系统辨识白噪声及M序列产生

系统辨识白噪声及M序列产生
系统辨识白噪声及M序列产生

A=6; x0=1; M=255; f=2; N=100; %初始化;

x0=1; M=255;

for k=1: N %乘同余法递推100次;

x2=A*x0; %分别用x2和x0表示xi+1和xi-1;

x1=mod (x2,M); %取x2存储器的数除以M的余数放x1(xi)中;

v1=x1/256; %将x1存储器中的数除以256得到小于1的随机数放v1中;

if(v1>0.5)

v(:,k)=v1;

else v(:,k)=(v1-0.5 )*f; %将v1中的数()减去0.5再乘以存储器f中的系数,存放在矩阵存储器v的第k

列中,v(:,k)表示行不变、列随递推循环次数变化;

end

x0=x1; % xi-1= xi;

v0=v1;

end %递推100次结束;

v2=v %该语句后无‘;’,实现矩阵存储器v中随机数放在v2中,且可直接显示在MATLAB的

window中;

k1=k;

%grapher %以下是绘图程序;

k=1:k1;

plot(k,v,k,v,'r');

xlabel('k'), ylabel('v');tktle(' (-1,+1)均匀分布的白噪声')

A=6;N=100;x0=1;M=255;w=0.5; v2=0;%初始化s=sqrt(1/12);

for k=1:N

x2=A*x0;

x1=mod(x2,M);

v1=x1/256;

v2=v2+v1;

v(:,k)=v1;

x0=x1;

v0=v1;

v3=(v2-k/2)/(sqrt(k/12));

e(:,k)=w+s*v3;

end

e2=e

k1=k;

k=1:k1;

plot(k,e,k,e,'rx');

xlabel('k'),ylabel('e');title('(0,1)正态分布的随机信号')

2

e2 =

Columns 1 through 6

0.0234 -0.0911 0.2158 0.0449 0.0895 0.3134 Columns 7 through 12

0.4350 0.5193 0.4766 0.4012 0.4211 0.3714 Columns 13 through 18

0.4881 0.4708 0.5000 0.5420 0.4252 0.3426 Columns 19 through 24

0.4256 0.3340 0.3363 0.4384 0.4992 0.5454 Columns 25 through 30

0.5195 0.4717 0.4820 0.4476 0.5232 0.5107 Columns 31 through 36

0.5302 0.5594 0.4755 0.4143 0.4736 0.4043 Columns 37 through 42

0.4043 0.4804 0.5263 0.5618 0.5415 0.5036 Columns 43 through 48

0.5113 0.4835 0.5437 0.5334 0.5490 0.5727 Columns 49 through 54

0.5039 0.4530 0.5016 0.4437 0.4431 0.5064 Columns 55 through 60

0.5448 0.5746 0.5574 0.5251 0.5315 0.5076 Columns 61 through 66

0.5590 0.5501 0.5635 0.5840 0.5242 0.4798 Columns 67 through 72

0.5220 0.4711 0.4704 0.5257 0.5593 0.5856 Columns 73 through 78

0.5704 0.5418 0.5474 0.5260 0.5717 0.5637 Columns 79 through 84

0.5756 0.5939 0.5404 0.5004 0.5382 0.4923 Columns 85 through 90

0.4915 0.5413 0.5716 0.5954 0.5816 0.5556

Columns 91 through 96

0.5606 0.5411 0.5826 0.5753 0.5862 0.6029

Columns 97 through 100

0.5539 0.5174 0.5518 0.5098

>>

3 X1=1;X2=0;X3=1;X4=0;X5=1;X6=0; %移位寄存器输入Xi初T态(0101),Yi为移位寄存器各级输出

m=60; %置M序列总长度

for i=1:m %1#

Y6=X6;Y5=X5;Y4=X4; Y3=X3; Y2=X2; Y1=X1;

X6=Y5;X5=Y4,X4=Y3; X3=Y2; X2=Y1;

X1=xor(Y5,Y6); %异或运算

if Y6==0

U(i)=-1;

else

U(i)=Y6;

end

end

M=U

%绘图

i1=i

k=1:1:i1;

plot(k,U,k,U,'rx')

xlabel('k')

ylabel('M序列')

title('移位寄存器产生的M序列')

M =

Columns 1 through 10

-1 1 -1 1 -1 1 1 1 1 1 Columns 11 through 20

1 -1 -1 -1 -1 -1 1 -1 -1 -1 Columns 21 through 30

-1 1 1 -1 -1 -1 1 -1 1 -1 Columns 31 through 40

-1 1 1 1 1 -1 1 -1 -1 -1

Columns 41 through 50

1 1 1 -1 -1 1 -1 -1 1 -1 Columns 51 through 60

1 1 -1 1 1 1 -1 1 1 -1 i1 =

60

生成m序列与gold序列

一、生成m序列 function [mseq] = m_sequence(fbconnection); n = length(fbconnection); N = 2^n-1; %m序列的长度 register = [zeros(1,n - 1) 1]; %定义移位寄存器的初始状态 mseq(1)= register(n); %m序列的第一个输出码元 for i = 2:N newregister(1)= mod(sum(fbconnection.*register),2); %寄存器与反馈的模2和 for j = 2:n, newregister(j)= register(j-1); end; register = newregister; %移位后的寄存器 mseq(i) = register(n); %新的寄存器输出 end clear all; close all; clc; fbconnection=[0 0 1 0 1]; %输入本原多项式系数,从C1开始 m_sequence=m_sequence(fbconnection); stem(m_sequence); %对m序列绘图 axis([0 35 -0.2 1.2]); grid on;

二、生成gold序列 function goldseq = g_sequence(connection1,connection2); msequence1 = m_sequence(connection1); %生成第一个m序列 msequence2 = m_sequence(connection2); %生成第二个m序列 N=2^length(connection1)-1; %gold序列长度 for i = 1:N; s = mod(msequence1+msequence2,2); %两个m序列模二加产生gold序列 goldseq = s; end clear all; close all; clc; connection1=[0 0 0 0 1 1]; connection2=[1 0 0 1 1 1]; goldseq = g_sequence(connection1,connection2);

高斯白噪声与高斯噪声的相关概念

高斯噪声是一种随机噪声,在任选瞬时中任取n个,其值按n个变数的高斯概率定律分布。注: 1,高斯噪声完全由其时变平均值和两瞬时的协方差函数来确定,若噪声为平稳的,则平均值与时间无关,而协方差函数则变成仅和所考虑的两瞬时之差有关的相关函数,它在意义上等效于功率谱密度。 2,高斯噪声可以是大量独立的脉冲所产生的,从而在任何有限时间间隔内,这些脉冲中的每一个脉冲值与所有脉冲值的总和相比都可忽略不计。 3,实际上热噪声、散弹噪声及量子噪声都是高斯噪声。 白噪声是一种功率频谱密度为常数的随机信号或随机过程。换句话说,此信号在各个频段上的功率是一样的,由于白光是由各种频率(颜色)的单色光混合而成,因而此信号的这种具有平坦功率谱的性质被称作是“白色的”,此信号也因此被称作白噪声。相对的,其他不具有这一性质的噪声信号被称为有色噪声(功率谱密度随频率变化)。 理想的白噪声具有无限带宽,因而其能量是无限大,这在现实世界是不可能存在的。实际上,我们常常将有限带宽的平整讯号视为白噪音,因为这让我们在数学分析上更加方便。然而,白噪声在数学处理上比较方便,因此它是系统分析的有力工具。一般,只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽,并且在该带宽中其频谱密度基本上可以作为常数来考虑,就可以把它作为白噪声来处理。例如,热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度,通常可以认为它们是白噪声。 白噪声的功率谱密度是一个常数。这是因为:白噪声的时域信号中任意两个不同时刻是不相关的,因此,白噪声的自相关函数为冲击函数,因此,白噪声的功率谱密度为常数。(自相关函数和功率谱密度是傅立叶变换对)。 当随机的从高斯分布中获取采样值时,采样点所组成的随机过程就是“高斯白噪声”;同理,当随机的从均匀分布中获取采样值时,采样点所组成的随机过程就是“均匀白噪声”。 “非白的高斯”噪声——高斯色噪声。这种噪声其分布是高斯的,但是它的频谱不是一个常数,或者说,对高斯信号采样的时候不是随机采样的,而是按照某种规律来采样的。 仿真时经常采用高斯白噪声是因为实际系统(包括雷达和通信系统等大多数电子系统)中的主要噪声来源是热噪声,而热噪声是典型的高斯白噪声,高斯噪声下的理想系统都是线性系统。 高斯白噪声:如果一个噪声,它的幅度分布服从高斯分布,而它的功率谱密度又是均匀分布的,则称它为高斯白噪声。 热噪声和散粒噪声是高斯白噪声。 所谓高斯白噪声中的高斯是指概率分布是正态函数,而白噪声是指它的二阶矩不相关,一阶矩为常数,是指先后信号在时间上的相关性。这是考查一个信号的两个不同方面的问题。

扩频编码M序列和gold序列

M序列 由n级移位寄存器所能产生的周期最长的序列。这种序列必须由非线性移位寄存器产生,并且周期为2n(n 为移位寄存器的级数)。例如,考察图中a的非线性反馈移位寄存器,其状态转移关系如表:

状态(a k-3,a k-2,a k-1)的接续状态是(a k-2,a k-1,a k),其中a k=a k-3嘰a k-1嘰1嘰a k-2a k-1是一种非线性逻辑。从任一状态出发,例如从(000)出发,其接续状态恰好构成一个完全循环(图b),由此产生一个周期为23=8的3级序列。M序列最早是用抽象的数学方法构造的。它出现于组合数学的一些数学游戏中,例如L.欧拉关于哥尼斯堡的七桥问题等。后来发现这种序列具有某些良好的伪随机特性。例如,M序列在一个周期中,0与1的个数各占一半。同时,同样长度的0游程与1游程也各占一半。所有这些性质在数据通信、自动控制、光学技术和密码学诸领域中均有重要应用。 隐蔽通信内容的通信方式。为了使非法的截收者不能理解通信内容的含义,信息在传输前必须先进行各种形式的变化,成为加密信息,在收信端进行相应的逆变化以恢复原信息。电报通信、电话通信、图像通信和数据通信,都有相应的保密技术问题。另一方面,为了从保密通信中获得军事、政治、经济、技术等机密信息,破译技术也在发展。保密技术和破译技术是在相互对立中发展起来的。 1881年世界上出现了第一个电话保密专利。电话保密开始是采用模拟保密或置乱的方法,即把话音的频谱或时间分段打乱。置乱后的信号仍保持连续变化的性质。在第二次世界大战期间,频域和时域的置乱器在技术上已基本成熟。70年代以来,由于采用集成电路,电话保密通信得到进一步完善。但置乱器仍是有线载波和短波单边带电话保密通信的主要手段。模拟保密还可以采用加噪声掩盖、人工混响或逆向混响等方法,但因恢复后话音的质量大幅度下降或保密效果差,这些方法没有得到推广应用。数字保密是由文字密码发展起来的。数字信号(包括由模拟信号转换成的数字信号),由相同速率的密码序列加密,成为数字保密信号;保密信号传输到收信端后由同一密码序列去密,恢复原数字信号。随着集成电路的发展,数字保密通信已成为保密通信的主要发展方向。话音、图像等模拟信号都可以用数字保密方式。一般来说,数字破译要比模拟破译困难得多。数字保密的主要限制是传输数字信号所需带宽要比传输模拟信号的带宽大好多倍。 模拟保密通信话音信号置乱后的带宽基本保持不变,这是模拟保密通信的一个特点。但是,置乱后恢复的话音质量有所下降。置乱的过程越复杂,则话音质量下降的程度越大。 倒频用倒频器(图1)把话音频谱颠倒过来,使高频变为低频,低频变为高频,这是最简单的一种频域置乱方法。频域置乱器的基本电路是平衡调制器和带通滤波器。平衡调制器可以搬移和倒置频谱,而滤波器可以滤取所需要的频谱成分。输入的话音信号经过平衡调制器后输出上、下两个边带。适当地选择

MATLAB中产生高斯白噪声

MATLAB中产生高斯白噪声,涉及到awgn和wgn函数 MATLAB中产生高斯白噪声非常方便,可以直接应用两个函数,一个是WGN,另一个是AWGN。WGN用于产生高斯白噪声,AWGN则用于在某一信号中加入高斯白噪声。 1. WGN:产生高斯白噪声 y = wgn(m,n,p) 产生一个m行n列的高斯白噪声的矩阵,p以dBW为单位指定输出噪声的强度。 y = wgn(m,n,p,imp) 以欧姆(Ohm)为单位指定负载阻抗。 y = wgn(m,n,p,imp,state) 重置RANDN的状态。 在数值变量后还可附加一些标志性参数: y = wgn(…,POWERTYPE) 指定p的单位。POWERTYPE可以是'dBW', 'dBm'或 'linear'。线性强度(linear power)以瓦特(Watt)为单位。 y = wgn(…,OUTPUTTYPE) 指定输出类型。OUTPUTTYPE可以是'real'或 'complex'。 2. AWGN:在某一信号中加入高斯白噪声 y = awgn(x,SNR) 在信号x中加入高斯白噪声。信噪比SNR以dB为单位。x的强度假定为0dBW。如果x是复数,就加入复噪声。 y = awgn(x,SNR,SIGPOWER) 如果SIGPOWER是数值,则其代表以dBW为单位的信号强度;如果SIGPOWER为'measured',则函数将在加入噪声之前测定信号强度。y = awgn(x,SNR,SIGPOWER,STATE) 重置RANDN的状态。 y = awgn(…,POWERTYPE)指定SNR和SIGPOWER的单位。POWERTYPE可以是'dB'或'linear'。如果POWERTYPE是'dB',那么SNR以dB为单位,而SIGPOWER以dBW为单位。如果POWERTYPE是'linear',那么SNR作为比值来度量,而SIGPOWER 以瓦特为单位。 注释 1. 分贝(decibel,dB):分贝(dB)是表示相对功率或幅度电平的标准单位,换句话说,就是我们用来表示两个能量之间的差别的一种表示单位,它不是一个绝对单位。例如,电子系统中将电压、电流、功率等物理量的强弱通称为电平,电平的单位通常就以分贝表示,即事先取一个电压或电流作为参考值(0dB),用待表示的量与参考值之比取对数,再乘以20作为电平的分贝数(功率的电平值改乘10)。 2. 分贝瓦(dBW, dB Watt):指以1W的输出功率为基准时,用分贝来测量的功率放大器的功率值。 3. dBm (dB-milliWatt):即与1milliWatt(毫瓦)作比较得出的数字。 0 dBm = 1 mW 10 dBm = 10 mW 20 dBm = 100 mW 也可直接用randn函数产生高斯分布序列,例如: 程序代码 y=randn(1,2500); y=y/std(y);

m序列产生及其特性实验

湖南科技大学 移动通信实验报告 姓 名: 吴文建 学 号: 1208030104 专业班级: 应用电子技术教育一班 实验名称: m 序列产生及其特性实验 实验目的: 掌握m 序列的特性、产生方法及其应用 实验仪器:1、pc 机一台 2、 实验原理: 1、m 序列的产生 :m 序列是由带线性反馈的移存器产生的。结构如图: a n-1 a n-r ... a n-3 a n-2 C 1 C r C 3C 2 ...C 0 输出 输出为反馈移位寄存器的结构,其中an-i 为移位寄存器中每位寄存器的状态,Ci 为第i 位寄存器的反馈系数。Ci =1表示有反馈,Ci =0表示无反馈。 一个线性反馈移位寄存器能否产生m 序列,取决于它的反馈系数Ci (例如上图的C3)。 对于m 序列,Ci 的取值必须按照一个本原多项式: ∑==n i i i x C x f 0 )(中的二进制系数来取值。 n 级移位寄存器可以产生的m 序列个数由下式决定: r N r ) 12(-Φ= 其中φ(x )为欧拉函数,表示小于等于x 并与x 互质的正整数个数(包括1在内)。 表1-1-1列出了部分m 序列的反馈系数C i ,按照下表中的系数来构造移位寄存器,就能产生相应的m 序列。

表1-1-1 m序列的反馈系数表 m序列的级数n m序列的周期P 反馈系数Ci(八机制) 3 7 13 4 1 5 23 5 31 45,67,75 6 63 103,147,155 7 127 203,211,217,235,277,313,325,345,367 8 255 435,453,537,543,545,551,703,747 9 511 1021,1055,1131,1157,1167,1175 10 1023 2011,2033,2157,2443,2745,3271 11 2047 4005,4445,5023,5263,6211,7363 12 4095 10123,11417,12515,13505,14127,15053 13 8192 20033,23261,24633,30741,32535,37505 14 16383 42103,51761,55753,60153,71147,67401 15 32765 100003,110013,120265,133663,142305 m序列的具有以下性质: (1)均衡性。m序列中0和1的数目基本相等 (2)游程分布 (3)移位相加性 (4)相关特性。自相关波形如图1-1-3所示 -1/p 1 P 图1-1-3 m序列的自相关波形(5)周期性 (6)伪随机性。分布无规律,具有与白噪声相似的伪随机特性 实验步骤: (1)预习m序列产生原理及其性质,独立设计m序列产生方法。 (2)画出m序列仿真流程图 (3)编写MATLAB程序并上机调试。 (4)验证m序列的相关性质。 (5)撰写实验报告。

m序列和Gold序列特性研究

扩频通信实验报告 - I- Harbin Institute of Technology 扩频通信实验报告 课程名称: 扩频通信 实验题目: Gold 码特性研究 院 系: 电信学院 班 级: 通信一班 姓 名: 学 号: 指导教师: 迟永钢 时 间: 2012年5月8日 哈尔滨工业大学

第1章实验要求 1.以r=5 1 45E为基础,抽取出其他的m序列,请详细说明抽取过程; 2.画出r=5的全部m序列移位寄存器结构,并明确哪些序列彼此是互反多项式; 3.在生成的m序列集中,寻找出m序列优选对,请确定优选对的数量,并画 出它们的自相关和互相关函数图形; 4.依据所选取的m序列优选对生成所有Gold序列族,确定产生Gold序列族的 数量,标出每个Gold序列族中的所有序列,并实例验证族内序列彼此的自相关和互相关特性; 5.在生成的每个Gold序列族内,明确标出平衡序列和非平衡序列,并验证其 分布关系。 6.完整的作业提交包括:纸质打印版和电子版两部分,要求两部分内容统一, 且在作业后面附上源程序,并加必要注释。 7.要求统一采用Matlab软件中的M文件实现。

第2章 实验原理 2.1 m 序列 二元m 序列是一种伪随机序列,有优良的自相关函数,是狭义伪随机序列。m 序列易于产生于复制,在扩频技术中得到了广泛应用。 2.1.1 m 序列的定义 r 级非退化的移位寄存器的组成如图1所示,移位时钟源的频率为c R 。r 级线性移位寄存器的反馈逻辑可用二元域GF(2)上的r 次多项式表示 2012() {0,1}r r i f x c c x c x c x c =++++∈ (1) 图 2-1 r 级线性移位寄存器 式(1)称为线性移位寄存器的特征多项式,其给出的表示反馈网络的而逻辑关系式是现行的。因此成为线性移位寄存器。否则称为,非线性移位寄存器。 对于动态线性移位寄存器,其反馈逻辑也可以用线性移位寄存器的递归关系式来表示 112233 {0,1}i i i i r i r i a c a c a c a c a c ----=++++∈ (2) 特征多项式(1)与递归多项式(2)是r 级线性移位寄存器反馈逻辑的两种不同种表示法,因其应用的场合不同而采用不同的表示方法。以式(1)为特征多项式的r 级线性反馈移位寄存器所产生的序列,其周期21r N ≤-。假设以GF(2)域上r 次多项式(1)为特征多项式的r 级线性移位寄存器所产生的非零序列{}i a 的周期为21r N =-,称序列为{}i a 是最大周期的r 级线性移位寄存器序列,简称m 序列。

时间序列和白噪声

时间序列和白噪声 1.什么是白噪声答:白噪声是指功率谱密度在整个频域内均匀分布的噪声。白噪声或白杂讯是一种功率频谱密度为常数的随机信号或随机过程。换句话说此信号在各个频段上的功率是一样的由于白光是由各种频率颜色的单色光混合而成因而此信号的这种具有平坦功率谱的性质被称作是白色的此信号也因此被称作白噪声。相对的其他不具有这一性质的噪声信号被称为有色噪声。理想的白噪声具有无限带宽因而其能量是无限大这在现实世界是不可能存在的。实际上我们常常将有限带宽的平整讯号视为白噪音因为这让我们在数学分析上更加方便。然而白噪声在数学处理上比较方便因此它是系统分析的有力工具。一般只要一个噪声过程所具有的频谱宽度远远大于它所作用系统的带宽并且在该带宽中其频谱密度基本上可以作为常数来考虑就可以把它作为白噪声来处理。例如热噪声和散弹噪声在很宽的频率范围内具有均匀的功率谱密度通常可以认为它们是白噪声。高斯白噪声的概念--.白指功率谱恒定高斯指幅度取各种值时的概率px是高斯函数高斯噪声--n维分布都服从高斯分布的噪声高斯分布--也称正态分布又称常态分布。对于随机变量X记为Nμσ2分别为高斯分布的期望和方差。当有确定值时p x也就确定了特别当μ0σ21时X的分布为标准正态分布。2.matlab中白噪声和有色噪声怎么表示答:假设V和W是2个n维噪声序列其中V表示白噪声W表示有色噪声在MA TLAB中表示方法为: Vrandnmn Wfilterb1V b为滤波器系数。3.什么叫单边功率谱和双边功率谱他们如何计算答:单边功率谱密度N0主要用在复数信号中双边功率谱密度N0/2主要用在实信号中。单边功率谱适于基带分析在基带中是0中频。如果信号通过了调制将原中频搬移到了高频段原来的负频部分就成了正频利用双边功率谱进行分析。4.Matlab常用工具箱有哪些答:MATLAB包括拥有数百个内部函数的主包和三十几种工具包。工具包又可以分为功能性工具包和学科工具包。功能工具包用来扩充MATLAB的符号计算可视化建模仿真文字处理及实时控制等功能。学科工具包是专业性比较强的工具包控制工具包信号处理工具包通信工具包等都属于此类。开放性使MA TLAB广受用户欢迎。除内部函数外所有MA TLAB主包文件和各种工具包都是可读可修改的文件用户通过对源程序的修改或加入自己编写程序构造新的专用工具包。MatlabMainToolbox--matlab主工具箱ControlSystemToolbox--控制系统工具箱CommunicationToolbox--通讯工具箱FinancialToolbox--财政金融工具箱SystemIdentificationToolbox--系统辨识工具箱FuzzyLogicToolbox--模糊逻辑工具箱Higher-OrderSpectralAnalysisToolbox--高阶谱分析工具箱ImageProcessingToolbox--图象处理工具箱LMIControlToolbox--线性矩阵不等式工具箱ModelpredictiveControlToolbox--模型预测控制工具箱μ-AnalysisandSynthesisToolbox--μ分析工具箱NeuralNetworkToolbox--神经网络工具箱OptimizationToolbox--优化工具箱PartialDifferentialToolbox--偏微分方程工具箱RobustControlToolbox--鲁棒控制工具箱SignalProcessingToolbox--信号处理工具箱SplineToolbox--样条工具箱StatisticsToolbox--统计工具箱SymbolicMathToolbox--符号数学工具箱SimulinkToolbox--动态仿真工具箱WaveleToolbox--小波工具箱5什么是加性噪声答:加性噪声一般指热噪声、散弹噪声等它们与信号的关系是相加不管有没有信号噪声都存在。而乘性噪声一般由信道不理想引起它们与信号的关系是相乘信号在它在信号不在他也就不在。一般通信中把加性随机性看成是系统的背景噪声而乘性随机性看成系统的时变性如衰落或者多普勒或者非线性所造成的。信道中加性噪声的来源一般可以分为三方面:1人为噪声:人为噪声来源于无关的其它信号源例如:外台信号、开关接触噪声、工业的点火辐射等2自然噪声:自然噪声是指自然界存在的各种电磁波源例如:闪电、雷击、大气中的电暴和各种宇宙噪声等3内部噪声:内部噪声是系统设备本身产生的各种噪声例如:电阻中自由电子的热运动和半导体中载流子的起伏变化等。某些类型的噪声是确知的。虽然消除这些噪声不一定很容易但至少在原理上可消除或基本消除。另一些噪声则往往不能准确预测其波形。这种不能预测的噪声统称为随机噪声。我们关心的只是随机噪声。随机噪声的分类常见的随机噪声可

基于MATLAB的m序列产生

第一章设计内容及要求 基于MATLAB产生m序列 要求: 1.通过matlab编程产生m序列的产生原理及其产生方法。 2.对特定长度的m序列,分析其性质,及其用来构造其它序列的方法。

第二章m序列设计方案的选择 2.1 方案一 MATLAB编程非常简单,无需进行变量声明,可以很方便的实现m序列。 2.2 方案二 图2.1 Simulink实现m序列 Simulink是MATLAB最重要的组件之一,它提供了一个动态系统建模,仿真和综合分析的集成环境。在此环境中无需大量书写程序,而只需通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应性广,结构及流程清晰及仿真精细等优点,基于以上优点,Simulink已被广泛的运用到控制理论和数字信号处理的复杂仿真和设计。 通过比较方案一和方案二,发现方案一的有点具有通用性而方案二利用MATLAB的Simulink直接搭建模块,在移位寄存器较少的情况下利用此方法比较简单,可是当移位寄存器的个数增多时,要搭建那么多的模块就显的很繁琐了,缺乏通用性,因此本次实验选择方案一。

第三章m序列的产生及性质 3.1 m序列的产生原理、结构及产生 m序列是最长线性反馈移位寄存器序列的简称,m序列是由带线性反馈的移位寄存器产生的。 由n级串联的移位寄存器和反馈逻辑线路可组成动态移位寄存器,如果反馈逻辑线路只由模2和构成,则称为线性反馈移位寄存器。 带线性反馈逻辑的移位寄存器设定初始状态后,在时钟触发下,每次移位后各级寄存器会发生变化,其中任何一级寄存器的输出,随着时钟节拍的推移都会产生一个序列,该序列称为移位寄存器序列。 n级线性移位寄存器的如图3.1所示: ◇A 图3.1 n级线性移位寄存器 图中C i表示反馈线的两种可能连接方式,C i=1表示连线接通,第n-i 级输出加入反馈中;C i=0表示连线断开,第n-i级输出未参加反馈。 因此,一般形式的线性反馈逻辑表达式为 ------表达式3.1将等式左边的a n移至右边,并将a n=C0a n(C0=1)带入上式,则上式可以 写成 -------表达式3.2 定义一个与上式相对应的多项式 --------表达式3.3 其中x的幂次表示元素的相应位置。该式为线性反馈移位寄存器的特征

Gold序列与m序列仿真应用

1. 绪论 m 序列具有优良的双值自相关特性,但互相关特性不是很好。作为CDMA 通信地址码时,由于互相关特性不理想,使得系统内多址干扰影响增大,且可用地址码数量较少。在某些应用场合,利用狭义伪随机序列复合而成复合序列更为有利。这是因为通过适当方法构造的复合序列具有某些特殊性质。Gold 序列就是一种复合序列,而且具有良好的自相关与互相关特性,地址码数量远大于m 序列,且易于实现、结构简单,在工程上得到广泛应用。 表1是m 序列和Gold 序列的主要性能比较,表中max ?为m 序列的自相关峰值,(0)s ?为自相关主峰;()t n 为Gold 序列的互相关峰值,(0)g ?为其自相关主峰。从表1中可以看出:当级数n 一定时,Gold 序列中可用序列个数明显多于m 序列数,且Gold 序列的互相关峰值和主瓣与旁瓣之比都比m 序列小得多,这一特性在实现码分多址时非常有用。 表1. m 序列和Gold 序列性能比较 在引入Gold 序列概念之前先介绍一下m 序列优选对。m 序列优选对,是指在m 序列集中,其互相关函数绝对值的最大值(称为峰值互相关函数)max ()R τ最接近或达到互相关值下限(最小值)的一对m 序列。 设{a i }是对应于r 次本原多项式F 1(x )所产生的m 序列, {b i } 是另一r 次本原多项式F 2(x )产生的m 序列,峰值互相关函数满足 12 max 2 221()214r ab r r R τr ++?+?≤??+? 为奇数 为偶数但不是的整倍数 (1) 则m 序列{a i }与{b i }构成m 序列优选对。 例如:6r =的本原多项式61()1F x x x =++与6522()1F x x x x x =++++所产生的m 序列{}i a 与{}i b ,其峰值互相关函数2622 2 max ()172 12117r ab R τ++=≤+=+=。满足式(1) ,故{}i a 与{}i b 构成m 序列优选对。而本原多项式65323()1F x x x x x =++++所产生的m 序列 {}i c ,与m 序列{}i a 的峰值互相关函数max ()2317ac R τ=>,不满足上式,故{}i a 与{}i c 不 是m 序列优选对。 2. Gold 序列 1967年,R·Gold 指出:“给定移位寄存器级数r 时,总可找到一对互相关函数值是最小的码序列,采用移位相加方法构成新码组,其互相关旁瓣都很小,且自相关函数和互相关函数均有界”。这样生成的序列称为Gold 码(Gold 序列)。 Gold 序列是m 序列的复合序列,由两个码长相等、码时钟速率相同的m 序列优选对的模2

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:8036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

基于FPGA的VHDL语言m序列生成详解+源码

说明 可控m序列产生器我分成四个小模块来做,M,M1,M2,M3分别对应为:m序列产生器、控制器、码长选择器、码速率选择器。 一、M: m序列产生器 这是该设计的核心部分,原理就是设计一个通用m序列产生子单元,然后由外部选择器来写入码型,码长等参数,加以循环可连接成任意长度的m序列产生器,其子单元结构如下: 如上图,若N=15,就有15个这样的子单元首尾相接。注意:开头和结尾的两个子单元会有所不同,因为首单元需要输入初值,尾单元要进行直通反馈,在程序里请多留意。 图中,主要部件是一个D触发器,Q(N+1)为上一级输出;Q(N)既是本级输出;CP为选择后的时钟脉冲;B(N)为本级参数选择控制;A(N)受控于B(N),决定本级输出Q(N)是否反馈(B(N)为1时反馈);C(N)为本级反馈;C(N-1)为下一级反馈。具体原理参看m序列组成结构。 此外,本程序还加入了EN(发送控制)、RN(首单元置数)、SEL1(码长选择,即N的选择,N=2-15)、SEL2(码型选择,即正逆码选择)四个控制端,可满足设计要求。OP为码输出端。 二、M1:控制器

控制器主要是将外部的序列发送控制信号STA转换为EN和RN 两个控制信号。其中,EN与STA的波形基本一致,只是它与CP进行了同步处理;RN在EN为‘1’的头一个脉冲周期里置高电平,以达到为序列发生器的首端置数的目的。如果不清楚的话可以看一下它的模拟波形。(注意:STA要采用自锁定开关,高电平有效) 三、M2:码长选择 序列的码长选择既是N值的选择,码长=2**N-1。核心就是一个计数器,可从2计到15。按一次PUSH就可以自动加一(注意:按键建议采用自弹跳按键,如过需要软件清除按键震颤的话,我再做发给你),没有0,1两个状态。如果需要的话还可以扩展7段数码管的接口,以显示N值。 四、M3:码速率选择器 码的传输速率是靠CP来控制的,CP的频率就等于码元速率。这段程序包含一个倍频器,一个5分频的分频器,可把5MHZ的脉冲源CLK扩展成1MHZ和10MHZ。FSEL1、FSLE2、FSEL3分别在选择1、5、10MHZ时为高电平,其余两个为低,建议采用3选1单刀单掷开关。

M序列的matlab产生方法

M序列是工程中常用的输入信号,它的性质类似于白噪声,而白噪声是理论上最好的输入信号,可见M序列的价值。下面介绍M序列的matlab产生方法。 idinput函数 产生系统辨识常用的典型信号。 格式 u = idinput(N,type,band,levels) [u,freqs] = idinput(N,'sine',band,levels,sinedata) N 产生的序列的长度,如果N=[N nu],则nu为输入的通道数,如果N=[P nu M],则nu 指定通道数,P为周期,M*P为信号长度。默认情况下,nu=1,M=1,即一个通道,一个周期。 Type 指定产生信号的类型,可选类型如下 Band 指定信号的频率成分。对于’rgs’、’rbs’、’sine’,band = [wlow, whigh]指定通带的范围,如果是白噪声信号,则band=[0, 1],这也是默认值。指定非默认值时,相当于有色噪声。 对于’prbs’,band=[0, B],B表示信号在一个间隔1/B(时钟周期)内为恒值,默认为[0, 1]。 Levels 指定输入的水平。Levels=[minu, maxu],在type=’rbs’、’prbs’、’sine’时,表示信号u的值总是在minu和maxu之间。对于type=’rgs’,minu指定信号的均值减标准差,maxu指定信号的均值加标准差,对于0均值、标准差为1的高斯白噪声信号,则levels=[-1, 1],这也是默认值。 说明 对于PRBS信号,如果M>1,则序列的长度和PRBS周期会做调整,使PRBS的周期为对应一定阶数的最大值(即2^n-1,n为阶数);如果M=1,PRBS的周期是大于N的相应阶数的值。在多输入的情形时,信号被最大平移,即P/nu为此信号能被估计的模型阶次的上界。 上面的意思可如下理解:对于M=1时, ms = idinput(12, 'prbs', [0 1], [0 1]); figure stairs(ms) title('M序列') ylim([-0.5 1.5])

m序列产生及其特性

一、实验目的 通过本实验掌握m 序列的特性、产生方法及应用。 二、实验内容 1、观察m 序列,识别其特征。 2、观察m 序列的自相关特性。 三、基本原理 m 序列是有n 级线性移位寄存器产生的周期为21n -的码序列,是最长线性移位寄存器序列的简称。码分多址系统主要采用两种长度的m 序列:一种是周期为1521-的m 序列,又称短PN 序列;另一种是周期为 4221-的m 序列,又称为长PN 码序列。m 序列主要有两个功能:①扩展调制信号的带宽到更大的传输带宽, 即所谓的扩展频谱;②区分通过多址接入方式使用同一传输频带的不同用户的信号。 3、m 序列的互相关函数 两个码序列的互相关函数是两个不同码序列一致程度(相似性)的度量,它也是位移量的函数。当使 用码序列来区分地址时,必须选择码序列互相关函数值很小的码,以避免用户之间互相干扰。 研究表明,两个长度周期相同,由不同反馈系数产生的m 序列,其互相关函数(或互相关系数)与自 相关函数相比,没有尖锐的二值特性,是多值的。作为地址码而言,希望选择的互相关函数越小越好,这 样便于区分不同用户,或者说,抗干扰能力强。 在二进制情况下,假设码序列周期为P 的两个m 序列,其互相关函数R xy (τ)为 ()xy R A D τ=- (9-9) 式中,A 为两序列对应位相同的个数,即两序列模2加后“0”的个数;D 为两序列对应位不同的个数, 即两序列模2加后“1”的个数。 为了理解上述指出的互相关函数问题,在此以5n =时由不同的反馈系数产生的两个m 序列为例计算它 们的互相关系数,以进一步讲述m 序列的互相关特性。将反馈系数为8(45)和8(75)时产生的两个5级m 序 列分别记做:1m :1000010010110011111000110111010和2m :111110111000101011010000110100,序列1m 和 2m 的互相关函数如表9-3所示。 表9-3序列1m 和2m 的互相关函数表

matlab 正弦波 高斯白噪声 均匀白噪声 功率谱密度 自相关函数

现代通信原理作业一 姓名:张英伟学号:133320085208036 班级:13级理工部3班 利用matlab完成: ●产生正弦波信号、均匀白噪声以及高斯白噪声并分别将两种噪声叠加到正弦 波信号上,绘出波形。 ●分别求取均匀白噪声序列和高斯白噪声序列的自相关及功率谱密度,绘出波 形。 一、白噪声区别及产生方法 1、定义: 均匀白噪声:噪声的幅度分布服从均匀分布,功率谱密度在整个频域内均匀分布的噪声。 高斯白噪声:噪声的幅度分布服从正态分布,功率谱密度在整个频域内均匀分布的噪声。 2、matlab仿真函数: rand函数默认产生是区间在[0,1]的随机数,这里需要利用公式: z2=a+(b-(a))*rand(m,n)............(公式1) randn函数默认产生均值是0、方差是1的随机序列,所以可以用其来产生均值为0、方差为1的正态分布白噪声,即N(0,12)。利用公式: z1=a+b*randn(1,n).................(公式2) 可以产生均值为a,方差为b2 高斯白噪声,即N(a,b2)。 二、自相关函数与功率谱密度之间的关系 1、功率谱密度:每单位频率波携带的功率,这被称为信号的功率谱密度。 2、自相关函数:描述随机信号X(t)在任意两个不同时刻t1,t2的取值之间的相关程度。 3、维纳-辛钦定理: 由于平均值不为零的信号不是平方可积的,所以在这种情况下就没有傅里叶变换。幸运的是维纳-辛钦定理提供了一个简单的替换方法,如果信号可以看作是平稳随机过程,那么功率谱密度就是信号自相关函数的傅里叶变换。 4、平稳随机过程:是在固定时间和位置的概率分布与所有时间和位置的概率分布相同的随机过程。(就是指得仅一个随机过程,中途没有变成另外一个统计特性的随机过程)

gold序列的生成与相关特性仿真

Gold序列生成与相关性仿真 1.1 references [1] 基于Matlab的Gold码序列的仿真与实现. [2] Code Selection for CDMA Systems. 1.2 m序列的生成原理 1.2.1生成本原多项式 利用Matlab编程环境求解本原多项式,其运行结果如表1所示.选择n=7,采用7级移位寄存器,产生的序列周期是127,其程序如下所示. N=7; %以7级寄存器为例,并组其中的一组优选对:211,,217 connections=gfprimfd(N,'all'); 表(1)n=7 本原多项式 上面的多项式中,仅有9个是独立的.因为第一行和第十行,第二行和四行,第三行和第十六行,第五行和第八行,第六行和第十四行,第七行和第十三行,第九行和第十八行,第十一行和第十二行,第十五行和第十七行是两两对称的.用八进制数表示时,所选择的本原多项式为211、217、235、367、277、325、203、313和345共9条.在这9条本原多项式中,选择一个基准本原多项式,再按要求选择另一本原多项式与之配对,构成m序列优选对,对7级m序列优选对如下表:

表(2)n=7 m序列所以优选对 1.2.2构成移位寄存器 根据产生Gold码序列的方法,从上述本原多项式中选择一对m序列优选对,以211作为基准本原多项式,217作为配对本原多项式,通过并联结构形式来产生Gold序列,生成gold 序列的结构如图(6)所示: 图(6)Gold序列生成结构 1.3 自相关函数 仿真参数及初始值设定如下:

N=7; %以7级寄存器为例,并组其中的一组优选对:211,,217 connections=gfprimfd(N,'all'); f1=connections(4,:); %取一组本原多项式序列,211 f2=connections(16,:); %取另一组本原多项式序列,217 registers1=[1 0 0 0 0 0 0];%给定寄存器的初始状态 registers2=[1 0 0 0 0 0 0];%取相同的初始状态 生成的gold 序列自相关函数如图(7)、(8)所示 图(7) Gold 序列周期自相关函数 结论:自相关函数取值集合{127,15,-1,-17} 图(8)Gold 序列非周期自相关函数 020406080100120140 gold 序列周期自相关函数 020406080100120140 -40 -20 20 40 60 80 100 120 140 gold 序列非周期自相关函数

MATLAB环境下的正弦信号及高斯白噪声仿真程序说明

姓名:朱奇峰 专业:电子与通信工程 方向:数字广播电视技术 学号:103320430109033 MATLAB 环境下的正弦信号及高斯白噪声仿真程序说明 一、信号的产生及时域观察 1、设定正选信号的频率为10HZ ,抽样频率为100HZ ; 2、设定N(0,0.25)高斯白噪声,及噪声功率为0.25W ; 3、最后将噪声叠加到正弦信号上,观察其三者时域波形。 二、信号频谱及白噪声功率谱的求解与观察 1、对原正弦信号直接进行FFT ,得出其频谱; 2、求白噪声的自相关函数,随机序列自相关函数的无偏估计公式为: 1 ^ 01()()()N m xx n r m x n x n m N m --==+-∑ 01m N ≤≤- ^^ ()()xx xx r m r m =- 01m N <<- 对所求自相关函数进行FFT 变换,求的白噪声的功率谱函数。 三、仿真结果:

附源程序代码: fs=100; fc=10; x=(0:1/fs:2); n=201; y1=sin(2*pi*fc*x); %原正弦信号,频率为10 a=0;b=0.5; %均值为a,方差为b^2 subplot(3,2,1); plot(x,y1,'r'); title('y=sin(20pi*x)'); ylabel('y'); xlabel('x/20pi'); grid; y2=a+b*randn(1,n); %高斯白噪声 subplot(3,2,2); plot(x,y2,'r'); title('N(0,0.25)的高斯白噪声'); ylabel('y'); xlabel('x/20pi'); grid; y=y1+y2; %加入噪声之后的信号 subplot(3,2,3); plot(x,y,'r'); title('叠加了高斯白噪声的sinx'); ylabel('y'); xlabel('x/20pi'); grid; FY=fft(y); %傅里叶变换得出频谱函数 FY1=fftshift(FY); %频谱校正 f=(0:200)*fs/n-fs/2; subplot(3,2,4); plot(f,abs(FY1),'r'); title('函数频谱图'); ylabel('F(jw)'); xlabel('w'); grid; %求高斯白噪声的自相关函数 m=50; i=-0.49:1/fs:0.49;

m序列产生要点

设计内容及要求 基于MATLAB产生m序列 要求: 1.通过matlab编程产生m序列的产生原理及其产生方法。 2.对特定长度的m序列,分析其性质,及其用来构造其它序列的方法。 第二章m序列设计方案的选择 2.1 方案一 MATLAB编程非常简单,无需进行变量声明,可以很方便的实现m序列。 2.2 方案二 图2.1 Simulink实现m序列 Simulink是MATLAB最重要的组件之一,它提供了一个动态系统建模,仿真和综合分析的集成环境。在此环境中无需大量书写程序,而只需通过简单直观的鼠标操作,就可构造出复杂的系统。Simulink具有适应性广,结构及流程清晰及仿真精细等优点,基于以上优点,Simulink已被广泛的运用到控制理论和数字信号处理的复杂仿真和设计。

通过比较方案一和方案二,发现方案一的有点具有通用性而方案二利用MATLAB的Simulink直接搭建模块,在移位寄存器较少的情况下利用此方法比较简单,可是当移位寄存器的个数增多时,要搭建那么多的模块就显的很繁琐了,缺乏通用性,因此本次实验选择方案一。 第三章m序列的产生及性质 3.1 m序列的产生原理、结构及产生 m序列是最长线性反馈移位寄存器序列的简称,m序列是由带线性反馈的移位寄存器产生的。 由n级串联的移位寄存器和反馈逻辑线路可组成动态移位寄存器,如果反馈逻辑线路只由模2和构成,则称为线性反馈移位寄存器。 带线性反馈逻辑的移位寄存器设定初始状态后,在时钟触发下,每次移位后各级寄存器会发生变化,其中任何一级寄存器的输出,随着时钟节拍的推移都会产生一个序列,该序列称为移位寄存器序列。 n级线性移位寄存器的如图3.1所示: ◇A 图3.1 n级线性移位寄存器 图中C i表示反馈线的两种可能连接方式,C i=1表示连线接通,第n-i 级输出加入反馈中;C i=0表示连线断开,第n-i级输出未参加反馈。 因此,一般形式的线性反馈逻辑表达式为 ------表达式3.1将等式左边的a n移至右边,并将a n=C0a n(C0=1)带入上式,则上式可以 写成

相关文档
最新文档