寸精度,可以达到0.01mm以下,通常在0.01~0.001mm之间的一种注射成型生产方式。“精密注射成型”这一概念,主要是区别于“常规注射成型”,随着高分子材料和微电子技术的高速发展,电子电路高度集成化,使得工业设备零件逐渐发展为高性能化、高精度化、轻量化、小型化和微型化。这样,精密塑胶制件因为符合高精度要求,同时具备良好的机械、力学性能以及尺寸稳定性等优点,在机械、电子、仪器、通讯、汽车和航空仪表等行业领域里,取代了部分高精度的金属零件而得到了广泛应用。 由精密注塑成型的定义可知,精密塑胶件的尺寸公差范围是非常窄的。而实际上,塑胶成型行业内公认,当塑胶制件的尺寸公差在0.1mm以下,或者说制件尺寸正负公差在0.1mm以下,都可称之为精密成型,制件的尺寸公差达到微米级的,可以称之为超精密级注塑成型。 相对精密注塑成型而言,普通注塑成型的制件的尺寸公差通常在0.1mm以上,制件的尺寸公差范

围相对较宽,并且随着制件体积或重量的增加,制件的尺寸公差也会有所增加。 值得一提的是,由于材料本身的性质和加工手段不同,不能把塑料制件的精度与金属零件的精度等同起来。塑料制品最高的精度等级是三级精度,即尺寸公差可达0.001mm以下,而金属零件尺寸可分为十四级,加工精度分有九级。 、精密注塑成型有哪些特点? (1)制件的尺寸精度高,公差范围小,即有高精度的尺寸界限 精密塑胶制件的尺寸偏差会在0.03mm以内,有的甚至小到微米级,检测工具依赖于投影仪。(2)制品重复精度高 主要表现在制件重量偏差小,重量偏差通常在0.7%以下。 (3)模具的材料好,刚性足,型腔的尺寸精度、光洁度以及模板间的定位精度高 (4)采用精密注射机设备 (5)采用精密注射成型工艺 精确控制模具温度、成型周期、制件重量、成型生产工艺。

氧化铝陶瓷制作工艺

氧化铝陶瓷介绍 来自:中国特种陶瓷网发布时间:2005-8-3 11:51:15 氧化铝陶瓷制作工艺简介 氧化铝陶瓷目前分为高纯型与普通型两种。高纯型氧化铝陶瓷系Al2O3含量在99.9%以上的陶瓷材料,由于其烧结温度高达1650—1990℃,透射波长为1~6μm,一般制成熔融玻璃以取代铂坩埚:利用其透光性及可耐碱金属腐蚀性用作钠灯管;在电子工业中可用作集成电路基板与高频绝缘材料。普通型氧化铝陶瓷系按Al2O3含量不同分为99瓷、95瓷、90瓷、85瓷等品种,有时Al2O3含量在80%或75%者也划为普通氧化铝陶瓷系列。其中99氧化铝瓷材料用于制作高温坩埚、耐火炉管及特殊耐磨材料,如陶瓷轴承、陶瓷密封件及水阀片等;95氧化铝瓷主要用作耐腐蚀、耐磨部件;85瓷中由于常掺入部分滑石,提高了电性能与机械强度,可与钼、铌、钽等金属封接,有的用作电真空装置器件。其制作工艺如下: 一粉体制备: 郑州玉发集团是中国最大的白刚玉生产商,和中科院上海硅酸盐研究所成立玉发新材料研究中心研究生产多品种α氧化铝。专注白刚玉和煅烧α氧化铝近30年,因为专注所以专业,联系QQ2596686490,电话156390七七八八一。 将入厂的氧化铝粉按照不同的产品要求与不同成型工艺制备成粉体材料。粉体粒度在1μm?微米?以下,若制造高纯氧化铝陶瓷制品除氧化铝纯度在99.99%外,还需超细粉碎且使其粒径分布均匀。采用挤压成型或注射成型时,粉料中需引入粘结剂与可塑剂,?一般为重量比在10—30%的热塑性塑胶或树脂?有机粘结剂应与氧化铝粉体在150—200℃温度下均匀混合,以利于成型操作。采用热压工艺成型的粉体原料则不需加入粘结剂。若采用半自动或全自动干压成型,对粉体有特别的工艺要求,需要采用喷雾造粒法对粉体进行处理、使其呈现圆球状,以利于提高粉体流动性便于成型中自动充填模壁。此外,为减少粉料与模壁的摩擦,还需添加1~2%的润滑剂?如硬脂酸?及粘结剂PVA。 欲干压成型时需对粉体喷雾造粒,其中引入聚乙烯醇作为粘结剂。近年来上海某研究所开发一种水溶性石蜡用作Al2O3喷雾造粒的粘结剂,在加热情况下有很好的流动性。喷雾造粒后的粉体必须具备流动性好、密度松散,流动角摩擦温度小于30℃。颗粒级配比理想等条件,以获得较大素坯密度。 二成型方法: 氧化铝陶瓷制品成型方法有干压、注浆、挤压、冷等静压、注射、流延、热压与热等静压成型等多种方法。近几年来国内外又开发出压滤成型、直接凝固注模成型、凝胶注成型、离心注浆成型与固体自由成型等成型技术方法。不同的产品形状、尺寸、复杂造型与精度的产品需要不同的成型方法。摘其常用成型介绍: 1干压成型:氧化铝陶瓷干压成型技术仅限于形状单纯且内壁厚度超过1mm,长

详细解析微注射成型技术以及其缺点

详细解析微注射成型技术以及其缺点 导语:微注射成型点击认领开放分类:技术微注射成型的提出源于1985年,微注射成型(也称微成型)用于生产总体尺寸、或特征功能区、或公差要求以毫米甚至微米计的制品。随着高技术和精密技术的快速发展,在光通信、计算机数据存储、医疗技术、生物技术、传感器和传动装置、微光学器件、电子和消费类产品,以及设备制造和机械工程等领域中,微注射成型制品呈现快速增长的需求。微注射成型- 简介微齿轮微注射成型的提出源于1985年,微注射成型(也称微成型)用于生产总体尺寸、或特征功能区、或公差要求以毫米甚至微米计的制品。随着高技术和精密技术的快速发展,在光通信、计算机数据存储、医疗技术、生物技术、传感器和传动装置、微光学器件、电子和消费类产品,以及设备制造和机械工程等领域中,微注射成型制品呈现快速增长的需求。典型例子包括:手表和照相机部件,汽车撞击、加速和距离传感器,硬盘和光盘驱动器读写头,医疗传感器,微型泵,小线轴,高精度齿轮、滑轮和螺旋管,光纤开关和接插件,微电机,外科仪器和通讯制品等。由于制品的微型特征,因此需要特殊的成型机械和辅助设备来完成各种生产操作,如:注射量控制、模具排空(真空)、注射工艺、制品顶出、分离、检验、存放、定位和包装。另外模具嵌件和模腔制造也需要特殊的技术。微注射成型- 分类尽管微注射成型的方法并没有清楚定义,但一般认为应用于生产以下三类产品或部件的工艺可称为微注射成型。1、重几微克到几分之一克,尺寸可能在微米(mm)级的微注塑成型制品,如微齿轮、微操纵杆等。图1是德国Hengstler公司用聚醚酰亚胺制得的微齿轮,齿轮轴孔直径和齿廓宽度均小于1mm。聚碳酸酯小透镜2、传统尺寸的注射成型制品,但具有微结构区域或特征功能区,例如:带有数据点隙的光盘、具有微表面特征的透镜、使用塑料薄片技术制造微齿轮的薄片等。图2和图3是聚碳酸酯小透镜和透明小齿轮。注意齿轮表面布有宽度小于1mm的同心圆,用于后续制作计数器的数据区。3、可具有任意尺度,但尺寸公差在微米级的高精度制品,例如光纤技术用接插件等。图4是一种汽车用微卡子,卡体采用聚甲醛(POM Delrin),卡体尾片厚度为700mm。为减轻运行时卡体振动,采用第二台注射机和旋转模具,在卡体中部共注射一小块弹性体,材料为PE-PA共聚物。微注射

氧化铝陶瓷与金属连接的研究现状

万方数据

万方数据

万方数据

万方数据

周健等Ⅲo对A1203一A1203以及A1203和HAP(羟基磷灰石)生物陶瓷进行了焊接,并借助电镜、电子探针分析了界面结合情况。前者在2MPa、1300℃、保温15min时结合强度达到基体强度。后者在2.5MPa、1200℃、保温15min左右将两类材料焊接在一起。. 蔡杰等¨引采用1’E103型谐振腔分别在1300和1400℃对A1203一A1203进行焊接,认为在1300℃焊接时,虽经长时间保温,焊接效果不理想,在1400℃、保温20min,焊缝消失。如上所述,氧化铝陶瓷一般采用直接焊接,对于高纯度氧化铝陶瓷一般采用低纯氧化铝或玻璃做中间层,目前也有人用溶胶凝胶方法制备的氧化铝做中间层。 目前微波焊接腔体的微波场的均匀区域还不大,改进微波场的分布,提高加热均匀区域,可以提高材料的焊接尺寸。同时增加焊接材料的种类。 7激光焊接 激光焊接陶瓷是近年来发展的新技术,Mittweida公司开发了双束激光焊接陶瓷方法,其原理见图9。 图9双束激光焊接示意图¨引 Fig.9Skd【chofdoublelaserweldiIlg 采用高能束激光焊方法,可快速加热和冷却,配以氮气筛的冷却和温度场调节,诱导和改善复合材料增强相和基体界面反应,而提高接头强度。采用脉冲输入方式,可抑制界面反应,细化组织,减少缺陷,获得良好接头,在操作时对激光功率控制非常重要啪J。用该法焊接的Al:O,陶瓷试样,激光焊接区细晶粒均匀,在电子显微镜下,可以看到晶粒呈片瓦结构,防止了裂纹的产生和扩展。经100次反复加热和冷却后,试样的弯曲强度无明显下降。 8结语 随着Al,O,陶瓷的广泛应用,其连接技术已成为世界各国集中研究的重点,其中钎焊与扩散连接是最常用的连接方法,但都有其局限性。例如:用钎焊方法形成的陶瓷接头的高温性能和抗氧化性能较差;钎焊的界面反应机理现在还处于试验阶段,缺乏系统性和理论性。扩散连接虽然可以减小界面缺陷,并适合大尺寸构件的接合,但易发生试件的变形和损伤等。近来新发展的微波连接能很好地实现接头处均匀连接,避免了开裂的发生,而且由于升温速度极快,陶瓷内部的晶粒不会剧烈长大。而sHs焊接和激光焊接还处于起步阶段,有待于发展。 参考文献 1王颖.AJ:0,陶瓷与Kover合金钎焊工艺研究.哈尔滨工业大学硕士论文,2006:l一50 2Ham咖dJP,DB“dSA,SameUaMLB阳zingo既帅icox-id船tom吨IlsatlowteⅡ聊舶hlr酷.WeldJ,1992;(5):145—1493赵永清.利用化学镀实现A120,陶瓷与金属的连接.焊接技术,1999;(2):16—17 4顾小龙,王大勇,王颖.Al:0,陶瓷/AgCuT∥可伐合金钎焊接头力学性能.材料科学与艺,2007;15(3):366—3695吴铭方.反应层厚度对他03/AgCu7n/n一6m一4V接头强度的影响.稀有金属材料与工程,2000;19(26):419—4226王洪潇.氧化铝陶瓷与金属活性封接技术研究.大连交通大学硕士论文,2006:1—50 7刘军红.复相Al:0,基陶瓷/钢大气中直接钎焊连接界面的微观组织结构.焊接学报,2003;24(6):26—28 8张玮.镍离子注入灿203/1crl8Ni9Ti的钎焊界面成分分析.包头钢铁学院学报,2000;19(3):219—22l 9王大勇,冯吉才,刘会杰.灿:O,/Cu/Al扩散连接工艺参数的优化.材料科学与工艺,2003;11(1):73~76 10陈铮,赵其章,方芳等.陶瓷/陶瓷(金属)部分瞬间液相连接.硅酸盐学报,1999;27(2):186~188 1lMerzh锄ovAG.InterSymposium∞coIIIbus阴dpl嬲一眦syn.ofhigll—te呷.Mater.s明Fr锄cisco,cA,988 12余圣甫等.Al:0,陶瓷/不锈钢自蔓延高温原位合成连接.焊接学报,2004;25(2)119一122 13周健,章桥新,刘桂珍等.微波焊接陶瓷辊棒.武汉工业大学学报,1999;21(3):1~2 14MeekTT,BlalceRD.Ceramic?ce硼icsealsbymicro-w盯ehe砒ing.J.Mat.Sci.L肚.,1986;(5):270~274 15Fukushi眦H。YamanakaT,Ma协uiM.Micmwaveheat—ingof ce姗icsandi协applic砒i叩tojoining.JMat.R∞.,1990;5(2):397—405 16Bi衄erJGP,F唧ieJA,WhitakerPAeta1.Thee妇fect0fcompositi∞ontlIeIIlicn)wavebondirIg0falulIli啪ce捌【nics.JMat.sci.,1998;33(12):3017~3029 17zlI伽Ji蛐,Zh衄gQia喇n,MEIBingchueta1.Mic胁wavejoiIlingof aluIIli腿c廿枷candh”Iroxyl印atitebioce枷c.JWuh粕Univ.ofTech.Mater.Sci.,1999;14(2):46~4918ChenXinm伽,ⅡuW嘶.HigllFrequencyHeatillgDie.1ectricTechnology.BeijiIlg:scie眦ePr鹤s,1979:l一30 19C蛐G,K0caI【M.h咿ssinjoiniIlgofadv锄cedmate—rials.htematioIlalMaterialsRevie啪,1998;43(1):卜4420广赖明夫.金属基复合材料。结合.溶接会志,1996;65(4):l692一l698 (编辑吴坚) 宇航材料工艺2008年第4期 万方数据

精密注射成型技术概述

精密注射成型技术概述 作者:刘奇胡章咏 来源:《科技创新导报》2012年第17期 摘要:介绍了精密注射成型的意义以及精密注射成型对塑件尺寸的要求,指出了影响塑件精度的四个方面:物料、工艺、设备和模具。分析了每个方面影响的原因,提出了改进的措施。 关键词:精密注射成型塑件 中图分类号:TQ32 文献标识码:A 文章编号:1674-098X(2012)06(b)-0069-01 1 精密注射成型技术产生的过程 精密注射成型主要是指成型塑件的尺寸公差和形状精度要求很高、表面粗糙度值要求很低的一种注射工艺方法。随着塑料工业在20世纪的迅猛发展,塑件在较多工业领域中的应用越来越多,而且有不断地替代传统的金属零部件的趋势。因此,对于塑料制件的精度要求也越来越高,而要达到这样的精度要求,若采用普通注射成型方法则难以达到,所以精密注射成型技术就从20世纪60年代开始萌芽,70年代到80年代得到大力发展的一种注射成型技术[1][2]。 2 精密塑料件的尺寸精度要求 由于塑料制品成型手段与金属制品的制造在本质上有十分明显的区别,所以塑料制品的精度不能简单地等同于所代替的金属零件的精度。精密注塑产品的尺寸精度公差范围必须合理,塑件精度范围规定太狭窄会导致模具及成型设备制造加工困难,增加制造和维护成本;精度范围规定太宽泛,则满足不了塑件的使用要求。关于精密塑件的尺寸精度范围,各国的规定都不一致,一般说来,在工程实际当中比较认可德国的DIN16901标准和日本塑料工业研究会的标准CESM7002。 3 影响精密塑件成型精度的因素 影响精密注射成型塑件质量与尺寸的因素有很多,最主要的有以下几种。 3.1 塑料种类的选用 由于塑料注射成型是由塑料熔融态注射进入模具型腔,然后冷却成为塑料制品,在冷却过程中,塑料存在收缩现象,而且不同品种的塑料收缩性有很大不同,所以关于塑料是否能成型精密塑件,其收缩性事一个很大的制约因素。因此,在塑件精密成型过程中必须对塑料原料的种类、原料的干燥程度、纯净程度和品级等方面进行严格地选择。目前常用的精密注塑材料主要有PC 塑料、PA塑料、POM塑料、ABS塑料、PBT塑料等。

浅谈GPS精密单点定位技术

科 技 天 地45 INTELLIGENCE ··· ·····················浅谈GPS 精密单点定位技术 吉林省基础地理信息中心 刘振宇 摘 要:本文介绍了GPS 精密单点定位技术的概念、产生、主要原理、数学模型 等初步知识,扼要介绍了在应用中应解决的关键技术问题,并展望了该技术的实际应用前景。 关键词:GPS 精密单点定位技术 原理 应用 1 GPS 精密单点定位技术的产生 GPS 空间定位技术以其定位的高度灵活性和常规测量技术无法比拟的高精度成为现阶段常规大地测量的主要技术手段,彻底的改变了传统的野外测量模式,并且在可预见的一个时期内尚无一种技术手段可以代替。 GPS 空间定位技术同所有的新生事物一样,有着发生、发展、成熟的变化过程。随着我们对GPS 空间定位技术本质认识的不断深入,在理论与使用方法上也在不断的进行创新。从第一代的伪距定位、载波相位测量到第二代的实时动态定位、广域差分技术,直至目前第三代的网络实时动态定位、精密单点定位技术,GPS 空间定位技术留下了一条清晰的发展历程。第三代的网络实时动态定位、精密单点定位技术业已发展成熟,正处在面向实用推广的过程。 美国喷气推进实验室 (Jet Propulsion Laboratory,JPL)是美国国家航空和宇宙航行局(National Aeronautics and Space Administration,NASA)下属的一家科研机构,主要从事空间科学的研究。1997年以来JPL 的研究人员利用该机构研制的GPS 高精度定轨定位软件——GIPSY 的某些功能模块实现了精密单点定位,并发表了多篇文章。由此宣告了一种全新的GPS 定位模式的诞生。 2 GPS 精密单点定位技术的概念 所谓精密单点定位(Precise Point Positioning,PPP)是指利用GPS 卫星的事后精密星历、事后精密卫星钟差作为已知坐标起算数据,用户利用单台GPS 双频全波长接收机在全球范围内的任意位置进行高精度的空间定位。该技术是实现全球精密实时动态定位与导航的关键技术,也是GPS 定位方面的前沿研究方向。 3 GPS 精密单点定位技术的主要原理 在目前GPS 空间定位技术的各种手段中,除去精密单点定位外,所采用的数学模型均为差分模型。(对应的实现手段是相对定位方法,即要求在作业过程中必须有两台以上的GPS 接收机进行同步观测。)其主要原理是利用差分的方法来消除两个测站公共部分的系统误差,从而达到精确的相对定位。随着我们对GPS 技术本质认识的不断深入,对GPS 测量过程中产生的各种系统性误差有了更细致的了解,因此可以针对各种系统性误差分别建立起相对应的精确的数学模型对系统性误差进行描述、估计和处理,从而可以采用非差分的数学模型来替代差分数学模型来进行数据处理,并利用GPS 卫星的事后精密星历、事后精密卫星钟差作为已知坐标的起算数据,直接获得待定点的三维坐标。简而言之,所谓GPS 精密单点定位技术的实质就是采用经验的公式对GPS 测量过程中产生的系统性误差进行描述,并在数据处理过程中进行误差改正,从而获得精确的测量结果。 在GPS 精密单点定位技术中,利用事后卫星钟差估计值消去卫星钟差项,并且采用双频观测值消除了电离层影响,顾及以上各项则其观测值误差方程如下: p j j trop j j p i P i i t C i i v εδρδρ+?+?+=)()()()()( Φ Φ+Φ???++?+=ελλδρδρ)()()()()()(i i N i i t C i i v j j j trop j j 式中: j 为卫星号,i 为相应的观测历元,C 为真空中光速。 )(i t δ为接收机钟差,)(i j trop δρ为对流层延迟影响。p ε、Φε为多路径、观测噪声等未模型化的误差影响。 )(i P j 、)(i j Φ为相应卫星i 历元的消除了电离层影响 的组合观测值,而)(i v j p 、 )(i v j Φ 为其观测误差,λ为相应的波长。 )(i j ρ为信号发射时刻的卫星位置到信号接收时刻接收机位置之间的几何距离。 )(i N j 为消除了电离层影响的组合观测值的整周未知数。 这样精密单点定位的主要工作量即为将p ε、 Φε多路径、观测噪声等未模型化的误差影响采用精确的数学模型或经验的数学模型进行描述,在此就不具体展开讨论了。 待定参数为:[]T j nsat j zd N t z y x i X ),1()(==δρδ其中x、y、z 为三维位置参数、t δ接收机钟差参数、zd δρ对流层延迟参数、j N 为整周未知数参数。 利用上述观测模型,即可采用序贯最小二乘法或卡尔曼滤波的方法进行非差精密单点定位计算。

1 精密注射成型的概念

1 精密注射成型的概念 精密注塑是指加工成型的注塑制品的尺寸重复精度很高,以致使用通用注塑机、常规的注塑成型工艺难以达到要求的一种注射成型方法。“精密注射成型”这一概念,主要是区别于“常规注射成型”,它是基于高分子材料的迅速发展, 在仪表、电子领域里采用精密塑料部件取代高精度的金属零件的技术。目前针对精密注射制品的界定指标有2 个,一是制品尺寸重复精度, 二是制品质量的重复精度。本文主要从制品尺寸重复精度方面阐述精密注射成型。但由于各种材料本身的性质和加工工艺不同,不能把塑料制件的精度与金属零件的精度等同起来。 精密注射成型是一门涉及原材料性能、配方、成型工艺及设备等多方面的综合技术,精密塑料制品包括DVD数码光盘、DVD激光头、数码相机零件、电脑接插件、导光板、非球面透镜等精密产品,这类产品的显著特点是不但尺寸精度要求高,而且对制品的内在质量和成品率要求也极高。成型制品的模具是决定该制品能否达到设计要求的尺寸公差的重要条件,而精密注塑机是保证制品始终在所要求的尺寸公差范围内成型,及保证极高成品率的关键设备。塑料制品最高的精度等级是三级。 1.1 精密注射的特点 (1)制件的尺寸精度高、公差小,即有高精度的尺寸界限;(2)制品重量重复精度高,要求有日、月、年的尺寸稳定性;(3)模具的材料好、刚性足,型腔的尺寸精度、光洁度以及模板间的定位精度高;(4)采用精密注射机更换常规注射机;(5)采用精密注射成型工艺;(6)选择适应精密注射成型的材料。 评定制品最重要的技术指标,就是注塑制品的精度( 尺寸公差、形位公差和制品表面的光洁度) 。我国使用的标准是SJ1372―78,与日本塑料制品的精度和模具精度等级很接近。欲注塑出精密的塑料制品,需从材料选择、模具设计、注射成型工艺、操作者的技术水平等4大因素进行严格控制。 精密注塑机要求制品尺寸精度一般在0.01~0.001mm以内,许多精密注塑还要求注塑机具有高的注射压力、高的注射速度;要求合模系统具有足够大的刚性和足够高的锁模精度,所谓锁模精度是指合模力的均匀性、可调、稳定和重复性高,开合模位置精度高;要求对压力、流量、温度、计量等都能精确控制到相应的精度,采用多级或无级注射,保证成型工艺再现条件和制品尺寸的重复精度等。 1.2 影响制品尺寸精度的因素 (1)模具精度;(2)成型收缩率;(3)制品使用环境的温度、湿度以及波动的幅度。 2 注塑精密成型材料的选择原则 机械强度高、尺寸稳定性好、抗蠕变性能好、环境适应范围广。常用的有四种材料:

反应注射成型技术

反应注射成型技术 反应注射成型起源于聚氨酯塑料。随着工艺技术的进步,该工艺也扩展到了多种材料的加工中。与此同时,为了拓宽 RIM 技术的应用领域,特别是在汽车行业中的应用,该工艺还引入了纤维增强技术。 RIM 简介 反应注射成型(简称“ RIM”是指将具有高化学活性、相对分子质量低的双组分材料经撞击混合后,在常温低压下注入密闭的模具内,完成聚合、交联和固化等化学反应并形成制品的工艺过程。这种将聚合反应与注射成型相结合的新工艺,具有物料混合效率高、流动性好、原料配制灵活、生产周期短及成本低的特点,适用于大型厚壁制品生产,故而受到了世界各国的重视。 RIM 最早仅用于聚氨酯材料,随着工艺技术的进步, RIM 也可应用于多种材料(如环氧、尼龙、聚脲及聚环戊二烯等)的加工。用于橡胶与金属成型的RIM 工艺是当前研究的热点。 为了拓宽 RIM 的应用领域,提高 RIM 制品的刚性与强度,使之成为结构制品, RIM 技术得到了进一步的发展,出现了专门用于增强型制品成型的增强反应注射成型( RRIM)和专门 用于结构制件成型的结构反应注射成型(SRIM)技术等。RRIM和SRIM成型工艺原理与 RIM 相同,不同之处主要在于纤维增强复合材料制品的制备。目前,典型的RIM 制品有汽车保 险杠、挡泥板、车体板、卡车货箱、卡车中门和后门组件等大型制品。它们的产品质量比 SMC产品好,生产速度更快,所需二次加工量更小。 RIM 成型工艺 1.工艺过程 RIM 工艺过程为:单体或预聚物以液体状态经计量泵以一定的配比进入混合头进行混合。混合物注入模具后,在模具内快速反应并交联固化,脱模后即为RIM 制品。这一过程可简化为:贮存T计量T混合T充模T固化T顶出T后处理。 2.工艺控制 (1)贮存。 RIM 工艺所用的两组分原液通常在一定温度下分别贮存在 2 个贮存器中,贮存器一般为压力容器。在不成型时,原液通常在 0.2~0.3 MPa 的低压下,在贮存器、换热器和混合头中不停地循环。对聚氨酯而言,原液温度一般为20~40 C,温度控制精度为土 1C。 (2)计量。两组分原液的计量一般由液压系统来完成,液压系统由泵、阀及辅件(控制液体物料的管路系统与控制分配缸工作的油路系统) 所组成。注射时还需经过高低压转换装置将压力转换为注射所需的压力。原液用液压定量泵进行计量输出,要求计量精度至少为± 1.5%,最好控制在± 1 %。 (3)混合。在 RIM 制品成型中,产品质量的好坏很大程度上取决于混合头的混合质量,生产 能力则完全取决于混合头的混合质量。一般采用的压力为10.34~20.68MPa,在此压力范围 内能获得较佳的混合效果。 (4)充模。反应注射物料充模的特点是料流的速度很高。为此,要求原液的粘度不能过高, 例如,聚氨酯混合料充模时的粘度为O.IPa.s左右。 当物料体系及模具确定之后。重要的工艺参数只有 2个,即充模时间和原料温度。聚氨酯物料的初始温度不得超过 90C,型腔内的平均流速一般不应超过0.5m/s。 (5)固化。聚氨酯双组分混合料在注入模腔后具有很高的反应性,可在很短的时间内完成固

精密注射成型的概念及对注塑机的要求

精密注射成型的概念及对注塑机的要求 一般精密注塑机有两个指标:一是制品尺寸的重复误差,另一个是制品的重复重量误差 前者由于尺寸大小和制品厚薄不同难以比较。 而后者代表了注塑机的综合水平,一般普通注塑机的重量重复误差在1%左右,较好的机器可达到0.8%,低于0.5%为精密机,小于0.3%为超精密机。 据相关资料报道,国际最高水平为小于0.15%。 2004年德国科德塑机博览会上,德国雅宝公司宣布其最新式注塑机重量重复精度可达到 0.07%。 精密注塑机要求制品尺寸精度一般在0.01~0.001mm以内,许多精密注塑还要求注塑机具有高的注射压力、高的注射速度; 要求合模系统具有足够大的刚性和锁模精度,所谓锁模精度是指合模力的均匀性、可调、稳定和重复性高,开合模位置精度高; 要求对压力、流量、温度、计量等都能控制精确到相应的精度,采用多级或无级注射,保证成型工艺的再现条件和制品的重复精度等。 对于精密注塑机的具体要求包括: 1. 注射压力≥25mpa; 2. 射速度注≥300mm/s;高速机到600~750mm/s 3. 制品尺寸精度0.001mm; 4. 制品质量标准差系数(变化率)≤0.1%; 5. 开、合模位置精度:开≤0.03mm合≤0.01; 6. 注射位置精度(保压终止点)≤0.03mm; 7. 拉杆受力均衡度≤1%; 8. 预塑位置精度≤0.03mm, 9. 定、动模板平衡度 a:锁模力为零时≤0.03mm b:锁模力为最大时≤0.005 mm; 10. 机筒、螺杆温控精度≤±0.5℃。 精密注射成型技术的重点研究内容 锁模力 在精密注射成型过程中,一般都需要很高的注射压力(>250mpa),否则很难成型。但是,需要注意的是,一般情况下精密注塑制品的外形尺寸、厚度都比较小,所以并非所有的制品对于锁模力都要求很高。反之,若锁模力过大,或四角受力不均,或锁模力不稳定都会使模具受压变形不一致和不均匀,最终影响到制品的成型质量。精密注塑制品成型工艺要求合理、

相关文档
最新文档