矿井乏风和排水热能综合利用技术

矿井乏风和排水热能综合利用技术
矿井乏风和排水热能综合利用技术

矿井乏风和排水热能综合利用技术

一、技术名称:矿井乏风和排水热能综合利用技术

二、适用范围:煤炭行业煤矿中央并列式通风系统

三、与该节能技术相关生产环节的能耗现状:

年产150万吨的矿井,年供暖及工艺用热消耗近1万吨原煤。

四、技术内容:

1.技术原理

为了充分利用地热,选用水源热泵机组取代传统的燃煤锅炉。冬季,利用水处理设施提供的20℃左右的矿井排水和乏风作为热能介质,通过热泵机组提取矿井水中蕴含的巨大热量,提供45~55℃的高温水为井口供暖。夏季,利用同样的水源通过热泵机组制冷,通过整体降低进风流的温度来解决矿井高温热害问题。系统主要包括水处理、热量提取及换热系统、热泵系统和进口换热部分。

2.关键技术

热量提取及换热工艺,矿井供暖末端。

3.工艺流程

工艺流程和技术原理分别见图1和图2。

图1 矿井乏风和排水热能综合利用系统流程图

图2 矿井乏风和排水热能综合利用原理图

五、主要技术指标:

1)提取热源不低于15℃;

2)供暖温度为40~50℃。

六、技术应用情况:

该技术已通过山东省经济信息化委员会技术鉴定。技术达到国内领先水平,并已应用于新矿集团。

七、典型用户及投资效益:

典型用户:孙村煤矿、新巨龙公司、华恒公司

1)建设规模:4200kW矿井乏风和排水系统。主要技改内容:3台10t的热力锅炉改造为三台热泵机组,增加热量提取装置。减少燃料排放,净化乏风,处理排水。节能技改投资额750万元,建设期1年。每年可节能1000tce,年节能经济效益321万元,投资回收期2年。

2)建设规模:2600kW矿井乏风和排水系统。主要技改内容:1台20t的热力锅炉改造为两台热泵机组,增加热量提取装置。减少燃料排放,净化乏风,处理排水。节能技改投资额550万元,建设期1年。每年可节能880tce,年节能经济效益200万元,投资回收期2.7年。

八、推广前景和节能潜力:

全国煤矿80%分布在北方地区,副井都需要供暖,否则影响安全生产。目前基本都采用锅炉供暖,直接消耗一次能源,采用该技术可有效利用矿井乏风和排水的热能,降低一次能源消耗。预计到2015年,该技术可推广到全国30%的煤矿,建设约540个此类项目,实现年节能能力约55万tce。

本文来源:全球节能环保网

中矿博能任城煤矿卫生热水方案V01

编号:SMT201405-002(V1) 任城煤矿绿色(零排放)能源供卫生热水系统设计方案 北京中矿博能节能科技有限公司 2014年5月北京

目录 第一章总论 (2) 1.1基本概况 (2) 1.2任城监狱煤矿节能方案 (3) 1.2.1任城监狱煤矿余热资源 (3) 1.3节能方案设计依据 (4) 1.4任城监狱煤矿气象参数 (4) 1.5中矿博能煤矿节能技术 (5) 1.5.1技术研发实力与优势 (5) 1.5.2“直蒸式深焓取热乏风热泵”机组技术特点 (6) 1.6政策背景 (10) 1.6.1山东省锅炉排放标准 (10) 1.6.2国家行动计划 (10) 1.6.3国家政策支持 (11) 第二章任城监狱煤矿生活热水系统方案 (12) 2.1生活热水负荷计算 (12) 2.2乏风热泵设计方案 (13) 2.3太阳能热水系统方案 (14) 第三章任城监狱煤矿生活热水供热负荷与供热能力分析 (16) 第四章运行费用分析 (17) 第五章唐阳煤矿生活热水投资费用分析 (18) 5.1乏风机热泵投资费用 (18) 5.2太阳能投资费用 (19) 第六章唐阳煤矿绿色能源供洗浴生活热水方案结论 (20)

第一章总论 本方案采用乏风热泵+太阳能综合绿色能源供热系统全年制取生活热水,取代原来的燃煤锅炉制取生活热水,每天生活热水用量200t,乏风热泵制热量488KW,太阳能按春秋季晴好天气日制取50t生活热水设计。 本方案设计的指导思想是:既实现节能减排,又确保洗浴卫生热水供给系统安全可靠,全年系统运行费用低,系统投资合理。 根据上述原则:本方案采用SMEET直蒸式深焓取热乏风热泵(488 KW )+太阳能光热(>122KW)作为任城监狱煤矿洗浴卫生热水的主要热源设备,利用该矿回风部分余热,利用乏风热泵作为太阳能制热不足部分的补充。 项目总投资289万元,其中:热泵主机设备投资133万元,太阳能集热器投资约37万元,其他配套项目投资约119万元。 该系统制取生活热水年能耗费用43.6万元,年总运行费用45万元。 表1-1 乏风热泵+太阳能供热系统汇总表 1.1基本概况 任城煤矿位于山东省济宁市任城区,拥有井田面积54.4平方公里,地质储量1.9亿吨,可采储量6595万吨,矿井井筒深343米,含可采煤层4层,平均厚度6.09米,设计生产能力45万吨/年,核定能力为87万吨/年,服务年限5 0余年。井田储量具有埋藏浅、煤质好、含硫低、发热量高等优点。

浅层地热能的特点

---本文出自华誉能源总裁张军的新书《地热能、余热能与热泵技术》第2.2章节 浅层地热能的特点与意义 浅层地热能接近常温,品位较低,需要通过热泵技术将其品位提升后 加以利用。浅层地热能既可以作为热泵的低温热源用于供热,也可以作为 热泵的冷却源用于制冷。通过热泵技术将浅层地热能用于建筑的供热和制 冷具有很多优势,同时也存在很多需要注意的问题。 ※浅层地热能的优势 (1)分布广泛。浅层地热能在地球表层以下接近均匀分布,到处都有,从地下水、地下土壤和江河湖海等地表水中都能采集到浅层地热能,可以根据项目的条件在周边就近提取和利用,不需要大规模的集中开采和远距离输送,不需要大规模一次性投资建设。 (2)储量巨大。据测算,我国近百米内的土壤每年可采集的浅层地热能是我国目前发电装机容量4×108kW的3750倍,而百米以内地下水每年可采集的浅层地热能也有2×108kW。 (3)稳定持续。浅层地热能是一种温差势能,其温度一年四季相对稳定,冬季比环境空气温度高,夏季比环境空气温度低,是很好的热泵热源和空调冷源。 (4)清洁环保。浅层地热能作为一种清洁的可再生能源,主要通过热泵技 术进行采集利用。利用浅层地热能不会像利用化石燃料那样排放大量的CO 2、SO X 、 NO x 、粉尘等燃烧产物,对环境造成严重污染,引起温室效应、酸雨、土地沙漠化等问题。因此,开发利用清洁无污染的浅层地热能资源已是社会发展的必然趋势。 ※浅层地热能的不足 (1)浅层地热能是一种品位很低的能源,不能作为独立的能源使用,必须借助热泵才能利用,运行时需要消耗一部分高品位能源,主要是电能。同时,浅

层地热能的有效利用是一项系统工程,涉及能量的采集、提升、释放等三部分。 如果应用条件不合适、设计施工不合理、产品性能不合格或者运行管理不到位,都有可能造成投资过大或者运行成本过高,使用户的经济负担过重,不利于浅层地热能的推广应用。 (2)浅层地热能的采集受所在地水文地质条件的影响较大。尽管浅层地热能理论上均匀分布于地球表层以下,存在于地下水、地下土壤和江河湖海等地表水中。但实际应用中,在不同的水文地质条件下利用浅层地热能的成本差异是相当大的。 对于利用地下水的情况,必须考虑到使用地的水文地质条件,确保可以通过打井获得充足的地下水资源,同时还要保证地下水在被提取温度之后可以顺利回灌至地下。 在无法得到充足的地下水源或地下水很难回灌的地区,可以采取在地下埋设换热管的方式取代地下水井。这种方法适用于土壤层或细沙层较厚的地区,在以岩石层或卵石层为主的地区使用会因钻孔成本过高而使投资大幅度增加。 (3)浅层地热能的采集受到场地的限制。采集浅层地热能最常用的方式是地下水井方式和地埋管方式,这两种方式都需要较大的场地。现在城市中建筑的密度越来越大,建筑周边的空地越来越少,这使得利用地下水方式或地埋管方式采集浅层地热能变得十分困难,尤其是地埋管方式,在城市中心地区已经很难实施。

矿井热害及防治正式版

Through the reasonable organization of the production process, effective use of production resources to carry out production activities, to achieve the desired goal. 矿井热害及防治正式版

矿井热害及防治正式版 下载提示:此安全管理资料适用于生产计划、生产组织以及生产控制环境中,通过合理组织生产过程,有效利用生产资源,经济合理地进行生产活动,以达到预期的生产目标和实现管理工作结果的把控。文档可以直接使用,也可根据实际需要修订后使用。 1矿井热害的形成 地壳最表层的温度受地面温度周期性变化的影响,这种影响是随着深度的增加而逐渐减弱的;到一定深度,这种影响基本消失,从而地温保持恒定。地温常保持恒定的带称为恒温带。在恒温带以上,地温受太阳辐射热的影响而具有周期性的变化,故称为变温带。在恒温带以下,地温的变化受控于地球的内热;随着深度的增加而不断增温,故称为增温带。恒温带则是变温带与增温带的分界面。 由于恒温带的深度大都为十余米、数

十米,而矿井生产的深度大都为数百米,甚至上千米,远远深于恒温带的深度;随着温度的增加,地温增高,当地温超过某一温度时,就产生了矿井的热害问题。可以说,热害是矿井生产向深部发展过程中不可避免的。 2矿井高温环境的危害 正常人在下丘脑体温调节中枢的控制下,产热与散热处于动态平衡状态,体温基本上维持在37℃。在体力劳动等情况下,体内能量代谢过程加速,产热增大,人体通过血管扩张血流量增大、汗腺分泌增加及呼吸加速等途径,将体内产生的热量送到体表,,以辐射、传导、对流以及汗液蒸发等换能换热方式将热量散发到周围

煤矿余热综合利用系统工业应用实践

煤矿余热综合利用系统工业应用实践 摘要:我国现役燃煤锅炉排烟温度普遍维持在125~150℃之间,排烟温度高是 一个普遍现象,占锅炉各项热损失的50%以上。一般而言,锅炉排烟热损失相当 于锅炉热量的5%~8%,并且随着排烟温度每升高20℃,排烟热损失增加0.6%~1.0%,因此燃煤锅炉排烟中还蕴藏着巨大的能量可供利用。本文将对煤矿余热综 合利用系统工业应用实践进行深入探讨,以供参考。 关键词:煤矿余热;矿井乏风;回收利用;节能减排 引言 党的十九大报告指出:“坚持节约资源和保护环境的基本国策,像对待生命 一样对待生态环境;着力解决突出环境问题,坚持全民共治、源头防治,持续实 施大气污染防治行动,打赢蓝天保卫战。”目前燃煤电厂的烟囱的“大白烟”现象还 是很明显,部分燃煤电厂周边民众要求企业治理湿烟羽的呼声日高。 1余热回收利用及控白烟技术 目前,在我国多个地区出台了控制湿烟羽的地方政策文件,主要是对湿法脱 硫出口的排烟温度和含湿量提出了具体的要求,即强制要求脱硫出口的排烟温度 及含湿量必须低于一定的限值。如河北省夏季(4月~10月)排烟温度要求低于48℃,冬季(11月~次年3月)排烟温度要求低于45℃。主要使用的主要是通 过回收脱硫前的高温烟气余热,此处的烟气余热可利用价值较高,根据能量守恒 定律,将原脱硫出口降至要求的排烟温度时所需要释放的热量,通过对脱硫前的 高温烟气进行余热回收利用,既节约了能源,又起到了控白烟的目的,还降低了 湿法脱硫系统的水耗及提高了脱硫效率。 2煤矿余热回收现有技术与发展水平 2.1风井乏风余热利用 矿井乏风余热资源丰富,流量大,温度稳定,含湿量较大,焓值较高。21世纪初,我国开始积极探索“采用热泵技术利用煤矿回风余热的研究与应用”,其中 第一代“采用淋水式取热+水源热泵”的矿井回风余热利用技术路线,该技术要求回风温度不低于12℃,取热量有限,水气带走了大量余热,其热能利用率20%;第 二代“采用取热与分体热泵”的矿井回风余热利用技术路线,该技术将热泵机组的 蒸发器放置于回风井上方,通过蒸发器直接吸收热量,将介质加热,然后通过铜 管供给热泵,该技术乏风取热温度一般在4℃,取热量有限,热能利用率约65%。目前“第三代直蒸和直冷式乏风热泵(称之为“深焓取热技术”)”与“高温及大温差供热”的矿井回风余热利用技术路线更具划时代意义,该技术是在第二代的基础上解决了乏风取至零下蒸发器表面结霜结冰的问题,大大提高了乏风余热的利用率, 其热能利用率达100%。直冷式乏风热泵技术原理示于图1。乏风取热箱设置在乏 风取热室侧面墙壁,其内介质与通过翅片的乏风进行换热,吸收乏风中的余热并 供给乏风热泵;热泵用电能将此部分低品位热源转换为高品位热源;根据末端需求,设定不同出水温度,满足各种工况需求。 图1直冷式乏风热泵技术原理示意 2.2瓦斯电厂余热回收 瓦斯发电机组在运行时,只有约35%的能量转化为电能,约30%~35%随高 温烟气排出,20%~25%被发动机冷却水带走,通过机身散热等其他损失约占10%左右,充分利用这些未被转化为电能的余热,可用来制取热水以满足用户的生产

浅层地热能单井回灌节能原理

浅层地热能单井回灌节能原理 对于地下200米以上的浅层地热能不但提取比较容易,而且节能环保,是可以循环利用的可再生资源。冬季供热时浅层地热能通过热泵机组提取热量,使供热水温可达到45℃---85℃之间;夏季制冷通过热泵机组提取的冷量,使空调冷冻水温度可达7℃左右。地下浅层资源丰富、可以长期循环利用,利用该资源供冷、供热比传统的燃煤、燃气锅炉及普通空调供热供冷要节能约40%-70%。 单井循环技术是利用专业钻探设备从地层表面往下钻成孔,孔径为800mm 以上,深度为200米以内成孔后进行数据测定,根据电测数据对复杂的地层进行精确的计算,主要对其渗透系数、地下水流量、流速和热传导系数进行精确计算。通过以上的计算要先设计水井桥式滤水管和螺旋管的下管位置,因为地质结构和下管位置的直接影响到单井换热量的大小,最后要确定最佳换热地层。利用不同地层的物理特性结构把回水按不同的地质结构进行回灌设计,地质结构的不同每百米的换热量也有所不同,百米换热量一般在200kw-800kw范围之间。 注:地下水在土壤中常年在不停的横向流动,浅层地热能单井回灌技术是通过技术手段改变其流动方向形成垂直流动,主要利用回水水流冲通地下土壤中的水通道,以传导和对流的方式交换能量。横向流动主要以回水水流与土壤或沙层砾石等易于流动的地层进行能量转换。当水泵在井的下部抽水时形成负压,通过负压差的作用加快回水和扩散换热面积,其单井换热能效主影响区域宜为20-25米之间,再通过水泵循环、交换提取土壤、沙层、或砾石等地质中的能量。交换过程不损耗地下水、不污染地下水资源。单井回灌节能技术是目前国内最佳的节能、环保技术;也彻底解决了常规水源热泵系统井水回灌难题。而且本技术具有初装费低、质量可靠,使用寿命长等优点,是解决水源热泵系统回灌问题的最佳方法。 河南省空调冷冻节能协会

国内外地热能开发及利用现状介绍

国内外地热能开发及利用现状介绍 中国能源网研究中心王鸿雁张葵叶 地热资源是在当前技术经济条件和地质条件下,能够从地壳内科学、合理地开发出来的岩石热能量、地热流体热能量及其伴生的有用组分。地热资源既属于矿产资源,也是可再生能源。目前可利用的地热资源主要包括:天然出露的温泉、通过热泵技术开采利用的浅层地温能、通过人工钻井直接开采利用的地热流体以及干热岩体中的地热资源。在全球各国积极应对气候变化,努力减少温室气体排放的背景下,近年来,全球地热能开发及利用取得较快发展,也越来越引起我国政府及企业的重视。 一、全球地热资源分布及利用 (一)全球地热资源分布 全球地热储量十分巨大,理论上可供全人类使用上百亿年。据估计,即便只计算地球表层10km厚这样薄薄的一层,全球地热储量也有约1.45×1026J,相当于4.948×1015吨标准煤,是地球全部煤炭、石油、天然气资源量的几百倍。[1]世界上已知的地热资源比较集中地分布在三个主要地带:一是环太平洋沿岸的地热带;二是从大西洋中脊向东横跨地中海、中东到我国滇、藏地热带;三是非洲大裂谷和红海大裂谷的地热带。这些地带都是地壳活动的异常区,多火山、地震,为高温地热资源比较集中的地区。[2]图1所示为全球地热资源集中分布带:

图1 全球地热资源集中分布带 来源:鹿清华, 张晓熙, 何祚云. 国内外地热发展现状及趋势分析[J]. 石油石化节能与减 排, 2012, 2(1): 39-42 (二)全球地热资源利用 地热资源按赋存形式可分热水型、地压地热能、干热岩地热能和岩浆热能四种类型;根据地热水的温度,又可分为高温型(>l50℃)、中温型(90~150℃)和低温型(<90℃)三大类。地热能的开发利用可分为发电和非发电两个方面,高温地热资源主要用于地热发电,中、低温地热资源主要是直接利用,多用于采暖、干燥、工业、农林牧副渔业、医疗、旅游及人民的日常生活等方面。此外,对于25℃以下的浅层地温,可利用地源热泵进行供暖、制冷。 根据2010世界地热大会的最新数据,2010年,全球有24个国家开发了地热发电项目,总装机容量10715MWe,年发电利用总量为67246GWh,平均利用系数为0.72;有78个国家开展了地热直接利用活动,总设备容量为50583MWt,年利用热能121696GWh,平均利用系数0.27。 表1 地热发电排名前10的国家 国家装机容量 (MWe)运行能量 (MWe) 总生产能量 (GWh/y) 运行率 (%) 运行机组 (套) 美国3093 2024 16603 0.94 209 菲律宾1904 1774 10311 0.66 56 印尼1197 1197 9600 0.92 22 墨西哥958 958 7047 0.84 37 意大利843 843 5520 0.75 33 新西兰628 628 4055 0.74 43 冰岛575 575 4597 0.91 25 日本536 422 3064 0.83 20 萨尔瓦多204 192 1422 0.85 7 肯尼亚167 167 1131 0.78 6 表2 地热直接利用排名前10的国家国家总生产能量GWh/y 主要利用方式 中国20932 直接供热、地源热泵、洗浴 美国15710 地源热泵 瑞典12585 地源热泵 土耳其10247 直接供热 日本7139 洗浴 挪威7001 地源热泵

煤矿矿井热害的防治

编号:AQ-JS-01674 ( 安全技术) 单位:_____________________ 审批:_____________________ 日期:_____________________ WORD文档/ A4打印/ 可编辑 煤矿矿井热害的防治 Prevention and control of heat damage in coal mine

煤矿矿井热害的防治 使用备注:技术安全主要是通过对技术和安全本质性的再认识以提高对技术和安全的理解,进而形成更加科学的技术安全观,并在新技术安全观指引下改进安全技术和安全措施,最终达到提高安全性的目的。 1井下采掘工作面和机电硐室的空气温度,均应符合现行《煤矿安全规程》的规定。 2新建、改扩建矿井设计时,应根据井田勘探地质报告及建设单位提供的有关资料,采用经鉴定的气温预测方法,进行矿井气温预测计算,超温地点应有降温措施。 3对气温超限矿井,应采取综合降温措施。 4采用非人工制冷降温,应根据矿井的具体条件,综合采用利用天然冷源、增加供风量或提高作业人员集中处的局部风速、下行通风或同流通风等有利于降温的通风方式、回避井下热源、隔绝或减少热源向进风流散热、疏放或封堵热水、个体防护等措施。 5采用人工制冷降温,应根据矿井地质条件、开拓开采系统、巷道布置、矿井通风系统、制冷降温范围、采深、冷负荷、矿井涌水量及水质和水温、回风风量和温度、采掘机械化程度、热源及条件

类似矿井的经验,进行技术经济论证后,选用井下移动式空调或压缩空气制冷等局部降温措施、地面集中空调系统、地面与井下联合空调系统等降温方式。 6井下空气处理应符合下列规定: (1)井下空气处理设备、设施,应根据空调系统和需处理的空气量、冷负荷等,综合采用直接蒸发式、水冷表面式、喷淋式冷却器或喷淋硐室; (2)井下空气处理方式可采用集中处理或在各降温地点分别处理; (3)当需处理的空气量较大、冷负荷较大或狭长空间自然空气温度差大于10℃,用单一空气处理设备或设施难以达到效果或不经济时,宜采用综合的空气处理方式。 (4)空气处理设备的处理风量,应根据冷负荷与送风温差确定,但不得大于供给所在巷道处的风量。对掘进工作面,其处理风量不得超过该工作面全负压供给该处风量的70%。 7制冷机冷凝热排除方式应根据降温方式、冷凝热量、水源的水

煤矿余热新能源综合利用

煤矿新能源综合利用技术资料 (压风机余热、矿井水余热、矿井乏风余热、工业太阳能综合利用)

一、制取洗浴热水的方式: 1、太阳能免费制取洗浴热水 太阳能是一种免费的能源,我公司先后研发太阳能系统防冻技术和太阳能系统免结垢技术。利用太阳能集热器系统中分别循环防冻液和软化水,达到防冻和免结垢的目的。根据矿区职工洗浴需求的大小,布置太阳能集热器的面积,利用PLC控制技术,得到恒温的洗浴热水。 兖矿集团北宿煤矿650吨洗浴热水工程 太阳能系统原理图 2、压风机余热免费制取洗浴热水

空压机连续的运行中,把电能转换为机械能,机械能通过专用设备压缩自然状态下的空气获得高压压缩空气,其中一小部分由机械能转换为高压压缩空气势能,另外空气被压缩产生的大量热量,经润滑油带出,最后以风冷或水冷的形式把热量散发出去。采用冷热交换原理,将空压机中高温润滑油中的热量转移至水中,油温为85℃-90℃, 将常温水转换为50℃-70℃ 热水,既降低油的工作温度,提高了空压机自身的工作效率,并且得到了可靠的洗浴热水。 空气压缩机余热制取洗浴热水原理图 3、热泵制取洗浴热水 水源热泵和空气源热泵热水机组是一种可以替代锅炉不受资源限制的节能环保热水供应装置。根据卡诺循环原理,实现由低温热能向高温热能转移的一种新能源利用技术,得到可靠稳定的洗浴热水。 4、瓦斯发电高温冷却水制取洗浴热水 瓦斯发电机组系统在运行中,产生高温烟气和高温冷却水,高温冷却水一般在40℃~50℃,可以作为洗浴热水的热源,免费制取洗浴热水。 5、井下热害处理热回收免费制取洗浴热水

高温矿井对于井下热害处理的要求比较重要,一般情况下,非供暖季时需要全负荷运行,供暖季小负荷运行。因此,在井下热害处理时安装热回收机组,在实现制冷的同时可以得到高温的热水用于洗浴。 总结:满足矿区职工洗浴热水的需求,本着“免费能源优先,节能能源辅助”的原则,结合矿区的实际情况,对矿区现有的可利用能源进行规划,综合利用,实现最大节能。 二、井下热害处理: 随着矿井开采深度的增加,矿井高温热害问题越来越严重,为保障煤炭工业持续健康发展,必须采取相应措施进行治理。依靠科学技术,加大安全投入,创造井下适宜的作业环境,提高井下工作人员的工作效率,保证员工的生命安全及身体健康迫在眉睫。我公司有以下三种技术方案: 方案一:井下降温制冷系统设于井底附近的制冷机房--即井下集中式系统,与地面建筑空调制冷系统分别独立设置。井下集中式系统是指除散热设备冷却塔置于地面上,制冷系统其它的设备均设置于井下制冷机房,制冷机组制备的冷冻水(3-5℃)通过冷冻水循环水泵经绝热管道送至采煤工作面或掘进工作面的空气冷却器,将通过空气冷却器的空气降温,冷却后的空气与未通过空气冷却器温度较高的空气在巷道混合后,使得通过采煤或掘进工作面的空气温度≤26℃,达到规要求的工作温度。同时,在地面上矿井工业场地风井井口附近设置冷却塔,用以排放井下制冷机组产生的冷凝热。 该方案系统简单、中间环节少,能耗低;与地面集中式(方案二)系统相比减少了换冷器、冷水泵及相应的附属设备。该系统存在的问题是要求制冷机组的冷凝器及冷却水泵必须承受近10MPa的压力,同时,井下集中式系统运行管理、维修安装等方面不如地面集中式系统。

浅层地热能地下换热工程验收规范 DB41_T 1944-2020 河南

ICS27.010 F 15 DB41 河南省地方标准 DB41/T 1944—2020 浅层地热能地下换热工程验收规范 2020-01-21发布2020-04-21实施河南省市场监督管理局发布

DB41/T 1944—2020 浅层地热能地下换热工程验收规范 1 范围 本标准规定了浅层地热能地下换热工程的验收。 本标准适用于新建、改建和扩建的竖直地埋管地源热泵系统和地下水地源热泵系统的浅层地热能地下换热工程的验收。 2 规范性引用文件 下列文件对于本文件的应用是必不可少的。凡是注日期的引用文件,仅注日期的版本适用于本文件。凡是不注日期的引用文件,其最新版本(包括所有的修改单)适用于本文件。 GB 50366 地源热泵系统工程技术规范 DZ/T 0148 水文水井地质钻探规程 DZ/T 0225 浅层地热能勘查评价规范 3 术语和定义 GB 50366界定的以及下列术语和定义适用于本文件。为了便于使用,以下重复列出了GB 50366中的一些术语和定义。 3.1 浅层地热能地下换热工程 浅层地热能开发利用过程中,与地下岩土体或地下水进行换热的各类直接设施及其相关附属设施的总称。 3.2 地源热泵系统 以岩土体、地下水或地表水为低温热源,由水源热泵机组、地热能交换系统、建筑物内系统组成的供热空调系统。根据地热能交换系统形式的不同,地源热泵系统分为地埋管地源热泵系统、地下水地源热泵系统和地表水地源热泵系统。 [GB 50366—2005,定义2.0.1] 3.3 隐蔽工程验收 浅层地热能地下换热工程施工过程中,在施工现场对影响地下换热工程施工质量的隐蔽性项目的检查过程。 3.4 整体工程验收 对浅层地热能地下换热工程施工与设计符合程度的检查、确认的过程。 3.5 钻孔 1

地热能及地热发电技术概述

地热能及地热发电技术概述 摘要文章主要介绍了地热资源及其分类,地热发电的原理,并对发展地热发电中需要解决的关键问题进行了简要的分析,最后对我国地热发电的发展前景做了一下展望。 关键词地热资源;类别;发电原理;关键问题;发展前景 随着人类对资源的过度开采,煤,石油等化石能源在几十年或一百多年后将被消耗殆尽;另一方面,这些能源的燃烧所造成的环境污染也日益凸显,严重威胁着人类社会的可持续发展。因此,开发可再生新能源已成为当前社会不容忽视的必由之路。我国地处欧亚板块,有着丰富的地热资源,太平洋地热带和地中海——喜马拉雅地热带经过我国版图。因此,开发地热能对解决我国能源短缺有着重大意义,具有美好的发展前景。 1地热资源及其分类 地热资源是指在当前技术经济和地质环境条件下,能够从地壳中科学、合理的开发出来的岩石中的热能量和地热流体中的热能量及其伴生的有用组成。地热能是通过漫长的地质作用而形成的集热、矿、水为一体的矿产资源。地热资源按它在地下的储存形式可分为五大类:蒸汽型、热水型、地压型、干热岩型和岩浆型。 1)蒸汽型地热资源:指以温度较高的蒸汽为主的地下对流水热系统,这类地热资源由于需要特殊的地质条件才能形成,因此储量较少。一般蕴藏在1.5 km 左右的地表深度。 2)热水型地热资源:指地下以水为主的对流水热系统,是存在于地热区的水从周围储热岩体中获得能量形成的,包括喷出地面的热水和湿蒸汽。这类资源分布广泛,储量丰富,是当前重点研究对象。 3)地压型地热资源:蕴藏深度为2km~3 km,以高压水形式存在,溶解大量碳氢化合物,开发时可同时得到压力能,热能,化学能。 4)干热岩型地热资源:在地壳深处,岩石具有很高的温度,储存大量得热能,干热岩型地热资源主要指地表下10km左右深处的干燥无水的热岩石。这类资源十分丰富,是未来开发的重点。 5)岩浆型地热资源:指蕴藏在地层深处的呈完全熔融状态或半熔融状态的岩浆中所具有的巨大能量。 2地热发电的原理及技术

煤矿余热节能环保综合利用项目

煤矿余热节能综合利用项目 瓦斯发电机组余热、压风机余热、矿井水余热、矿井乏风氧化余热综合利用 胜动集团节能工程公司 2014年5月21日

公司简介 胜动集团节能工程公司位于山东省东营市经济技术开发区府前大街30号,是“中国节能服务产业十佳企业”胜利油田胜利动力机械集团有限公司下属分公司,专业从事分布式能源发电;矿井水、乏风、工艺循环、压风机冷却废热提取;井口保温和井下制冷;工业余/ 废热综合利用等节能工程项目建设总承包业务,集节能工程项目咨询、工程设计、施工总包于一体,提供节能工程建设一体化服务。公司以工程设计院为依托,拥有一支精良工程项目管理团队,业务内容涵盖节能诊断、节能规划、方案设计、可行性研究报告、工程设计、工程施工、EPC总承包。公司目前拥有电力行业(新能源发电、火电)设计和咨询乙级资质、机电设备安装工程专业承包叁级资质,现有员工120余人,其中设计咨询板块60余人,拥有注册建筑师、注册结构师、注册电气工程师、注册公用设备工程师、注册造价师、注册咨询师等各类执业资格技术人员20余名,拥有建筑、结构、暖通、机务、电气、动力等各类专业高中级工程师30余名,工程项目管理板块拥有国家注册建造师执业资格的项目管理人员10余名。节能工程公司立足于集团公司节能减排产业,始终如一的秉承“节约能源、保护蓝天”的企业宗旨,坚持“追求完美、创造卓越”的工作理念,提供给社会“全盘、全套、全面、全新、全优”的节能工程综合服务。近年来,公司以全国范围内燃煤替代节能工程为市场方向,进入煤矿余热综合利用、工业余/废热回收利用等集成供热制冷节能工程领域,实现了快速发展。

一、煤矿丰富的余热资源 1、煤矿瓦斯发电余热 胜动集团是全国最大的燃气内燃机发电机组产业基地,拥有多种型号的燃气发电机组,如500kW/600kW/700kW/1200kW/2000kW大型煤矿瓦斯发电机组。拥有多项发明专利的特有技术。是煤矿低浓度瓦斯发电的行业实施者、标准制定者。 发电机组在运行时,只有约35%转化为电能,约30%-35%随高温烟气排出,20%-25%被发动机冷却水带走,通过机身散热等其他损失约占10%左右,充分利用这些没有被转化为电能的余热,用来制取冷热水以满足用户的生产生活需求。例如:煤矿瓦斯变害为利改造途径中,既有瓦斯的发电利用,也有瓦斯发电余热的利用,既提高了瓦斯的利用率,改善机组运行工况,又降低其他能源消耗。 2、压风机余热制取洗浴热水

矿井热害及防治通用版

安全管理编号:YTO-FS-PD479 矿井热害及防治通用版 In The Production, The Safety And Health Of Workers, The Production And Labor Process And The Various Measures T aken And All Activities Engaged In The Management, So That The Normal Production Activities. 标准/ 权威/ 规范/ 实用 Authoritative And Practical Standards

矿井热害及防治通用版 使用提示:本安全管理文件可用于在生产中,对保障劳动者的安全健康和生产、劳动过程的正常进行而采取的各种措施和从事的一切活动实施管理,包含对生产、财物、环境的保护,最终使生产活动正常进行。文件下载后可定制修改,请根据实际需要进行调整和使用。 1矿井热害的形成 地壳最表层的温度受地面温度周期性变化的影响,这种影响是随着深度的增加而逐渐减弱的;到一定深度,这种影响基本消失,从而地温保持恒定。地温常保持恒定的带称为恒温带。在恒温带以上,地温受太阳辐射热的影响而具有周期性的变化,故称为变温带。在恒温带以下,地温的变化受控于地球的内热;随着深度的增加而不断增温,故称为增温带。恒温带则是变温带与增温带的分界面。 由于恒温带的深度大都为十余米、数十米,而矿井生产的深度大都为数百米,甚至上千米,远远深于恒温带的深度;随着温度的增加,地温增高,当地温超过某一温度时,就产生了矿井的热害问题。可以说,热害是矿井生产向深部发展过程中不可避免的。 2矿井高温环境的危害 正常人在下丘脑体温调节中枢的控制下,产热与散热处于动态平衡状态,体温基本上维持在37℃。在体力劳动

矿井热害及防治

矿井热害及防治 1矿井热害的形成 地壳最表层的温度受地面温度周期性变化的影响,这种影响是随着深度的增加而逐渐减弱的;到一定深度,这种影响基本消失,从而地温保持恒定。地温常保持恒定的带称为恒温带。在恒温带以上,地温受太阳辐射热的影响而具有周期性的变化,故称为变温带。在恒温带以下,地温的变化受控于地球的内热;随着深度的增加而不断增温,故称为增温带。恒温带则是变温带与增温带的分界面。 由于恒温带的深度大都为十余米、数十米,而矿井生产的深度大都为数百米,甚至上千米,远远深于恒温带的深度;随着温度的增加,地温增高,当地温超过某一温度时,就产生了矿井的热害问题。可以说,热害是矿井生产向深部发展过程中不可避免的。 2矿井高温环境的危害 正常人在下丘脑体温调节中枢的控制下,产热与散热处于动态平衡状态,体温基本上维持在37 C。在体力劳 动等情况下,体内能量代谢过程加速,产热增大,人体通过血管扩张血流量增大、汗腺分泌增加及呼吸加速等途径,将体内产生的热量送到体表,,以辐射、传导、对流以及汗液蒸发等换能换热方式将热量散发到周围大气中,以维持体温在正常的变动范围内。 高温的工作环境会使人感到不舒适,从而降低劳动生产率,增大事故率,影响安全生产和降低工作效率。同时,人在高温条件下从事繁重体力劳动时,如果周围环境的冷却能力不足以吸收人体散发的热量,就会造成热量在体内蓄积,过高的热环境甚至使人体的温度调节系统失调。在失水、心功能不健全、过度出汗后汗腺功能衰竭的情况下,可能进一步促使热量在体内的蓄积并导致大汗不上、体温升高、头昏、呕吐等中暑症状,甚至造成死亡。 3降温措施 为保障矿工的身心健康和生产的安全进行,我国的矿山安全条例规定:井下工人作业地点的空气温度,不得 超过28 C,超过时应采取降温和其他保护措施。同时煤矿安全规程规定:采掘工作面的空气温度不超过26 C,机电硐室的空气温度不得超过30 C,空气温度超过时,要采取降温措施。 改善矿内气候条件的措施很多,归纳起来有两个方面:一为非人工制冷措施,即矿井通风;一般来说,在地 温31 C以上、37C以下时,可能产生热害,但这种热害一般通风方法(即:非人工风流的措施)就可以解决。 二为人工制冷来冷却风流的措施,也称为矿井空气调节;在地温达到37 C以上的地区,一般来说,单靠加强 通风降低温度难以达到目的,应考虑采用人工制冷降温系统。

矿井降温技术规范

矿井降温技术规范 1 范围 本标准规定了矿井热害防治技术的定义和术语、技术条件、适用范围、技术要求、降温系统测试及评价方法。 本标准适用于煤矿地下开采的矿井,包括生产、新建和改、扩建矿井。 2 规范性引用文件 下列文件中的条款通过本标准的引用而成为本标准的条款。凡是注明日期的引用文件,其随后所有的修改件(不包括勘误的内容)或修订版均不适用于本标准,然而,鼓励根据本标准达成协议的各方研究后确定,是否可使用这些文件的最新版本。凡是不注日期的引用文件,其最新版本适用于本标准。 GB/T 15586设备及管道保冷设计导则 GB 50016 建筑设计防火规范 GB 50019 采暖通风与空气调节设计规范 GB 50050工业循环冷却水处理设计规范 GB 50155 采暖通风与空气调节术语标准 GB 50215 煤炭工业矿井设计规范 3 术语和定义 GB 50155及AQ/T 1067中确立的术语和定义以及下列术语和定义适用于本标准。 3.1 矿井热害mine victims 煤矿井下作业环境的空气温度超过国家规定的卫生和安全标准,从而对人体健康、生产和安全造成危害。 3.2 矿井热害防治control of mine victims 通过采用各种技术措施进行矿井热害的预防和治理,称之为矿井热害防治,又称矿井空气调节、矿井热害控制或矿井降温。 3.3 矿用降温设备mine air conditioning equipment 符合矿井特殊环境和安全要求的、为实现热害防治目的所需要的各种设备的统称。 3.4 矿井制冷降温mine cooling 采用人工制冷措施降低井下作业环境的空气温度。 3.5 矿井制冷降温系统mine cooling system 为达到冷却煤矿井下风流之目的,由制冷、输冷、传冷和排热四个基本环节构成的系统。 3.6 地温场geothermal field 地层中的温度分布。 3.7 地温异常区temperature anomalies

煤矿矿井热害的防治参考文本

煤矿矿井热害的防治参考 文本 In The Actual Work Production Management, In Order To Ensure The Smooth Progress Of The Process, And Consider The Relationship Between Each Link, The Specific Requirements Of Each Link To Achieve Risk Control And Planning 某某管理中心 XX年XX月

煤矿矿井热害的防治参考文本 使用指引:此安全管理资料应用在实际工作生产管理中为了保障过程顺利推进,同时考虑各个环节之间的关系,每个环节实现的具体要求而进行的风险控制与规划,并将危害降低到最小,文档经过下载可进行自定义修改,请根据实际需求进行调整与使用。 1 井下采掘工作面和机电硐室的空气温度,均应符合 现行《煤矿安全规程》的规定。 2 新建、改扩建矿井设计时,应根据井田勘探地质报 告及建设单位提供的有关资料,采用经鉴定的气温预测方 法,进行矿井气温预测计算,超温地点应有降温措施。 3 对气温超限矿井,应采取综合降温措施。 4 采用非人工制冷降温,应根据矿井的具体条件,综 合采用利用天然冷源、增加供风量或提高作业人员集中处 的局部风速、下行通风或同流通风等有利于降温的通风方 式、回避井下热源、隔绝或减少热源向进风流散热、疏放 或封堵热水、个体防护等措施。 5 采用人工制冷降温,应根据矿井地质条件、开拓开

采系统、巷道布置、矿井通风系统、制冷降温范围、采深、冷负荷、矿井涌水量及水质和水温、回风风量和温度、采掘机械化程度、热源及条件类似矿井的经验,进行技术经济论证后,选用井下移动式空调或压缩空气制冷等局部降温措施、地面集中空调系统、地面与井下联合空调系统等降温方式。 6 井下空气处理应符合下列规定: (1)井下空气处理设备、设施,应根据空调系统和需处理的空气量、冷负荷等,综合采用直接蒸发式、水冷表面式、喷淋式冷却器或喷淋硐室; (2)井下空气处理方式可采用集中处理或在各降温地点分别处理; (3)当需处理的空气量较大、冷负荷较大或狭长空间自然空气温度差大于10℃,用单一空气处理设备或设施难以达到效果或不经济时,宜采用综合的空气处理方式。

新能源与材料——_地热能的开发与利用.

、引言 二、中国地热能研究及发展现状 2.1 工程地热系统地热能 2.2 2050 年发展愿景 2.3 地热能利用技术 三、我国地热能的利用现状 3.1 我国地热能开发利用概况 3.2 地热能发电 3.3 地热能采暖(制冷) 3.4 地热温室 3.5 产业化现状 四、当前我国发展地热能存在的问题 4.1 人才资源缺乏、研究力量薄弱 4.2 全国地热资源勘查评价程度低 4.3 地热利用关键技术尚待突破 4.4 地热产业缺乏扶持政策 五、应采取的对策和措施 六、参考文献: 目 录 10 11

、引言 在可再生能源大家族中,地热是唯一的来自地球内部的能量。因为地球处于 壮年期,地心温度高达45000C,所以能量巨大。由于人类利用的热量很小,地 温一般可以在相同的时间尺度上恢复. 因而地热能是可再生能源只要设定合理的利用上限,地热田的寿命可以达到100?300a。地热能是一种清洁的能源,基本不污染大气. 也不排放温室气体。地热能具有来源稳定的特征,平均利用系数高达73%,地热电站的利用系数可达95%,也易于调峰和实施热电联供。而且,电站建设与运行费用也不算高,地热直接利用的成本更低采用地源热泵技术开采浅层地热能也比其他热源更为有利,主要在于它可以把夏季回收的热量用于冬天供热,从而降低了能耗。2011 年5 月,联合国政府气候变化专门委员会(IPCC) 第三工作组发表分析报告指出,就技术开采潜力而言,地热能是仅次于太阳能的 第二大清洁能源。IPCC和国际能源署预测到2050年地热发电装机容量将占世界电力总装机容量的3%。 中国地热能研究及发展现状 2.1工程地热系统地热能 根据国土资源部最近发布的评价数据,中国浅层地热能资源量相当于95亿t 标准煤。每年可利用量相当于3.5 亿t 标准煤。全国水热型地热能资源储量折合标准煤8530亿t;何年可利用量相当于6.4亿t标准煤。中国大陆3000-10000m 深度范围内干热岩地热能资源量相当于860万亿t 标准煤,相当于中国大陆2010 年度能源消耗总量的26 万倍。汪集等根据最近更新的大地热流数据和深部地温资料,给出了中国陆域干热岩地热能资源评价,圈定了优势区域,按照开采比例. 其能量相当于 2%的可2010年中国总能耗的4400倍。 2014年,中国非电直接利用的能量当量为: 装机容量3687MW,t 相当于电量 TW h,其中55%乍为洗浴及温泉疗养,14%为地热供暖,其他14%为地热“份联供”,属世界首位。近年来,浅层地热能的利用为3000MW,t 且发展迅速。截止

矿井乏风瓦斯利用进展情况汇报

山西高平科兴前和煤业有限公司矿井瓦斯乏风综合利用项目进展情况 按照省厅关于印发《山西省煤炭工业厅创新驱动和低碳创新行动计划牵头任务细化工作方案》的通知(晋煤科发【2014】647号)文件精神和晋城、高平市局主管部门要求,切实把创新驱动和低碳创新行动计划的各项任务落到实处,我公司建立开发低浓度抽放瓦斯和矿井乏风瓦斯综合利用项目。 一、矿井乏风瓦斯综合利用项目概述 乏风及低浓度瓦斯氧化发电的原理是把泵站的抽放瓦斯掺混到乏风里,导入蓄热式高温氧化装置。低浓度甲烷在高温反应腔里瞬间无火焰地氧化为水和二氧化碳,并释放出巨大氧化热。热能的一小部分用于维持反应温度,大部分热能被导出到余热锅炉和水进行热交换,产出过热高压水蒸汽,驱动汽轮机发电。 乏风及低浓度瓦斯氧化发电可以销耗95%以上的排空甲烷,利用低浓度瓦斯资源建设分布式清洁能源体系,符合国家“以用促抽”的瓦斯治理方针。 二、矿井乏风瓦斯综合利用项目完成进展情况 1、2014年7月至10月15日,由张文忠总工程师牵头,组织通风科、总工办认真做了矿井瓦斯综合利用技术的前期

调研工作,对矿井瓦斯抽放平均浓度、抽放量、矿井瓦斯风排量等瓦斯参数进行统计汇总。完成矿井乏风瓦斯综合利用项目规划实施方案的编制。 2、2014年10月16日至2014年12月30日,我公司派出工程技术人员考察潞安集团高河煤矿、西山煤电集团有限责任公司东曲煤矿矿井乏风氧化利用项目。向公司管理委员会提交矿井乏风瓦斯综合利用项目考察报告。 三、工作要求 健全推进机制,加强督促落实。建立健全主要领导负责制、协调推进会议制、按季度汇总报送进展情况制度等。对各项工作任务的对接、跟踪、落实情况以及推进过程中遇到的问题,及时向领导组进行汇报。 通风科 二0一四年十月二十八日

煤矿热害及其防治技术应用现状与发展战略

煤矿热害及其防治技术应用现状 煤矿热害现状 随着社会的发展和煤炭资源需求的日益增加,煤炭产量日益增大,浅部煤炭资源越 来越少,世界各主要采煤国家相继进入深部开采。随着开采深度的增加,地温也随之升 高。德国和俄罗斯的一些煤矿开采深度已达1400~1500m;南非卡里顿维尔金矿开采深度达3800m,竖井井底己达地表以下4146m;加拿大超千米的矿井有30对,美国有11对。我国煤矿目前的开采深度平均每年以8~12m的速度增加,采深超过1000m的矿井已有数十对,沈阳采屯煤矿开采深度为1197m、开滦赵各庄矿开采深度为1159m、新汶孙村矿为1059m、北京门头沟开采深度为1008m、长广矿开采深度为1000m。据世界各地的测量资料,全球平均地温梯度约为3℃/100m。据我国煤田地温观测资料统计,百米地温梯度为2~4℃/100m,已探明的储量中,1000~2000m深处的煤炭储量占总储量的%。 根据2001年有关统计,我国已有130多对矿井出现了不同程度的热害,全国煤矿 中采掘工作面气温超过30℃的高温矿井有88座(不含年产量30万吨/年以下的矿井),其中30-32℃的有31座,32-35℃的有37座,35℃以上的有20座。按我国行政区域划分:华中地区有18座,其中以平顶山、丰城和许昌为代表;华东地区 有39座,其中以两淮、兖州、新汶、徐州(含大屯)和巨野为代表;华北及东北 有26座,其中以峰峰(邯郸)、邢台、大同、开滦、铁法、北票、抚顺、辽源和 鸡西为代表;其它地区(湖南2座、甘肃1座、广西1座、福建1座)5座,据最近有关资料,西北的新疆地区煤矿也存在矿井高温热害问题。 综上,矿井热害问题越来越严重,已成为与矿井瓦斯、火、粉尘、矿压、水并列的 六大灾害之一,热害已严重了影响井下作业人员的身体健康、工作效率和矿山经济效益, 甚至影响整个国民经济的可持续发展。

浅层地热能利用技术

浅层地热能利用技术 1前言 地热能是地球内部贮存的热能,它包括地球深层由地球本身放射性元素衰变产生的热能及地球浅层由接收太阳能而产生的热能。前者以地下热水和水蒸气的形式出现,温度较高,主要用于发电、供暖等生产生活目的,其技术已基本成熟,欧美国家有很多用于发电,我国则多用来直接供热,这种地热能品位较高,但受地理环境及开采技术与成本的影响因而受限较大;后者由太阳能转换而来,蕴藏在地球表面浅层的土壤中,温度较低,但开采成本和技术相对也低,且不受地理环境的影响,特别适合于建筑物的供暖与制冷,因而受到了暖通空调及 节能行业越来越多的关注。 地球表面是一座巨大的天然太阳能集热器和储热库。到达地球表面的太阳能相当于全世界能源消耗量的2000倍,只是由于太阳能能流密度低,地球表面的温度变化大,使得对这部分热能的直接利用困难较多。但实际上,温度受天气变化影响较大的部分主要集中在地表面至地下10m之间的区域内,从10m深度再往下,大地温度就稳定在当地全年的平均气温上了。我国大部分地区这个温度都在15℃左右,如果把这样的温度搬运到地面上来稍做处理,就可成为很好的空调系统,这就是目前浅层地热能利用的主要方式。 浅层地热能利用通常需借助于热泵,它是一项新兴绿色节能技术。在冬天它以大地为低温位热源,从大地中提取热量,经过地面上热泵的转换,提高温位向房屋供暖;在夏天则以大地为高温位热源,将房屋内的热量输送到大地土壤中。由于地下温度十分稳定且很接近房屋居住所需的温度,因此,相对于以大气环境为热源的热泵和燃煤、燃油的供暖供冷系统,以大地为提取热量或排放热量的热源的热泵效率大大提高,同时还减少了燃烧产物的排放和制 冷剂的用量,对环保十分有利。 从大地土壤中提取热量用于房屋的供暖早在20世纪30年代就已提出,只是由于长期以来石化燃料价格低廉,供应充足,它才没有得到重视,导致其进展缓慢。到20世纪80年代以后,由于全球性能源紧张和环境污染日趋严峻,这项技术才逐渐受到青睐,目前已趋于成熟,正在欧洲、北美和日本得到推广应用。在我国则还处于实验研究阶段,目前国内几家科研院所和高校正在开展这方面的研究,要进入商业化的实际工程应用尚需进行长期不懈的努力。 2浅层地热能利用系统及其特点 浅层地热能属于低品位热能,直接使用达不到一般要求的温度,通常需设置一套热泵,组成地热能热泵利用系统,将地下热能的温度进行一定的提高或降低。因此,地热能利用系统主要由热泵、地热换热器及用户端组成,而其中地热换热器是关键。 2.1地热能热泵地热能热泵的工作原理与通常的热泵相同,都是由压缩机、蒸发器、冷凝器、节流装置组成。通过消耗一部分高品质能源即电能,吸收低温物体的热能排放给高温

相关文档
最新文档