8讲义(光电效应)

8讲义(光电效应)
8讲义(光电效应)

实验十八用光电效应测普朗克常数

【实验简介】

量子理论是近代物理的基础之一,而光电效应对人时光的本质及早期量子理论的发展,具有里程碑的意义。随着科学技术的发展,光电效应已广泛应用于工农业生产、国防和许多科技领域。利用光电效应制成的光电器件,如光电管、光电池、光电倍增管等,已成为生产

和科研不可缺少的器件.普朗克常数是自然科学中一个横重要的常数,它可以用光电效应法简单而又准确地求出。

1905年爱因斯坦大胆地把1900年普朗在进行黑体辐射研究过程提出的辐射能量不连续(量子化)观点应用于光辐射,提出“光量子”概念,成功地解释了光电效应现象。对于图爱因斯坦的假设,许多学者都企图通过自己的工作来验证爱因斯坦方程的正确性。然而卓有成效的工作属于美国芝加哥大学莱尔逊实验室的密立根,他经过10年左

右的时间,对光电效应开展全面的实验研究,对

了普朗克常数-34

6.6261910

h J s

=??,推动了量子理论的发展,树立了一个实验验证科学理论的良好典范。爱因斯坦和密立根都因光电效应等

方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。

【实验目的】

1、通过实验深刻理解爱因斯坦的光电效应理论,了解光电效应的基本规律;

2、掌握用光电管进行光电效应研究的方法;

3、学习对光电管伏安特性曲线的处理方法,并用以测定普朗克常数。

【实验仪器】

GD-4型智能光电效应(普朗克常数)实验仪(由光电检测装置和实验仪主机两部分组成)

光电检测装置包括:光电管暗箱GDX-1,高压汞灯箱GDX-2;高压汞灯电源GDX-3和实验基准平台GDX-4。

实验主机为:GD-4型光电效应

(普朗克常数)实验仪,该仪器包

含有微电流放大器和扫描电压

源发生器两部分组成的整体仪

器。

【实验原理】

1、普朗克常数的测定

根据爱因斯坦的光电效应方程:

光电检测装置

实验主机

图18-3 GD-4型智能光电效应(普朗克常数)实验仪

P s E hv W =- (18-1)

(其中:P E 是电子的动能,hv 是光子的能量,v 是光的频率,s W 是逸出功, h 是普朗克常量。)

s W 是材料本身的属性,所以对于同一种材料s W 是一样的。当光子的能量s hv W <时不能产生光电子,即存在一个产生光电效应的截止频率0v (0/s v W h =) 实验中:将A 和K 间加上反向电压KA U (A 接负极),它对光电子运动起减速作用.随着反向电

压KA U 的增加,到达阳极的光电子的数目相应减少,光电流减小。当KA s U U =时,光电流降为零,此时光电子的初动能全部用于克服反向电场的作用。即

s P eU E = (18-2)

这时的反向电压叫截止电压。入射光频率不同时,截止电压也不同。将(2)式代入(1)式,得

0s h U v v e

=-() (18-3)

(其中0/s v W h =)式中h e 、都是常量,对同一光电管0v 也是常量,实验中测量不同频率下的s U ,做出s U v -曲线。在(3)式得到满足的条件下,这是一条直线。

若电子电荷e ,由斜率h

k e

=可以求出普朗克常数h 。由直线上的截距可以求出溢出功s W ,由直线在v 轴上的截距可以求

出截止频率0v 。如图(2)所示。

2、测量光电管的伏安特性曲线

在照射光的强度一定的情况下,光电管中的电流I 与光电管两端的电压AK U 之间存在着一定的关系。

理想曲线与实验曲线有所不同,原因有:

①光电管的阴极采用逸出电势低的材料制成,这种材料即使在高真空中也有易氧化的趋向,使阴极表

面各处的逸出电势不尽相等,同时,逸出具有最大

动能的光电子数目大为减少。随着反向电压的增高,

光电流不是陡然截止,而是较快降低后平缓的趋近

零点。

②阳极是用逸出电势较高的铂钨等材料做成,本来只有用远紫外线照射才能逸出光电子,因为施加在光电管上的外电场对于这些光电子来说正是一个加速电场,使得发射的光电子由阳极飞向阴极,构成反向电流。

③暗合中的光电管即使没有用光照射,在外加电压下也会有微弱的电流流通,称做暗电流,其主要原因是极间绝缘电阻漏电(包括管座以及玻璃壳内外表面的漏电)、阴极在常温下的热电子辐射等。暗电流与外加电压基本成线性关系。

【实验内容及要求】

1、将仪器的连线接好;

2、经老师确认后,接通电源预热仪器20分钟;

3、熟悉仪器,进行一些简单的操作,并将仪器调零;

4、普朗克常数的测定

选定某一光阑孔径为Φ的光阑(记录其数值),在不改变光源与光电管之间的距离L 的情况下,选用不同滤色片(分别有λ为365.0nm ,404.7nm ,435.8nm ,546.1nm ,577.0nm ),调节光电管两端的电压AK U ,使得光电管中的电流为0,将此时光电管两端的电压表示为s U (称为截止电压),将其记录下来;

5、测量光电管的伏安特性曲线 观察5条谱线在同一光阑孔径为Φ(记录其数值),在不改变光源与光电管之间的距离L (记录其数值)的情况下,改变光电管两端的电压AK U (范围在150V -~),记录电压AK U 和对应的光电流I 。

6、验证饱和电流与入射光强度成正比: 确定入射光波长λ(记录其数值)、光源与光电管之间的距离L (记录其数值)以及光电管两端的电压AK U (一般为50V ,这时认为光电管中的电流已达到最大值,即为饱和电流m I )

,改变光阑孔径Φ(分别为:2mm ,4mm ,8mm ),记录对应的饱和光电流m I ; 7、整理实验仪器

结束实验时,要将实验仪器按原样摆放好;

【数据的测量与处理】

1、普朗克常数的测定

表一、

关系光阑孔

要求:根据表一的实验数据(用最小二乘法处理),得出0直线的斜率,即可用求出普朗克常数,并用普朗克常数的公认值0h 比较实验相对误差0

h h E h -=

,式中191.60210e C -=?,340 6.6210h J S -=? 。

2、测光电管的伏安特性曲线

表二、

= V 要求:作图分析实验数据(提示:M 与2

Φ成正比例)

【实验思考题】

1、 光电效应有哪些规律,爱因斯坦方程的物理意义是什么?

2、光电管的阴极上均匀涂有逸出功小的光敏材料,而阳极选用逸出功大的金属制造,为什

么?

3、光电流是否随光源的强度变化而变化?截止电压是否因光强不同而变化?

4、测量普朗克常数实验中有哪些误差来源?如何减少这些误差?

光电效应实验报告

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理学111班班级编号:S008实验时间:13时00 分第3周星期三座位号:07 教师编号:T003成绩: 光电效应 一、实验目的 1、研究光电管的伏安特性及光电特性;验证光电效应第一定律; 2、了解光电效应的规律,加深对光的量子性的理解; 3、验证爱因斯坦方程,并测定普朗克常量。 二、实验仪器 普朗克常量测定仪 三、实验原理 当一定频率的光照射到某些金属表面上时,有电子从金属表面逸出,这种现象称为光电效应,从金属表面逸出的电子叫光电子。实验示意图如下 图中A,K组成抽成真空的光电管,A为阳极,K为阴极。当一定频率v的光射到金属材料做成的阴极K上,就有光电子逸出金属。若在A、K两端加上电压后光电子将由K定向的运动到A,在回路中形成电流I。 当金属中的电子吸收一个频率为v的光子时,便会获得这个光子的全部能量,如果这些能量大于电子摆脱金属表面的溢出功W,电子就会从金属中溢出。按照能量守恒原理有

南昌大学物理实验报告 学生姓名:黄晨学号:5502211059 专业班级:应用物理111 班级编号:S008实验时间:13 时00分第03周星期三座位号:07 教师编号:T003成绩:此式称为爱因斯坦方程,式中h为普朗克常数,v为入射光频。v存在截止频率,是的 吸收的光子的能量恰好用于抵消电子逸出功而没有多余的动能,只有当入射光的频率大于截止频率时,才能产生光电流。不同金属有不同逸出功,就有不同的截止频率。 1、光电效应的基本实验规律 (1)伏安特性曲线 当光强一定时,光电流随着极间电压的增大而增大,并趋于一个饱和值。 (2)遏制电压及普朗克常数的测量 当极间电压为零时,光电流并不等于零,这是因为电子从阴极溢出时还具有初动能,只有加上适当的反电压时,光电流才等于零。

最新光电效应练习题(含答案)

光电效应规律和光电效应方程 一、选择题 1.下列关于光电效应实验结论的说法正确的是() A.对于某种金属,无论光强多强,只要光的频率小于极限频率就不能产生光电效应 B.对于某种金属,无论光的频率多低,只要光照时间足够长就能产生光电效应 C.对于某种金属,超过极限频率的入射光强度越大,所产生的光电子的最大初动能就越大 D.对于某种金属,发生光电效应所产生的光电子,最大初动能与入射光的频率成正比 【解析】选A. 发生光电效应的条件是入射光的频率大于金属的极限频率,与入射光的强度、光照时间无关,所以光的频率小于极限频率就不能产生光电效应,故A正确,B错误.根据光电效应方程E k=hν-W0,可知入射光的频率大于极限频率时,频率越高,光电子的最大初动能越大,与入射光强度无关,故C错误.根据光电效应方程E k=hν-W0,可知光电子的最大初动能与入射光的频率是一次函数关系,故D错误. 2.在光电效应实验中,用频率为ν的光照射光电管阴极,发生了光电效应,下列说法正确的是() A.增大入射光的强度,光电流增大 B.减小入射光的强度,光电效应现象消失 C.改用频率小于ν的光照射,一定不发生光电效应 D.改用频率大于ν的光照射,光电子的最大初动能变大 【解析】选AD.增大入射光强度,单位时间内照射到单位面积的光电子数增加,则光电流将增大,故选项A正确;光电效应是否发生取决于照射光的频率,而与照射强度无关,故选项B错误;用频率为ν的光照射光电管阴极,发生光电效应,用频率较小的光照射时,若光的频率仍大于极限频率,则仍会发生光电效应,选项C错误;根据hν-W0= 2 1 mv2可知,增加照射光频率,光电子的最大初动能也增大,故选项D正确. 3.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开了一个角度,如图所示,这时() A.锌板带正电,指针带负电B.锌板带正电,指针带正电C.锌板带负电,指针带正电D.锌板带负电,指针带负电 精品文档

光电效应例题汇总

右图中,锌板带正电,验电器也带正电。 光电效应中,金属板发射出来的电子叫光电子,光电子的定向移动可以形成光电流。 相关知识:电磁波按照频率依次增大(波长依次减小)的顺序排列: 无线电波→红外线→可见光→紫外线→x射线→γ射线 可见光又分为7中颜色:红、橙、黄、绿、蓝、靛、紫。 光的频率和颜色是对应关系,一个频率对应一种光的颜色。单色光就是单一频率的光。 光照强度:单位时间内照射到单位面积上的光的能量。(光线和接收面垂直时) 通俗讲,光照强度大就是光线密集的意思。房间里开一盏灯时没有开两盏灯光照强度大。 光电效应的规律:(右图为研究光电效应的电路图) 1.光电管中存在饱和电流。当光照强度、光的颜色一定时,光电流随着AK极之间的电压增大而增大,但是当电压增大到一定程度以后,光电流就不再增大了,光电流能达到的最大值叫饱和电流。 控制光的颜色,饱和电流与光照强度有关,光照越强则饱和电流越大。 2.光电管两端存在着遏止电压。当A、K极之间电压为零时,光电流并不为零。当在A、K极加反向电压时,即A极为负极板,K极为正极板时,光电子在两极之间减速运动。反向电压越大,光电流越小,当反向电压达到某一值时,光电流消失,能够使光电流消失的反向电压叫遏止电压,用U C表示。 遏止电压与光照强度无关,只与入射光的频率有关,频率越大则遏止电压越大。 右图中,甲乙丙三种光的频率大小关系? 甲、乙的光照强度大小关系? 乙、 3.金属能否发生光电效应取决于入射光的频率,与光照强度和光照时间无关。 当入射光的频率低于某一值时,无论光照多强,时间多长都不会发生光电效应。而这一值叫做截止频率,又叫极限频率,用νc表示。 4.如果入射光的频率超过了截止频率,无论光照强度多么弱,发生光电效应仅需10-9s。 爱因斯坦为了解释光电效应,提出了光子说: 1.在空间传播的光是不连续的,而是一份一份的,每一份叫做一个光子,光子的能量E=hν。ν指光的频率。 2.金属中的自由电子吸收光子能量时,必须是一次只能吸收一个光子,而且不能累计吸收。 3.光子不能再分,自由电子吸收光子时要么是全部吸收,要么不吸收。 4.自由电子吸收光子仅需10-9s。

(整理)5光电效应实验.

光电效应实验 一定频率的光照射在金属表面时, 会有电子从金属表面逸出,这种现象称为光电效应。1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。1905年,爱因斯坦在普朗克能量子假设的基础上,提出了光量子理论,成功地解释了光电效应的全部规律。 实验原理 光电效应的实验原理如图1所示。用强度为P 的单色光照射到光电管阴极K 时,阴极释放出的光电子在电场的加速作用下向阳极板A 迁移,在回路中形成光电流。 图1 实验原理图 图2 光电管同一频率不同光强的 伏安特性曲线 用实验得到的光电效应的基本规律如下: 1、 光强P 一定时,改变光电管两端的电压AK U ,测量出光电流I 的大小,即可得 出光电管的伏安特性曲线。随AK U 的增大,I 迅速增加,然后趋于饱和,饱和 光电流m I 的大小与入射光的强度P 成正比。 2、 当光电管两端加反向电压时,光电流将逐步减小。当光电流减小到零时,所对 应的反向电压值,被称为截止电压U 0(图2)。这表明此时具有最大动能的光 电子刚好被反向电场所阻挡,于是有 0202 1eU mV =(式中m 、V 0、e 分别为电子的质量、速度和电荷量)。(1) 不同频率的光,其截止电压的值不同(图3)。 3、 改变入射光频率ν时,截止电压U 0随之改变,0U 与ν成线性关系(图4)。实 验表明,当入射光频率低于0ν(0ν随不同金属而异,称为截止频率)时,不论光 的强度如何,照射时间多长,都没有光电流产生。

图3光电管不同频率的伏安特性曲线 图4截止电压U 0与频率ν的关系 4、光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0ν,在开始照射后立即有光电子产生,延迟时间最多不超过910-秒。 经典电磁理论认为,电子从波阵面上获得能量,能量的大小应与光的强度有关。因此对于任何频率,只要有足够的光强度和足够的照射时间,就会发生光电效应,而上述实验事实与此直接矛盾。显然经典电磁理论无法解释在光电效应中所显示出的光的量子性质。 按照爱因斯坦的光量子理论,光能是集中在被称之为光子的微粒上,但这种微粒仍然保持着频率(或波长)的概念,频率为ν的光子具有能量ν=h E ,h 为普朗克常数。当光束照射金属时,是以光粒子的形式打在它的表面上。金属中的电子要么不吸收能量,要么就吸收一个光子的全部能量νh ,而无需积累能量的时间。只有当这能量大于电子摆脱金属表面约束所需的逸出功A 时,电子才会以一定的初动能逸出金属表面。按照能量守恒原理,爱因斯坦提出了著名的光电效应方程: A mV hv +=2021 (2) 式中,A 为金属的逸出功,202 1mV 为光电子获得的初始动能。 由该式可见,入射到金属表面的光频率越高,逸出的电子动能越大。光子的能量A h 0<ν时,电子不能脱离金属,因而没有光电流产生。产生光电效应的最低频率(截止频率)是h A 0=ν。 将(2)式代入(1)式中可得: A h eU 0-ν= (3) )(00v v e h U -= 此式表明截止电压0U 是频率ν的线性函数。只要用实验方法得出不同的频率的截止电压,由直线斜率和截距,就可分别算出普朗克常数h 和截止频率0ν。基于此,在爱因斯坦光量子理论提出约十年后,密立根用实验证实了爱因斯坦的光电效应方程,并精确地测定了普朗克常数。两位物理大师在光电效应等方面的杰出贡献,分别于1921

(整理)光电效应实验86125

第1章仪器介绍 LB-PH3A光电效应(普朗克常数)实验仪由汞灯及电源、光阑与滤色片、光电管、测试仪(含光电管电源和微电流放大器)构成,实验仪结构如图1所示,测试仪的调节面板如图2所示。 汞灯刻度尺光阑与滤色片光电管 图1 实验仪结构图 图2 测试仪前面板图 LB-PH3A光电效应(普朗克常数)实验仪有以下特点: 1.在微电流测量中采用高精度集成电路构成电流放大器。对测量回路而言,放大器近似于理想电流表,对测量回路无影响。精心设计、精心选择元器件、精心制作,使电流放大器达到高灵敏度、高稳定性,使测量准确度大大提高。 2.采用了新型结构的光电管。由于其特殊结构使光不能直接照射到阳极,由阴极反射到阳极的光也很少,加上采用新型的阴、阳极材料及制造工艺,使得阳极反向电流大大降低,暗电流水平也很低。 3.设计制作了一组高性能的滤色片。保证了在测量一组谱线时无其余谱线的干扰,避免了谱线相互干扰带来的测量误差。 4.由于仪器的稳定性好且无谱线间的相互干扰,测出的I - U特性曲线平滑、重复性好。

5.通过改变实验仪的电压档位的方式,利用光电效应测量普朗克常数、光电管伏—安特性以及验证饱和光电流与入射光强成正比等实验。 6.本仪器可用三种不同方法测量普朗克常数(拐点法、零电流法、补偿法),因此有较好的可比性。 7.采用上述测量方法,不但使得U0测量快速、重复性好,而且据此计算出的h误差不大于3 %。 其技术参数如下: 1.微电流放大器: 电流测量范围:10-7 ~ 10-13 A,分6档,三位半数字显示 零漂:开机20分钟后,30分钟内不大于满读数的± 0. 2 %(10-13 A档) 2.光电管工作电源: 电压调节范围:-2 ~ +2 V,-2 ~ +20 V,分两档,三位半数字显示 不稳定度≤0. 1 % 3.光电管: 光谱响应范围:340 ~ 700 nm 最小阴极灵敏度≥1 μA(-2 V≤U AK≤0 V) 阳极:镍圈 暗电流I ≤5 × 10-12 A(-2 V≤U AK≤0 V) 4.滤光片组: 5组,中心波长为:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 5.汞灯: 可用谱线:365. 0 nm,404. 7 nm,435. 8 nm,546. 1 nm,578. 0 nm 6.测量误差≤3 % 第2章实验目的与原理 光电效应是,一定频率的光照射在金属表面时,会有电子从金属表面逸出的现象。在光电效应中,光显示出它的粒子性,这种现象对于认识光的本质,具有极其重要的意义。 1887年赫兹发现了光电效应现象,以后又经过许多人的研究,总结出一系列实验规律。由于这些规律用经典的电磁理论无法圆满地进行解释,爱因斯坦于1905年应用并发展了普朗克的量子理论,首次提出了“光量子”的概念,并成功地解释了光电效应的全部规律。十年后,密立根用实验证实了爱因斯坦的光量子理论,精确地测定了普朗克常数。两位物理大师因在光电效应等方面的杰出贡献,分别于1921年和1923年获得诺贝尔物理学奖。光电效应实验和光量子理论在物理学的发展史中具有重大而深远的意义。利用光电效应制成了许多光电器件,在科学和技术上得到了极其广泛的应用。

光电效应与光的波粒二象性.pdf

光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v =0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV C.5.0 eV D.6.5 eV 解析:本题考查光电效应方程及逸出功. 由W hv E k ?= 得W =hv -k E =5.0 eV-1.5 eV=3.5 eV 则入射光的最低能量为h min v =W =3.5 eV

燃烧学讲义第一章

第1章燃烧化学基础 燃烧的本质和条件 1.1.1 燃烧的本质 所谓燃烧,就是指可燃物与氧化剂作用发生的放热反应,通常伴有火焰、发光和发烟的现象。燃烧区的温度很高,使其中白炽的固体粒子和某些不稳定(或受激发)的中间物质分子内电子发生能级跃迁,从而发出各种波长的光;发光的气相燃烧区就是火焰,它的存在是燃烧过程中最明显的标志;由于燃烧不完全等原因,会使产物中混有一些微小颗粒,这样就形成了烟。 从本质上说,燃烧是一种氧化还原反应,但其放热、发光、发烟、伴有火焰等基本特征表明它不同于一般的氧化还原反应。 如果燃烧反应速度极快,则因高温条件下产生的气体和周围气体共同膨胀作用,使反应能量直接转变为机械功,在压力释放的同时产生强光、热和声响,这就是所谓的爆炸。它与燃烧没有本质差别,而是燃烧的常见表现形式。 现在,人们发现很多燃烧反应不是直接进行的,而是通过游离基团和原子这些中间产物在瞬间进行的循环链式反应。这里,游离基的链锁反应是燃烧反应的实质,光和热是燃烧过程中的物理现象。 1.1.2 燃烧的条件及其在消防中的应用 1.1. 2.1 燃烧的条件 燃烧现象十分普遍,但其发生必须具备一定的条件。作为一种特殊的氧化还原反应,燃烧反应必须有氧化剂和还原剂参加,此外还要有引发燃烧的能源。

1.可燃物(还原剂) 不论是气体、液体还是固体,也不论是金属还是非金属、无机物还是有机物,凡是能与空气中的氧或其它氧化剂起燃烧反应的物质,均称为可燃物,如氢气、乙炔、酒精、汽油、木材、纸张等。 2.助燃物(氧化剂) 凡是与可燃物结合能导致和支持燃烧的物质,都叫做助燃物,如空气、氧气、氯气、氯酸钾、过氧化钠等。空气是最常见的助燃物,以后如无特别说明,可燃物的燃烧都是指在空气中进行的。 3.点火源 凡是能引起物质燃烧的点燃能源,统称为点火源,如明火、高温表面、摩擦与冲击、自然发热、化学反应热、电火花、光热射线等。 上述三个条件通常被称为燃烧三要素。但是即使具备了三要素并且相互结合、相互作用,燃烧也不一定发生。要发生燃烧还必须满足其它条件,如可燃物和助燃物有一定的数量和浓度,点火源有一定的温度和足够的热量等。燃烧能发生时,三要素可表示为封闭的三角形,通常称为着火三角形,如图1-1(a)所示。 经典的着火三角形一般足以说明燃烧得以发生和持续进行的原理。但是,根据燃烧的链锁反应理论,很多燃烧的发生都有持续的游离基(自由基)作“中间体”,因此,着火三角形应扩大到包括一个说明游离基参加燃烧反应的附加维,从而形成一个着火四面体,如图1-1(b)所示。

光电效应习题(有答案)..

黑体辐射和能量子的理解 一、基础知识 1、能量子 (1)普朗克认为,带电微粒辐射或者吸收能量时,只能辐射或吸收某个最小能量值的整数倍.即能量的辐射或者吸收只能是一份一份的.这个不可再分的最小能量值£叫做能量子. ⑵能量子的大小:£= h v ,其中v是电磁波的频率,h称为 普朗克常量.h = 6.63 x 10 -34 J ? S. 2、光子说: (1)定义:爱因斯坦提出的大胆假设。内容是:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为£= h V,其中h是普朗克常量,其值为6.63 x 10-34 J ? S. 二、练习 1、下列可以被电场加速的是( B ) A. 光子 B .光电子C. X射线 D.无线电波 2、关于光的本性,下列说法中不正确的是( B ) A. 光电效应反映光的粒子性

B. 光子的能量由光的强度所决定 C. 光子的能量与光的频率成正比 D. 光在空间传播时,是不连续的,是一份一份的,每一份 叫做一个光子 对光电效应实验的理解 一、基础知识(用光电管研究光电效应的规律) 1、常见电路(如图所示) 2、两条线索 (1) 通过频率分析:光子频率高-光子能量大-产生光电子的 最大初动能大. (2) 通过光的强度分析:入射光强度大-光子数目多-产生的

光电子多-光电流大. 3、遏止电压与截止频率

(1)遏止电压:使光电流减小到零的反向电压. ⑵截止频率:能使某种金属发生光电效应的最小频率叫做该种 金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. ⑶逸出功:电子从金属中逸出所需做功的最小值,叫做该金属 的逸出功. 二、练习 1、如图所示,当开关S断开时,用光子能量为2.5的一束 光照射阴极 P,发现电流表读数不为零. 合上开关,调节滑动变 阻器,发现当电压表读数小于0.60 V时,电流表读数仍 不为零;当电压表读数大于或等于0.60 V时,电流表读数为零. (1)求此时光电子的最大初动能的大小; (2)求该阴极材料的逸出功. 答案(1)0.6 (2)1.9 解析设用光子能量为2.5的光照射时,光电子的最大初动 能为,阴极材料逸出功为W 当反向电压达到U0= 0.60 V以后,具有最大初动能的光电 子达不到阳极,因此0 = 由光电效应方程知=h V -W 由以上二式得=0.6 , W J= 1.9 .

光电效应

17.2光的粒子性(第一课时) ——光电效应 【三维目标】 (一)知识与技能 1.通过实验了解光电效应的实验规律。 2.知道爱因斯坦光电效应方程以及意义。 3.会用光电效应规律解决简单的问题。 (二)过程与方法 经历科学探究过程,认识科学探究的意义,尝试应用科学探究的方法研究物理问题,验证物理规律,达到学以致用。 (三)情感、态度与价值观 回顾先辈探索物理知识的必由之路,领略自然界的奇妙与和谐,发展对科学的好奇心与求知欲,乐于探究自然界的奥秘,能体验探索自然规律的艰辛与喜悦。 【教学重点】光电效应的实验规律 【教学难点】爱因斯坦光电效应方程以及意义 【第一课时】 【教学过程】 第一课时光电效应 (一)引入新课 提问:1.抬头看教室内工作的日光灯,你为什么能看到日光灯 2.光到底是什么 回顾前面的学习,总结人类对光的本性的认识的发展过程(多媒体投影,见课件。)教师讲述: 光的干涉、衍射现象说明光是电磁波,光的偏振现象进一步说明光还是横波。19世纪60年代,麦克斯韦又从理论上确定了光的电磁波本质。然而,出人意料的是,正当人们以为光的波动理论似乎非常完美的时候,又发现了用波动说无 法解释的新现象——光电效应现象。对这一现象及其他相关 问题的研究,使得人们对光的又一本质性认识得到了发展。 (二)进行新课 一.光电效应 教师:实验演示。(课件辅助讲述) 用弧光灯照射擦得很亮的锌板,(注意用导线与不带电的验电器相连),使验电器张角增大到约为30度时,再用与丝绸磨擦过的玻璃棒去靠近锌板,则验电器的指针张角会变大。

学生:认真观察实验。 教师提问:上述实验说明了什么 学生:表明锌板在射线照射下带电。 教师:用丝绸摩擦过的玻璃棒靠近锌板,金属箔片张角变大,说明了什么 学生:锌板带正电。 概念:1.光电效应:在光(包括不可见光)的照射下,从物体发射电子的现象叫做光电效应。 2.光电子:发射出来的电子叫做光电子。 3.光电流:光电效应现象中形成的电流叫光电流。 课堂练习: 1.在演示光电效应的实验中,原来不带电的一块锌板与灵敏验电器相连,用弧光灯照射锌板时,验电器的指针就张开一个角度,如图所示,这时( ) A.锌板带正电,指针带负电 B.锌板带正电,指针带正电 C.锌板带负电,指针带正电 D.锌板带负电,指针带负电 二.光电效应的实验规律 (1)光电效应实验 如图所示,光线经石英窗照在阴极上,便有电子逸 出----光电子。 光电子在电场作用下形成光电流。 (2)光电效应实验规律 1、存在饱和电流 (1)当A接正极,K接负极时,控制入射光的强度一定,使U AK从0开始增大,观察到电流表的示数一开始增大,到某一数值后就不再增大。这个最大电流就叫做饱和电流。 (2)对存在饱和电流的解释: K板逸出的电子向各个方向运动,如果不加电压,很多电子无法到达A板,无法形成较大电流。加上电压后,越来越多的电子到达A板,电流越来越大。但是,如果所有电子都达到了A板,继续增大电压,就无法再增大电流。

光电子技术习题

1. 一氦氖激光器,发射波长为6.3287 10-?m 的激光束,辐射量为5mW ,光束的发散角为 310-?,求此激光束的光通量及发光强度。又此激光器输出光束的截面(即放电毛细管 的截面)直径为1mm ,求其亮度。 解:波长的光的视见函数值为=)(λV ,W lm K m /683=则其激光束的光通量为: e m v V K Φ??=Φ)(λ=683??238.05310-?=lm 1弧度 = 1单位弧长/1单位半径, 1立体角=以该弧长为直径的圆面积/1单位半径的值的平方,则光束的发散角为3 10-?时的立体角为 24 απ = Ω= 23)100.1(4 -??π =610-? 发光强度为: cd I v v 610035.1?=Ω Φ= 亮度为: 2cos r I A I L v v v πθ=?= =212/10m cd ? 2.已知氦氖激光器输出的激光束束腰半径为0.5mm ,波长为,在离束腰100mm 处放置一个倒置的伽利略望远系统对激光束进行准直与扩束,伽利略望远系统的目镜焦距 mm f e 10-=',物镜焦距mm f o 100=' ,试求经伽利略望远系统变换后激光束束腰大小、位 置、激光束的发散角和准直倍率。 解:已知束腰半径010.5w mm =,632.8nm λ=,束腰到目镜的距离为1100z mm = ∴可以求得目镜前主平面上的截面半径 2 10.50.502w w mm === 波阵曲面的曲率半径: 22 0122116 1 3.140.5(1())100(+())=-15488.857mm 100632.810 w R z z πλ-?=+=-?-??1 Q '' 11111R R f -= ∴将115488.857mm R =-,'10f mm =-带入得'1R : ''111111115488.85710 R R f =+=+--

光电效应实验报告

佛山科学技术学院 实 验 报 告 课程名称 实验项目 专业班级 姓名 学 号 指导教师 成绩 日 期 年 月 日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A ),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫光电子,由光子形成的电流叫光电流,使电子逸出某种金属表面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD 为光电管,它是一个抽成真空的玻璃管,管内有两个金属电极,K 为光电管阴极,A 为光电管阳极;G 为微电流计;V 为电压表;R 为滑线变阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A 迁移形成光电流,由微电流计G 可以检测光电流的大小。调节R 可使A 、K 之间获得连续变化的电压AK U ,改变AK U ,测量出光电流I 的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。

图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的AK -I U 关系如图2(a)所示。从图中可见,对一定的频率,有一电压0U ,当AK 0U U ≤时,光电流为零,这个相对于阴极的负值的阳极电压0U ,称为截止电压。 (2)当AK 0U U ≥后,I 迅速增加,然后趋于饱和,饱和光电流M I 的大小与入射光的强度P 成正比,如图2(b)所示。 (3)对于不同频率的光,其截止电压的值不同,如图2(a)所示。 (4)截止电压0U 与频率v 的关系如图2(c)所示。0U 与ν成正比。当入射光频率低于某极限值0v (随不同金属而异)时,无论光的强度如何,照射时间多长,都没有光电流产生。 (5)光电效应是瞬时效应。即使入射光的强度非常微弱,只要频率大于0v ,在开始照射后立即有光电子产生,所经过的时间至多为910-秒的数量级。 2.爱因斯坦光电效应方程 上述光电效应的实验规律无法用电磁波的经典理论解释。为了解释光电效应现象,爱因斯坦根据普朗克的量子假设,提出了光子假说。他认为对于频率为ν的光波,每个光子的能量为E h ν=,h 为普朗克常数。当光子照射到金属表面上时,一次性为金属中的电子全部吸收,而无须积累能量的时间。电子把该能量的一部分用来克服金属表面对它的吸引力,另一部分就变为电子离开金属表面后的动能,按照能量守恒原理,爱因斯坦提出了著名的光电效应方程 201 2 h m W νυ=+ (1) 式中,W 为被光线照射的金属材料的逸出功,2 012m υ为从金属逸出的光电子的最大初动能。 由式(1)可知,入射到金属表面的光频率越高,逸出的电子动能越大,所以即使阳极电位比阴极电位低(即加反向电压)时,也会有电子落入阳极形成光电流,直至阳极电位低于截止电压,光电

光电效应与光的波粒二象性

高中精品试题 高中精品试题 光电效应与光的波粒二象性 说明:本试卷分为第Ⅰ、Ⅱ卷两部分,请将第Ⅰ卷选择题的答案填入题后括号内,第Ⅱ 卷可在各题后直接作答.共100分,考试时间90分钟. 第Ⅰ卷(选择题共40分) 一、本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,有的小题只有 一个选项正确,有的小题有多个选项正确.全部选对的得4分,选不全的得2分,有选错或不 答的得0分. 1.下列关于光电效应的说法正确的是 ( ) A.若某材料的逸出功是W ,则它的极限频率h W v 0 B.光电子的初速度和照射光的频率成正比 C.光电子的最大初动能和照射光的频率成正比 D.光电子的最大初动能随照射光频率的增大而增大 解析:由光电效应方程k E =hv -W 知,B 、C 错误,D 正确.若k E =0,得极限频率0v =h W ,故A 正确. 答案AD 2.在下列各组所说的两个现象中,都表现出光具有粒子性的是 ( ) A.光的折射现象、偏振现象 B.光的反射现象、干涉现象 C.光的衍射现象、色散现象 D.光电效应现象、康普顿效应 解析:本题考查光的性质. 干涉、衍射、偏振都是光的波动性的表现,只有光电效应现象和康普顿效应都是光的粒 子性的表现,D 正确. 答案D 3.关于光的波粒二象性的理解正确的是 ( ) A.大量光子的效果往往表现出波动性,个别光子的行为往往表现出粒子性 B.光在传播时是波,而与物质相互作用时就转变成粒子 C.高频光是粒子,低频光是波 D.波粒二象性是光的根本属性,有时它的波动性显著,有时它的粒子性显著 解析:根据光的波粒二象性知,A 、D 正确,B 、C 错误. 答案AD 4.当具有 5.0 eV 能量的光子照射到某金属表面后,从金属表面逸出的电子具有最大的初 动能是1.5 eV.为了使这种金属产生光电效应,入射光的最低能量为 ( ) A.1.5 eV B.3.5 eV

光电效应物理实验报告

光电效应 实验目的: (1)了解光电效应的规律,加深对光的量子性的理解 (2)测量普朗克常量h。 实验仪器: ZKY-GD-4 光电效应实验仪 1 微电流放大器 2 光电管工作电源 3 光电管 4 滤色片 5 汞灯 实验原理: 原理图如右图所示:入射光照射到光电管阴极K上,产生 的光电子在电场的作用下向阳极A迁移形成光电流。改变外加 电压V AK,测量出光电流I的大小,即可得出光电管得伏安特性曲线。 1)对于某一频率,光电效应I-V AK关系如图所示。从图中 可见,对于一定频率,有一电压V0,当V AK≤V0时,电流为0, 这个电压V0叫做截止电压。 2)当V AK≥V0后,电流I迅速增大,然后趋于饱和,饱和光电流IM的大小与入射光的强度成正比。 3)对于不同频率的光来说,其截止频率的数值不同,如右图:

4) 对于截止频率V0与频率的关系图如下所示。V0与成正比关系。当入射光的频率低于某极限值时,不论发光强度如何大、照射时间如何长,都没有光电流产生。 5)光电流效应是瞬时效应。即使光电流的发光强度非常微弱,只要频率大于,在开始照射后立即就要光电子产生,所经过的时间之多为10-9s的数量级。 实验内容及测量: 1 将4mm的光阑及365nm的滤光片祖昂在光电管暗箱光输入口上,打开汞灯遮光盖。从低到高调节电压(绝对值减小),观察电流值的变化,寻找电流为零时对应的V AK值,以其绝对值作为该波长对应的值,测量数据如下: 波长/nm365577 频率 / 截止电压/V 频率和截止电压的变化关系如图所示:

由图可知:直线的方程是:y= 所以: h/e=× , 当y=0,即时,,即该金属的 截止频率为。也就是说,如果入射光如果频率低于上值时,不管光强多大 也不能产生光电流;频率高于上值,就可以产生光电流。 根据线性回归理论: 可得:k=,与EXCEL给出的直线斜率相同。 我们知道普朗克常量, 所以,相对误差: 2 测量光电管的伏安特性曲线 1)用的滤色片和4mm的光阑 实验数据如下表所示: 4mm光阑 I-V AK的关系 V AK I V AK I V AK I V AK I V AK I V AK I

光电效应专题练习

1.(单选)下列说法正确的是( c ) A.只要有光照射金属表面,就会有电子从金属表面逸出 B.光电效应现象可以完全用经典电磁理论进行解释 C.对光电效应现象的研究使人类认识到光具有粒子性 D.在光电效应现象中,光越强,光电子的最大初动能越大 2.(单选)用一束绿光照射光电管金属时不能产生光电效应,则下述措施可能使该金属产生光电效应的是( c ) 3.(多选)关于光电效应,下列说法正确的是bd A.发生光电效应时间越长,光电子的最大初动能就越大 B.入射光的频率低于极限频率就不能发生光电效应 C.光电子的最大初动能与入射光频率成正比 D.光电子的最大初动能与入射光的强度无关 4.(多选)一含有光电管的电路如图甲所示,乙图是用a、b、c光照射光电管得到的I﹣U图线,Uc1、Uc2表示截止电压,下列说法正确的是(ac ) A.甲图中光电管得到的电压为正向电压

B.a、b光的波长相等 C.a、c光的波长相等 D.a、c光的光强相等 5.(多选)如图是某金属在光的照射下光电子最大初动能Ek与入射 光频率υ的关系图象,由图像可知( abc ) A.该金属的逸出功等于E B.该金属的逸出功等于hυ0 C.入射光的频率为2υ0时,产生的光电子的最大初动能为E D.入射光的频率为υ0/2时,产生的光电子的最大初动能为E/2 6.(多选)如图所示,电路中所有元件完好,当光照射到光电管上时,灵敏电流计中没有电流通过,可能的原因是▲ bd A.入射光强度较弱 B.入射光波长太长 C.光照射时间太短 D.电源正负极接反 7.(多选)在光电效应实验中,某同学用同一 种材料在不同实验条件下得到了三条光电流与电压之间的关系曲线(甲光、乙光、丙光),如图所示。则可判断出: b A.甲光的频率大于乙光的频率 B.乙光的波长大于丙光的波长 C.甲、乙波长相等

光电子技术题目与答案8页

1) 色温是指在规定两波长处具有与热辐射光源的辐射比率 相同的黑体的温度 2) 自发跃迁是指处于高能级的粒子自发地跃迁到低能级上。 受激跃迁是指由于外界辐射场作用而产生的粒子能级间的跃迁。 3) 受激辐射下光谱线展宽的类型分为均匀展宽和非均匀展宽,其中 均匀展宽有自然展宽、碰撞展宽、热振动展宽,非均匀展宽有多普勒展宽、残余应力展宽。 4) 常见的固体激光器有红宝石激光器、钕激光器、钛宝石激光器(写 出两种),常见的气体激光器有He-Ne激光器、Ar激光器、CO2激光器(写出两种)。 5) 光是一种以光速运动的光子流,光子和其它基本粒子一样,具有 能量、动量和质量;其静止质量为零。 6) 激光与普通光源相比具有如下明显的特点:方向性好、单色性好、相干性好、强度大 7) 简述光子的基本特性。 答:1、光子能量E与光波频率v对应:E=hv 2、光子具有运动质量m,m=E/c2=hv/c2 3、光子的动量与单色平面波矢对应:P=?k 4、光子具有两种可能的独立偏振状态,对应于光波场的两个独立偏振方向 5、光子具有自旋性,并且自旋量子数为整数

8) 简述激光产生的条件、激光器的组成及各组成部分的作用。 答:必要条件:粒子数反转分布和减少振荡模式数 充分条件:激光在谐振腔内的增益要大于损耗 稳定振荡条件:增益饱和效应 组成:工作物质、泵浦源、谐振腔 作用:工作物质:在这种介质中可以实现粒子数反转 泵浦源:将粒子从低能级抽运到高能级的装置 谐振腔:1、使激光具有极好的方向性 2、增强光放大作用 3、使激光具有极好的单色性 1)声波在声光晶体中传播会引起晶体中的质点按声波规律在平衡位置振动,按照声波频率的高低以及声波和光波作用的长度不同,声光相互作用可以分为拉曼-纳斯衍射,布喇格衍射两种类型。 2) 磁光效应是指外加磁场作用所引起的材料光学各项异性,法拉第磁光效应的规律(1)对于给定的介质,光振动面的旋转角与样品的长度和外加的磁感应强度成正比(2)光的传播方向反转时,法拉第旋转的左右方向互换。 3) 电致折射率变化是指晶体介质的介电系数与晶体中的电荷分布有关,当晶体被施加电场后,将引起束缚电荷的重新分布,并导致离子晶格的微小型变,从而引起介电系数的变化,并最终导致晶体折射率变化的现象。 4) 光纤色散的主要危害是使脉冲信号展宽,限制了光纤的宽带或传输容量,多模光纤的色散主要有模色散、材料色散、波导色散

光电效应实验报告

佛山科学技术学院 实验报告 课程名称实验项目 专业班级姓名学号 指导教师成绩日期年月日 一、实验目的 1.了解光电效应的规律,加深对光的量子性的理解; 2.测量光电管的伏安特性曲线; 3.学习验证爱因斯坦光电效应方程的实验方法,测量普朗克常数。 二、实验仪器 光电效应(普朗克常数)实验仪(详见本实验附录A),数据记录仪。 三、实验原理 1.光电效应及其基本实验规律 当一定频率的光照射到某些金属表面时,会有电子从金属表面 即刻逸出,这种现象称为光电效应。从金属表面逸出的电子叫 光电子,由光子形成的电流叫光电流,使电子逸出某种金属表 面所需的功称为该金属的逸出功。 研究光电效应的实验装置示意图如图1所示。GD为光电管,它 是一个抽成真空的玻璃管,管内有两个金属电极,K为光电管阴 极,A为光电管阳极;G为微电流计;V为电压表;R为滑线变 阻器。单色光通过石英窗口照射到阴极上时,有光电子从阴极K 逸出,阴极释放出的光电子在电场的加速作用下向阳极A迁移 形成光电流,由微电流计G可以检测光电流的大小。调节R可使A、K之间获得连续变化的电压AK U,改变 AK U,测量出光电流I的大小,即可测出光电管的伏安特性曲线,如图2(a)、(b)所示。 图2 光电效应的基本实验规律 光电效应的基本实验规律如下: (1)对应于某一频率,光电效应的 AK -I U关系如图2(a)所示。从图中可见,对一定的频率,有一 图1 光电效应实验示意图

实验原理(原理文字叙述和公式、原理图)四.实验步骤五、实验数据和数据处理六.实验结果七.分析讨论(实验结果的误差来源和减小误差的方法、实验现象的分析、问题的讨论等)八.思考题

光电效应

一.对光电效应实验规律,方程以及图像的考查 1.光电效应现象 光电效应:在光的照射下金属中的电子从金属表面逸出的现象,叫做光电效应,发射出来的电子叫做. 2.光电效应规律 (1)每种金属都有一个. (2)光子的最大初动能与入射光的强度无关,只随入射光的频率增大而增大. (3)光照射到金属表面时,光电子的发射几乎是的. (4)光电流的强度与入射光的成正比. (1)光子说:空间传播的光的能量是不连续的,是一份一份的,每一份叫做一个光子.光子的能量为ε=hν,其中h是普朗克常量,其值为6.63×10-34 J·s. (2)光电效应方程:. 其中hν为入射光的能量,E k为光电子的最大初动能,W0是金属的逸出功. 4.遏止电压与截止频率 (1)遏止电压:使光电流减小到零的反向电压U c. (2)截止频率:能使某种金属发生光电效应的频率叫做该种金属的截止频率(又叫极限频率).不同的金属对应着不同的极限频率. (3)逸出功:电子从金属中逸出所需做功的,叫做该金属的逸出功. 1.1905年是爱因斯坦的“奇迹”之年,这一年他先后发表了三篇具有划时代意义的论文,其中关于光量子的理论成功的解释了光电效应现象.关于光电效应,下列说法正确的是(AD ) A.当入射光的频率低于极限频率时,不能发生光电效应 B.光电子的最大初动能与入射光的频率成正比 C.光电子的最大初动能与入射光的强度成正比 D.某单色光照射一金属时不发生光电效应,改用波长较短的光照射该金属可能发生光电效 应 2.用光照射某种金属,有光电子从金属表面逸出,如果光的频率不变,而减弱光的强度则 A.逸出的光电子数减少,光电子的最大初动能不变 B.逸出的光电子数减少,光电子的最大初动能减小 C.逸出的光电子数不变,光电子的最大初动能减小 D.光的强度减弱到某一数值,就没有光电子逸出了 3.关于光电效应的规律,下列说法中正确的是(D) A.只有入射光的波长大于该金属的极限波长,光电效应才能产生 B.光电子的最大初动能跟入射光强度成正比

光电效应总结

★光电效应 光电效应是物理学中一个重要而神奇的现象。在高于某特定频率的电磁波照射下,某些物质内部的电子会被光子激发出来而形成电流,即光生电。光电现象由德国物理学家赫兹于1887年发现,而正确的解释为爱因斯坦所提出。科学家们在研究光电效应的过程中,物理学者对光子的量子性质有了更加深入的了解,这对波粒二象性概念的提出有重大影响 定律定义光电效应 光照射到金属上,引起物质的电性质发生变化。这类光变致电的现象被人们统称为光电效应(Photoelectric effect)。光电效应分为光电子发射、光电导效应和阻挡层光电效应,又称光生伏特效应。前一种现象发生在物体表面,又称外光电效应。后两种现象发生在物体内部,称为内光电效应。 按照粒子说,光是由一份一份不连续的光子组成,当某一光子照射到对光灵敏的金属(如硒)上时,它的能量可以被该金属中的某个电子全部吸收。电子吸收光子的能量后,动能立刻增加;如果动能增大到足以克服原子核对它的引力,就能在十亿分之一秒时间内飞逸出金属表面,成为光电子,形成光电流。单位时间内,入射光子的数量愈大,飞逸出的光电子就愈多,光电流也就愈强,这种由光能变成电能自动放电的现象,就叫光电效应。 赫兹于1887年发现光电效应,爱因斯坦第一个成功的解释了光电效应(金属表面在光辐照作用下发射电子的效应,发射出来的电子叫做光电子)。光波长小于某一临界值时方能发射电子,即极限波长,对应的光的频率叫做极限频率。临界值取决于金属材料,而发射电子的能量取决于光的波长而与光强度无关,这一点无法用光的波动性解释。还有一点与光的波动性相矛盾,即光电效应的瞬时性,按波动性理论,如果入射光较弱,照射的时间要长一些,金属中的电子才能积累住足够的能量,飞出金属表面。可事实是,只要光的频率高于金属的极限频率,光的亮度无论强弱,电子的产生都几乎是瞬时的,不超过十的负九次方秒。正确的解释是光必定是由与波长有关的严格规定的能量单位(即光子或光量子)所组成。 光电效应里电子的射出方向不是完全定向的,只是大部分都垂直于金属表面射出,与光照方向无关。光是电磁波,但是光是高频震荡的正交电磁场,振幅很小,不会对电子射出方向产生影响。 光电效应说明了光具有粒子性。相对应的,光具有波动性最典型的例子就是光的干涉和衍射。 只要光的频率超过某一极限频率,受光照射的金属表面立即就会逸出光电子,发生光电效应。当在金属外面加一个闭合电路,加上正向电源,这些逸出的光电子全部到达阳极便形成所谓的光电流。在入射光一定时,增大光电管两极的正向电压,提高光电子的动能,光电流会随之增大。但光电流不会无限增大,要受到光电子数量的约束,有一个最大值,这个值就是饱和电流。所以,当入射光强度增大时,根据光子假设,入射光的强度(即单位时间内通过单位垂直面积的光能)决定于单位时间里通过单位垂直面积的光子数,单位时间里通过金属表面的光子数也就增多,于是,光子与金属中的电子碰撞次数也增多,因而单位时间里从金属表面逸出的光电子也增多,电流也随之增大。 数学推导 光束里的光子所拥有的能量与光的频率成正比。假若金属里的自由电子吸收了一个光子的能量,而这能量大于或等于某个与金属相关的能量阈(阀)值(称为这种金属的逸出功),则此电子因为拥有了足够的能量,会从金属中逃逸出来,成为光电子;若能量不足,则电子会释出能量,能量重新成为光子离开,电子能量恢复到吸收之前,无法逃逸离开金属。增加光束的辐照度会增加光束里光子的“密度”,在同一段时间内激发更多的电子,但不会使得每一个受激发的电子因吸收更多的光子而获得更多的能量。换言之,光电子的能量与辐照度无关,只与光子的能量、频率有关。 被光束照射到的电子会吸收光子的能量,但是其中机制遵照的是一种非全有即全无的判据,光子所有能量都必须被吸收,用来克服逸出功,否则这能量会被释出。假若电子所吸收的能量能够克服逸出功,并且还有剩余能量,则这剩余能量会成为电子在被发射后的动能。 逸出功 W 是从金属表面发射出一个光电子所需要的最小能量。如果转换到频率的角度来看,光子的频率必须大于金属特征的极限频率,才能给予电子足够的能量克服逸出功。逸出功与极限频率 v0之间的关系为W=h*v0其中,h是普朗克常数,是光频率为h*v0 的光子的能量。 克服逸出功之后,光电子的最大动能 Kmax 为 Kmax=hv-W=h(v-v0) 其中,hv 是光频率为 v的光子所带有并且被电子吸收的能量。 实际物理要求动能必须是正值,因此,光频率必须大于或等于极限频率,光电效应才能发生。

相关文档
最新文档