工程优化目标函数的几种极值求解方法c编程.docx

工程优化目标函数的几种极值求解方法c编程.docx
工程优化目标函数的几种极值求解方法c编程.docx

目标函数极值求解的几种方法

题目:分别用最速下降法,牛顿法,共辘梯度法,拟牛顿法求函数/ = (^-1)2 +5(兀2 -5)2 +(心一1)2 +5(兀4 一5)2的最小值,初始点自拟。

一维搜索法:

迭代下降算法大都具有一个共同点,这就是得到点兀⑷后需要按某种规则确定一个方向d⑷,再从兀⑷岀发,沿方向d⑹在直线(或射线)上求目标函数的极小点,从而得到X⑷的后继点兀如),重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。

一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。这里采用的是第一类试探法屮的黄金分割法。实现过程如下:

(1)置初始区间[40]及精度要求L>0,计算试探点人和",计算函数值/(人)和/(Ai),计算公式是:人二⑷+0.382(勺-绚),M =4+0.618($-?)。令k二1。

(2)若如-蘇“则停止计算。否则,当/(几)>/(弘)吋,转步骤(3);当 /(以)5/仏)时,转步骤⑷o

(3)置昭1=4,优+1=勺,入+严儿,儿+i 如+0?6180如一%丄计算函数值八心,转⑸。

(4)置= a k, b k+i = A , A+i =以,

入+1 二+ °?382仇+| - 务和),

计算

函数值/(入」,转⑸。

最速下降法实现原理描述:在求日标函数极小值问题时,总希望从一点出发,选择一个日标函数值下降最快的方向,以利于尽快达到极小点,正是基于这样一种愿望提出的最速下降法,并且经过一系列理论推导研究可知,负梯度方向为最

速下降方向。

最速下降法的迭代公式是兀如)=无“)+牝⑷,其中卅)是从用出发的搜索方

向,这里取在点M处最速下降方向,即d⑷=-V/(/ )oA,是从用出发沿方向少)进行的一维搜索步长,满足卅)+ 刑))=min .f(兀⑷+加⑹)。

实现步骤如下:

(1)给定初点兀⑴wR",允许误差£>0,置k=l。

(2)计算搜索方向〃)=-▽/(#),若⑷|",则停止计算;否则,从用出发,

沿方向〃⑹进行的一维搜索,求入,使/(兀⑷+心〃⑷卜min/(兀⑷+加⑷)。

久no

(3)兀(曲)=兀伙)+心〃⑷,置k二k+1返冋步骤(2)。

牛顿法

牛顿法迭代公式:代丄朋+入少),少)是在点严)处的牛顿方向,〃

⑷⑷)」号6⑷),心是从*)出发沿牛顿方向〃⑷进行搜索的最优步长。

(1)给定初点X(1) G R n ,允许误差£〉0,置k二1。

(2)计算严=巧(十),若||g⑹卜£,则停止计算;否则,转⑶。

(3)计算^=-V2f(x(k))~l g^从M出发,沿方向d⑹进行的一维搜索,求心,使/(兀⑷+入d⑷)二min/G⑷+加⑷),*如)=*)+入d⑹,置k二k+1返回步骤⑵。

共辄梯度法

若d⑴,〃⑵,…,〃⑹是疋屮k个方向,它们两两关于A共辘,即满足泸TAd⑴= O,iHj;i,j = \,…,k,称这组方向为A的k个共辘方向。共辘梯度法的基本思想

是把共觇性与最速下降法相结合,利用已知点处的梯度构造一组共觇方

向,并沿这组方向进行搜索,求岀目标函数的极小点,根据共辘方向的基本性质

这种方法具有二次终止性。

实现步骤如下:

⑴ 给定初点x{])eR n ,允许误差£>0;

(2)若酚(刊卜£,则停止计算;否则,转⑶;

(3)置〃⑴二-中6⑴),k=lo

(4)作一维搜索,求入,满足/卅)+ 2皿⑷)=哦1/岸)+加⑹);

(5)令少)*)+ 2肿,求g(Z=Vf(兀仙))。

⑹ 若||gE)|",则停止计算;否则,转⑺;

⑺若k=n,则令兀(】)=兀決),转⑶;否则,转8);

令〃(如)=-&(如)+0皿⑷,其中仅置k=k+l,转⑷。

程序

#include

#include

#include

#define N 100

double F(double x[],double p[],double xi[],double ba[],int n,double t) {

double f=0;

int i;

for(i=0;i

return f;

}

double HJFC(double xf],double pf],double xif],double ba[],int n)

{

double a二0,b二10,xl,x2,fl,f2,e=0.0001,y;

x2=a+0.618*(b-a);

f2 二F(x,p,xi,ba,n,x2);

xl=a+0.382*(b-a);

fl=F(x,p,xi,ba,n,xl);

while(fabs(b-a)>e)

if(fl

{

b=x2;x2=xl;f2=fl;

xl=a+0.382*(b-a);

f 1 二F(x,p,xi,ba,n,x 1);

}

else if(fl==f2)

{

a=xl ;b=x2;

x2=a+0.618*(b-a);

f2二F(x,p,xi,ba,n,x2);

xl=a+0.382*(b-a);

fl =F(x,p,xi,ba,n,x 1);

)

else

{

a=xl;xl=x2;fl=f2;

x2=a+0.618*(b-a);

f2=F(x,p,xi,ba,n,x2);

}

}

y 二0.5*(b+a);

return y;

}

void zuisu(doiible x[],double xi[],double ba[],int n) { int i,k=l;

double sum,eps,arph,g[N],p[N];

eps=0.00()001;

sum=0;

for(i=0;i

{

g[i]=2*xi[i]*(x[i]-ba[i]);

p[i]=-g[i]; sum=sum+p[i] *p[i];

1

i=0;

while(sqrt(sum)>eps&&i

{

sum=0;

arph二HJFC(x,p,xi,ba,n);

for(i=0;i

x[i]=x[i]+arph*p[i];

g[i]=2*xili]*(x[i]-ba[ij);

p[i]=-g[i];

sum=sum+pfi]*pfi];

}

printf(“第%(1 次迭代:\n\n\k); printfC*步长lambda=%f\n*',arph); for(i=0;i

printf(,,x[%d]=%f\t,,,i,x[i]); printf("\n\n M); k++;

}

printf(H最后结果为:\n”);

for(i=0;i

printf(”x[%d]=%hn“,i,x[i]);

1

void gonge(double xLJ,double xi[J,double ba[],int n) {

int k=l,i;

double suml,sum2,eps,bita,arph,g[N],p[N];

eps=0.000001;

sum 1=0;

for(i=0;i

{

g[i]=2*xi[i]*(x[i]-ba[i]);

suml+二g[i]*g[i];

}

while((sqrt(sum 1 )>eps)&&(k

{

if(k==l)

{

for(i=0;i

p[i]=-g[i];

bita=0;

}

else

{

bita=suml/sum2;

for(i=0;i

p[i]=-g[i]+bita*p[i];

}

arph=HJFC(x,p,xi,ba,n);

sum 1=0;

sum2=0;

fdr(i=O;i

x[i]=x[i]+arph*p[i];

gfn+i]=g[i];

g[i]=2*xi[i]*(x[i]-ba[i]); suml+=g[i]*g[i]; sum2+=g[n+i]*g[n+i];

}

printf(”第%d 次迭代:\n\n H,k); printfC*步长lambda=%f\t",arph); printf("bita=%f\t\n",bita);

for(i=0;i

printf(H x[%d]=%f\t n,i,x[i]);

printf(n\n\n n);

k++;

} printf("最后结果为:\n");

for(i=0;i

printf(n x[%d]=%f\n u,i,x[i]);

}

void niudun(double x[],double xi[],double ba[],int n) {

int k=l,i,j;

double sum,eps,arph,g[N],p[Nl,h[N][Nl;

eps=0.000001;

sum=0;

for(i=0;i

{

g[i]=2*xi[i]*(x[i]-ba[i]); sum+=g[il*g[i];

}

printf(”过程\n\rT); while((sqrt(sum)>eps)&&(k

{

fdr(i=0;i

for(j=0;j

else

h[il[j]=O;

for(i=0;i

p[i]=0;

for(i=0;i

for(j=0;j< n;j++)

p[i]=p[i]+h[i][j]*g[j];

arph=HJFC(x,p,xi,ba,n);

sum=O;

for(i=0;i

{

x[i]=x[i]+arph*p[i]; g[i]=2*xili]*(x[i]-ba[ij); sum+=g[i]*g[i];

}

printf(”第%d 次迭代:\n\n”,k); printf("步长lambda=%f\n",arph); for(i=0;i

printf(,,x[%d]=%f\t,,,i,x[i]); printf(,,\n\n H);

k++;

} printf("最后结果为:\n M);

for(i=0;i

printf(,,x[%d]=%f\n,,,i,x[i]);

}

void main()

{

int i,n;

double x[N],xifN],ba[N];

printf(“请输入函数的元数:“);

scanf(” %d“,&n);

printf(”请输入函数的系数:“); for(i=0;i

printf(”请输入ba[i]的值:“);

for(i=0;i

printf(”请输入初始值:\n”); for(i=0;i

/* printfC'最速下降法迭代过程:\n”);

zuisu(x,xi,ba,n);*/

/* printfC牛顿法迭代过程:\n”);

niudun(x,xi,ba,n);*/

printfC*共轨梯度法迭代过程:\n“); gonge(x,xi,ba,n);

函数极值的几种求法

函数极值的几种求法 ──针对高中生所学知识 摘要:函数是数学教学中一个重要的组成部分,从小学六年级的一元一次方程继而延伸到初中的一次函数,二次函数的初步介绍,再到高中的函数的单调性、周期性、最值、极值,以及指数函数、对数函数、三角函数的学习,这些足以说明函数在数学教学中的地位。极值作为函数的一个重要性质,无论是在历年高考试题中,还是在实际生活运用中都占有不可或缺的地位。本文主要阐述了初高中常见的几种函数,通过函数极值的相关理论给出每种函数极值的求解方法。 关键词:函数;单调性;导数;图像;极值 Abstract: Function is an important part of mathematics teaching. First the learning of linear equation in six grade, secondly the preliminary introduction of linear functions and quadratic functions in junior high school, then the monotonicity, the periodicity, the most value and the extreme value of function, finally the learning of the logarithmic function, exponential function and trigonometric function in high school. These are enough to show the important statue of the function in mathematics teaching. As an important properties of function, extreme value has an indispensable status whether in the calendar year test, or in daily life. This article will mainly expound the methods of solving the extreme value of sever functions in middle school. Key words: function; monotonicity; derivative; image; extreme value “函数”一词最先是由德国的数学家莱布尼茨在17世纪采用的,当时莱布尼茨用“函数”这一词来表示变量x的幂,也就是x的平方x的立方。之后莱布尼茨又将“函数”这一词用来表示曲线上的横坐标、纵坐标、切线的长度、垂线的长度等与曲线上的点有关的变量[]1。就这样“函数”这词逐渐盛行。在中国,清代著名数学家、天文学家、翻译家和教育家,近代科学的先驱者善兰给出的定义是:

五种最优化方法

五种最优化方法 1.最优化方法概述 1.1最优化问题的分类 1)无约束和有约束条件; 2)确定性和随机性最优问题(变量是否确定); 3)线性优化与非线性优化(目标函数和约束条件是否线性); 4)静态规划和动态规划(解是否随时间变化)。 1.2最优化问题的一般形式(有约束条件): 式中f(X)称为目标函数(或求它的极小,或求它的极大),si(X)称为不等式约束,hj(X)称为等式约束。化过程就是优选X,使目标函数达到最优值。 2.牛顿法 2.1简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)是一种函数逼近法。 2.2原理和步骤

3.最速下降法(梯度法) 3.1最速下降法简介 1)解决的是无约束非线性规划问题; 2)是求解函数极值的一种方法; 3)沿函数在该点处目标函数下降最快的方向作为搜索方向; 3.2最速下降法算法原理和步骤

4.模式搜索法(步长加速法) 4.1简介 1)解决的是无约束非线性规划问题; 2)不需要求目标函数的导数,所以在解决不可导的函数或者求导异常麻烦的函数的优化问题时非常有效。 3)模式搜索法每一次迭代都是交替进行轴向移动和模式移动。轴向移动的目的是探测有利的下降方向,而模式移动的目的则是沿着有利方向加速移动。 4.2模式搜索法步骤

5.评价函数法 5.1简介 评价函数法是求解多目标优化问题中的一种主要方法。在许多实际问题中,衡量一个方案的好坏标准往往不止一个,多目标最优化的数学描述如下:min (f_1(x),f_2(x),...,f_k(x)) s.t. g(x)<=0 传统的多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。常用的方法有“线性加权和法”、“极大极小法”、“理想点法”。选取其中一种线性加权求合法介绍。 5.2线性加权求合法 6.遗传算法 智能优化方法是通过计算机学习和存贮大量的输入-输出模式映射关系,进

目标函数的几种极值求解方法

目标函数极值求解的几种方法 题目:()() 2 22 1 122min -+-x x ,取初始点()() T x 3,11 =,分别用最速下降法, 牛顿法,共轭梯度法编程实现。 一维搜索法: 迭代下降算法大都具有一个共同点,这就是得到点()k x 后需要按某种规则确定一个方向()k d ,再从()k x 出发,沿方向()k d 在直线(或射线)上求目标函数的极小点,从而得到()k x 的后继点()1+k x ,重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。 一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。本文采用的是第一类试探法中的黄金分割法。原理书上有详细叙述,在这里介绍一下实现过程: ⑴ 置初始区间[11,b a ]及精度要求L>0,计算试探点1λ和1μ,计算函数值 ()1λf 和()1μf ,计算公式是:()1111382.0a b a -+=λ,()1111618.0a b a -+=μ。令 k=1。 ⑵ 若L a b k k <-则停止计算。否则,当()K f λ>()k f μ时,转步骤⑶;当 ()K f λ≤()k f μ时,转步骤⑷ 。 ⑶ 置k k a λ=+1,k k b b =+1,k k μλ=+1,()1111618.0++++-+=k k k k a b a μ,计算函数值 ()1+k f μ,转⑸。 ⑷ 置k k a a =+1,k k b μ=+1,k k μμ=+1,()1111382.0++++-+=k k k k a b a λ,计算函数值()1+k f λ,转⑸。 ⑸ 置k=k+1返回步骤 ⑵。 1. 最速下降法 实现原理描述:在求目标函数极小值问题时,总希望从一点出发,选择一个目

多元函数的极值及其-求法

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相 类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点 )0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2 243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的 偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点) ,,(000z y x 处的切平面方程为 ))(,())(,(0000000y y y x f x x y x f z z y x -+-=- 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z

函数的极值及其求法1

三、导数的应用 函数的极值及其求法 在学习函数的极值之前,我们先来看一例子:设有函数,容易知道点x=1及x=2是此函数单调区间的分界点,又可知在点x=1左侧附近,函数值是单调增加的,在点x=1右侧附近,函数值是单调减小的.因此存在着点x=1的一个邻域,对于这个邻域内,任何点x(x=1除外),<均成立,点x=2也有类似的情况(在此不多说),为什么这些点有这些性质呢? 事实上,这就是我们将要学习的内容——函数的极值, 函数极值的定义设函数在区间(a,b)内有定义,x 0是(a,b)内一点. 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),<均成立,则说是函数的一个极大值; 若存在着x 0点的一个邻域,对于这个邻域内任何点x(x 0点除外),>均成立,则说是函数的一个极小值.函数的极大值与极小值统称为函数的极值,使函数取得极值的点称为极值点。 我们知道了函数极值的定义了,怎样求函数的极值呢? 学习这个问题之前,我们再来学习一个概念——驻点凡是使的x 点,称为函数的驻点。 判断极值点存在的方法有两种:如下 方法一:设函数在x 0点的邻域可导,且. 情况一:若当x 取x 0左侧邻近值时, >0,当x 取x 0右侧邻近值时,<0,则函数在x 0点取极大值。 情况一:若当x 取x 0左侧邻近值时, <0,当x 取x 0右侧邻近值时,>0,则函数在x 0点取极小值。 注:此判定方法也适用于导数在x 0点不存在的情况。 用方法一求极值的一般步骤是:

a):求; b):求的全部的解——驻点; c):判断在驻点两侧的变化规律,即可判断出函数的极值。例题:求极值点 解答:先求导数 再求出驻点:当时,x=-2、1、-4/5 判定函数的极值,如下图所示

求函数极值的几种方法

求解函数极值的几种方法 1.1函数极值的定义法 说明:函数极值的定义,适用于任何函数极值的求解,但是在用起来时却比较的烦琐. 1.2导数方法 定理(充分条件)设函数()f x 在0x 处可导且0()0f x '=,如果x 取0x 的左侧的值时,()0f x '>,x 取0x 的右侧的值时,()0f x '<,那么()f x 在0x 处取得极大值,类似的我们可以给出取极小值的充分条件. 例1 求函数23()(1)f x x x =-的单调区间和极值 解 23()(1)f x x x =- ()x -∞<<+∞, 3222()2(1)3(1)(1)(52)f x x x x x x x x '=-+-=--. 令 ()0f x '=,得到驻点为10x =,22 5 x = ,31x =.列表讨论如下: 表一:23()(1)f x x x =-单调性列表 说明:导数方法适用于函数()f x 在某处是可导的,但是如果函数()f x 在某处不可导,则就不能用这样的方法来求函数的极值了.用导数方法求极值的条件是:函数()f x 在某点0x 可导. 1.3 Lagrange 乘法数方法 对于问题: Min (,)z f x y = s.t (,)0x y =

如果**(,)x y 是该问题的极小值点,则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 利用这一性质求极值的方法称为Lagrange 乘法数 例2 在曲线3 1(0)y x x = >上求与原点距离最近的点. 解 我们将约束等式的左端乘以一个常数加到目标函数中作为新的目标函 数2231 ()w x y y x λ=++- 然后,令此函数对x 的导数和对y 的导数分别为零,再与原等式约束合并得 43 320201x x y y x λλ?+=?? +=???=? 解得 x y ?=? ?= ?? 这是唯一可能取得最值的点 因此 x y ==为原问题的最小值点. 说明:Lagrange 乘法数方法对于秋多元函数是比较方便的,方法也是比较简单的 :如果**(,)x y 是该问题的极小值点则存在一个数λ,使得 ****(,)(,)0x x f x y g x y λ+= ****(,)(,)0y y f x y g x y λ+= 这相当于一个代换数,主要是要求偏导注意,这是高等代数的内容. 1.4多元函数的极值问题 由极值存在条件的必要条件和充分条件可知,在定义域内求n 元函数()f p 的极值可按下述步骤进行:①求出驻点,即满足grad 0()0f p =的点0p ;②在0 p

多目标优化问题

多目标优化方法 基本概述 几个概念 优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x1,x2,…,x n ]T----------n维向量 min F(X)=[f1(X),f2(X),…,f n(X)]T----------向量形式的目标函数s.t. g i(X)≤0,(i=1,2,…,m) h j(X)=0,(j=1,2,…,k)--------设计变量应满足的约束条件多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。

二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就是在X*所在的区间D中其函数值比其他任何点的函数值要小即f(X*)≤f(X),则X*为优化问题的最优解。 劣解X*:在D中存在X使其函数值小于解的函数值,即f(x)≤f(X*), 即存在比解更优的点。 非劣解X*:在区间D中不存在X使f(X)全部小于解的函数值f(X*). 如图:在[0,1]中X*=1为最优解 在[0,2]中X*=a为劣解 在[1,2]中X*=b为非劣解 多目标优化问题中绝对最优解存在可能性一般很小,而劣解没有意义,所以通常去求其非劣解来解决问题。

多元函数条件极值的几种求解方法

多元函数条件极值的几种求解方法 摘要 本文主要讨论了多元函数条件极值的求解问题,其中包括无条件极值、条件极值的概念介绍,对多元函数条件极限值的几种求解方法的概括,其中包括了直接代入法,拉格朗日乘数法,柯西不等式等方法,其中拉格朗日乘数法还着重介绍了全微分和二阶偏导数即Hesse矩阵法等。介绍关于求解多元函数条件极值的几种方法目的是在解决相应的问题中时能得以借鉴,找到合适的解决问题的途径。 关键词 极值;拉格朗日乘数法;柯西不等式

1前言 函数极值问题已广泛地出现于数学、物理、化学等学科中,且它涉及的知识面非常广,所以就要求学生有较高的分析能力和逻辑推理能力,同时也要求学生掌握多种求函数极值的方法,因此对函数极值的研究是非常必要的。 函数极值的求解与发展极大的推动了微积分学科的发展,为其做出了重大贡献。 微积分的创立,首先是为了处理十七世纪的一系列主要的科学问题。有四种主要类型的科学问题:第一类是,已知物体的移动的距离表为时间的函数的公式,求物体在任意时刻的速度和加速度使瞬时变化率问题的研究成为当务之急;第二类是,望远镜的光程设计使得求曲线的切线问题变得不可回避;第三类是,确定炮弹的最大射程以及求行星离开太阳的最远和最近距离等涉及的函数极大值、极小值问题也急待解决;第四类问题是求行星沿轨道运动的路程、行星矢径扫过的面积以及物体重心与引力等,又使面积、体积、曲线长、重心和引力等微积分基本问题的计算被重新研究。 同样在很多工程实际中,我们经常需要做一些优化。举个简单的例子,就拿天气预报来说吧,通过实验测得很多气象数据,那么我们怎么处理这些数据,或者说用什么方法处理这些数据,才能达到预测结果最为准确呢,这其实也是一个广义上的极值问题。还有就是经济学的投资问题,我们知道现在国家搞什么高铁、高速公路的,都是

函数极值的求法及其应用

目录 摘要 (2) ABSTRACT (2) 第一章引言 (4) 第二章一元函数的极值 (5) 2.1极值的充分条件 (5) 2.2几种特殊函数的极值 (8) 第三章多元函数的极值 (12) 3.1无条件极值 (13) 3.2条件极值 (15) 第四章函数极值的应用 (19) 参考文献 (24) 致谢 (25)

函数极值的求法及其应用 曾浪 数学与信息学院数学与应用数学专业 2013级指导教师:罗家贵 摘要:函数极值问题是我们在中学数学和高等数学中都能常常遇见的问题,自然学科、工程技术及生产活动、生活实践中很多需要解决的问题,都与求函数极值有关,而导数和微积分的重要应用之一,就是求函数极值。本文从参考书中的例子和生活中的实际问题入手,分别对一元函数和多元函数的极值的求法及其应用进行总结和分析。 关键词:函数;极值;应用 The extreme of function of religion and its application Zeng Lang Mathematics and applied mathematics professional,college of mathematics and information,Grade 2013 Instructor:Luo Jiagui Abstract:Extremum problems is that we can often meet in the middle school mathematics and higher mathematics problems need to solve many natural science, engineering technology and production activities and life practice problems are related with extremal function, and the important application of derivative and differential calculus, is extremal function. In this paper, we start from the examples in reference books and the practical problems in life, and sum up and analyze the methods and applications of the extremum of the function of one variable and multiple functions. Key word: function; the extreme; application

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)就是数学规划的一个重要分支,就是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质就是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权与法、极大极小法、理想点法。评价函数法的实质就是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而就是使决策者参与到求解过程,控制优化的进行过程,使分析与决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权与法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要就是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法与蚁群算法、模拟退火算法及人工免疫系统等。 在工程应用、生产管理以及国防建设等实际问题中很多优化问题都就是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其她若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少与总的运输费用最低, 这就是含有两个目标的优化问题。利用首次适配递减算法与标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合

多元函数的极值及其求法

多元函数的极值及其求法 The latest revision on November 22, 2020

第十一讲 二元函数的极值 要求:理解多元函数极值的概念,会用充分条件判定二元函数的极值,会用拉格朗日乘数法求条件极值。 问题提出:在实际问题中,往往会遇到多元函数的最大值,最小值问题,与一元函数相类似,多元函数的最大值,最小值与极大值,极小值有密切的关系,因此以二元函数为例,来讨论多元函数的极值问题. 一.二元函数的极值 定义 设函数),(y x f z =在点),(00y x 的某个邻域内有定义,对于该邻域内的所有 ),(),(00y x y x ≠,如果总有),(),(00y x f y x f <,则称函数),(y x f z =在点),(00y x 处有极大值;如果总有),(),(00y x f y x f >,则称函数),(y x f z =在点),(00y x 有极小值. 函数的极大值,极小值统称为极值,使函数取得极值的点称为极值点. 例1.函数xy z =在点)0,0(处不取得极值,因为在点)0,0(处的函数值为零,而在点)0,0(的任一邻域内总有使函数值为正的点,也有使函数值为负的点. 例2.函数2243y x z +=在点)0,0(处有极小值. 因为对任何),(y x 有0)0,0(),(=>f y x f . 从几何上看,点)0,0,0(是开口朝上的椭圆抛物面2243y x z +=的顶点,曲面在点)0,0,0(处有切平面0=z ,从而得到函数取得极值的必要条件. 定理1(必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数,且在点),(00y x 处有极值,则它在该点的偏导数必然为零,即0),(00=y x f x ,0),(00=y x f y . 几何解释 若函数),(y x f z =在点),(00y x 取得极值0z ,那么函数所表示的曲面在点),,(000z y x 处的切平面方程为 是平行于xoy 坐标面的平面0z z =. 类似地有三元及三元以上函数的极值概念,对三元函数也有取得极值的必要条件为 0),,(000=z y x f x ,0),,(000=z y x f y ,0),,(000=z y x f z 说明 上面的定理虽然没有完全解决求极值的问题,但它明确指出找极值点的途径,即只要 解方程组???==0 ),(0),(0000y x f y x f y x ,求得解),(),(),,(2211n n y x y x y x ??,那么极值点必包含在其中,这些点称为函数),(y x f z =的驻点. 注意1.驻点不一定是极值点,如xy z =在)0,0(点. 怎样判别驻点是否是极值点呢下面定理回答了这个问题.

多元函数求极值(拉格朗日乘数法)

第八节多元函数的极值及其求法 教学目的:了解多元函数极值的定义,熟练掌握多元函数无条件极值存在的判定方法、求极值方法,并能够解决实际问题。熟练使用拉格朗日乘数法求条件极 值。 教学重点:多元函数极值的求法。 教学难点:利用拉格朗日乘数法求条件极值。 教学内容: 一、多元函数的极值及最大值、最小值 定义设函数z f(x, y)在点(X。, y。)的某个邻域内有定义,对于该邻域内异 于(X。,yo)的点,如果都适合不等式 f (X, y) f(X o,y。) 则称函数f(X,y)在点(X0,y。)有极大值f(X0,y。)。如果都适合不等式 f (X, y) f(X。,y。), 则称函数f(X,y)在点(X0,y。)有极小值f(X0,y。).极大值、极小值统称为极值。 使函数取得极值的点称为极值点。 22 例1 函数z 3X 4y在点(。,。)处有极小值。因为对于点(。,。)的任一邻域内异于(。,。)的点,函数值都为正,而在点(。,。)处的函数值为零。从22 几何上看这是显然的,因为点(。,。,。)是开口朝上的椭圆抛物面z 3X2 4y2 的顶点。

例2函数z x y在点(0, 0)处有极大值。因为在点(0, 0)处函数值为零,而对于点(0, 0)的任一邻域内异于(0, 0)的点,函数值都为负, 点(0, 0, 0)是位于xOy平面下方的锥面z: x2 y2的顶点。 例3 函数z xy在点(0, 0)处既不取得极大值也不取得极小值。因为在 点(0, 0)处的函数值为零,而在点(0, 0)的任一邻域内,总有使函数值为正的点,也有使函数值为负的点。 定理1 (必要条件)设函数z f(x,y)在点(X0,y。)具有偏导数,且在点(X o, y o)处有极值,则它在该点的偏导数必然为零: f x(X o,y°)0, f y(x o,y°)0 证不妨设z f(x,y)在点(x0,y0)处有极大值。依极大值的定义,在点 (X。,y。)的某邻域内异于(X。,y。)的点都适合不等式 f (x, y) f(x°,y o) 特殊地,在该邻域内取y y0,而x X0的点,也应适合不等式 f(x, y°) f(X o,y°) 这表明一元函数f(x,y o)在X X o处取得极大值,因此必有 f x(X o,y o)0 类似地可证 f y(X o,y o) 0

多目标函数的优化设计方法

第9章 多目标函数的优化设计方法 Chapter 9 Multi-object Optimal Design 在实际的机械设计中,往往期望在某些限制条件下,多项设计指标同时达到最优,这类问题称为多目标优化设计问题。与前面单目标优化设计不同的是,多目标优化设计有着多种提法和模式,即数学模型。因此,解决起来要比单目标问题复杂的多。 9.1 多目标最优化模型 9.1.1 问题举例 例9-1 生产计划问题 某工厂生产n (2≥n )种产品:1号品、2号品、...、n 号品。 已知:该厂生产)...,,2,1(n i i =号品的生产能力是i a 吨/小时; 生产一吨)...,,2,1(n i i =号品可获利润i α元; 根据市场预测,下月i 号品的最大销售量为)...,,2(n i b i =吨; 工厂下月的开工能力为T 小时; 下月市场需要尽可能多的1号品。 问题:应如何安排下月的生产计划,在避免开工不足的条件下,使 工人加班时间尽可能的地少; 工厂获得最大利润; 满足市场对1号品尽可能多地要求。 为制定下月的生产计划,设该厂下月生产i 号品的时间为)...,,1(n i x i =小时。 9.1.2 基本概念 如图9.1所示,两个目标函数f 1,f 2中的若干个设计中,3,4称为非劣解,若 )(min{)(*x f x f j j ≤ S.t .0)(≤x g u u=1,2,………….m 成立,则称* x 为非劣解。若不存在一个方向,同时满足: 0)(*≤*?s x f (目标函数值下降0)(*≤*?s x g (不破坏约束) 图9.1 则称* x 为约束多目标优化设计问题的K-T 非劣解。这样,多目标优化设计问题的求解过程为:先求出满足K-T 条件的非劣解,再从众多的非劣解确定一个选好解。 多目标优化的数学模型: T r x f x f x f X F V )](),........(),([)(m in 21=--

多目标最优化数学模型

第六章最优化数学模型 §1 最优化问题 1.1 最优化问题概念 1.2 最优化问题分类 1.3 最优化问题数学模型 §2 经典最优化方法 2.1 无约束条件极值 2.2 等式约束条件极值2.3 不等式约束条件极值 §3 线性规划 3.1 线性规划 3.2 整数规划 §4 最优化问题数值算法4.1 直接搜索法 4.2 梯度法 4.3 罚函数法 §5 多目标优化问题 5.1 多目标优化问题 5.2 单目标化解法 5.3 多重优化解法 5.4 目标关联函数解法5.5 投资收益风险问题

第六章 最优化问题数学模型 §1 最优化问题 1.1 最优化问题概念 (1)最优化问题 在工业、农业、交通运输、商业、国防、建筑、通信、政府机关等各部门各领域的实际工作中,我们经常会遇到求函数的极值或最大值最小值问题,这一类问题我们称之为最优化问题。而求解最优化问题的数学方法被称为最优化方法。它主要解决最优生产计划、最优分配、最佳设计、最优决策、最优管理等求函数最大值最小值问题。 最优化问题的目的有两个:①求出满足一定条件下,函数的极值或最大值最小值;②求出取得极值时变量的取值。 最优化问题所涉及的内容种类繁多,有的十分复杂,但是它们都有共同的关键因素:变量,约束条件和目标函数。 (2)变量 变量是指最优化问题中所涉及的与约束条件和目标函数有关的待确定的量。一般来说,它们都有一些限制条件(约束条件),与目标函数紧密关联。 设问题中涉及的变量为n x x x ,,,21 ;我们常常也用),,,(21n x x x X =表示。 (3)约束条件 在最优化问题中,求目标函数的极值时,变量必须满足的限制称为约束条件。 例如,许多实际问题变量要求必须非负,这是一种限制;在研究电路优化设计问题时,变量必须服从电路基本定律,这也是一种限制等等。在研究问题时,这些限制我们必须用数学表达式准确地描述它们。 用数学语言描述约束条件一般来说有两种: 等式约束条件 m i X g i ,,2,1,0)( == 不等式约束条件 r i X h i ,,2,1, 0)( =≥ 或 r i X h i ,,2,1, 0)( =≤ 注:在最优化问题研究中,由于解的存在性十分复杂,一般来说,我们不考虑不等式约束条件0)(>X h 或0)(

目标函数的几种极值求解方法

目标函数极值求解的几种方法 题目:()()2221122min -+-x x ,取初始点()()T x 3,11=,分别用最速下降法,牛顿法,共轭梯度法编程实现。 一维搜索法: 迭代下降算法大都具有一个共同点,这就是得到点()k x 后需要按某种规则确定一个方向()k d ,再从()k x 出发,沿方向()k d 在直线(或射线)上求目标函数的极小点,从而得到()k x 的后继点()1+k x ,重复以上做法,直至求得问题的解,这里所谓求目标函数在直线上的极小点,称为一维搜索。 一维搜索的方法很多,归纳起来大体可以分为两类,一类是试探法:采用这类方法,需要按某种方式找试探点,通过一系列的试探点来确定极小点。另一类是函数逼近法或插值法:这类方法是用某种较简单的曲线逼近本来的函数曲线,通过求逼近函数的极小点来估计目标函数的极小点。本文采用的是第一类试探法中的黄金分割法。原理书上有详细叙述,在这里介绍一下实现过程: ⑴ 置初始区间[11,b a ]及精度要求L>0,计算试探点1λ和1μ,计算函数值()1λf 和()1μf ,计算公式是:()1111382.0a b a -+=λ, ()1111618.0a b a -+=μ。令k=1。

⑵ 若L a b k k <-则停止计算。否则,当()K f λ>()k f μ时,转步骤⑶;当()K f λ≤()k f μ时,转步骤⑷ 。 ⑶ 置k k a λ=+1,k k b b =+1,k k μλ=+1,()1111618.0++++-+=k k k k a b a μ,计算函数值()1+k f μ,转⑸。 ⑷ 置k k a a =+1,k k b μ=+1,k k μμ=+1,()1111382.0++++-+=k k k k a b a λ,计算函数值()1+k f λ,转⑸。 ⑸ 置k=k+1返回步骤 ⑵。 1. 最速下降法 实现原理描述:在求目标函数极小值问题时,总希望从一点出发,选择一个目标函数值下降最快的方向,以利于尽快达到极小点,正是基于这样一种愿望提出的最速下降法,并且经过一系列理论推导研究可知,负梯度方向为最速下降方向。 最速下降法的迭代公式是()()()k k k k d x x λ+=+1,其中()k d 是从()k x 出发的搜索方向,这里取在点()k x 处最速下降方向,即()()k k x f d -?=。 k λ是从()k x 出发沿方向 ()k d 进行的一维搜索步长,满足 ()()()()() ()k k k k k d x f d x f λλλ+=+≥0 min 。 实现步骤如下: ⑴ 给定初点()n R x ∈1 ,允许误差0>ε,置k=1。 ⑵ 计算搜索方向()()k k x f d -?=。

多目标优化的求解方法

多目标优化的求解方法 多目标优化(MOP)是数学规划的一个重要分支,是多于一个的数值目标函数在给定区域上的最优化问题。 多目标优化问题的数学形式可以描述为如下: 多目标优化方法本质是将多目标优化中的各分目标函数,经处理或数学变换,转变成一个单目标函数,然后采用单目标优化技术求解。目前主要有以下方法: (1)评价函数法。常用的方法有:线性加权和法、极大极小法、理想点法。评价函数法的实质是通过构造评价函数式把多目标转化为单目标。 (2)交互规划法。不直接使用评价函数的表达式,而是使决策者参与到求解过程,控制优化的进行过程,使分析和决策交替进行,这种方法称为交互规划法。常用的方法有:逐步宽容法、权衡比替代法,逐次线性加权和法等。 (3)分层求解法。按目标函数的重要程度进行排序,然后按这个排序依次进行单目标的优化求解,以最终得到的解作为多目标优化的最优解。 而这些主要是通过算法来实现的, 一直以来很多专家学者采用不同算法解决多目标优化问题, 如多目标进化算法、多目标粒子群算法和蚁群算法、模拟退火算法及人工免疫系统等。

在工程应用、生产管理以及国防建设等实际问题中很多优化问题都是多目标优化问题, 它的应用很广泛。 1)物资调运车辆路径问题 某部门要将几个仓库里的物资调拨到其他若干个销售点去, 在制定调拨计划时一般就要考虑两个目标, 即在运输过程中所要走的公里数最少和总的运输费用最低, 这是含有两个目标的优化问题。利用首次适配递减算法和标准蚁群算法对救灾物资运输问题求解, 求得完成运输任务的最少时间, 将所得结果进行了比较。 2)设计 如工厂在设计某种新产品的生产工艺过程时, 通常都要求产量高、质量好、成本低、消耗少及利润高等, 这就是一个含有五个目标的最优化问题; 国防部门在设计导弹时, 要考虑导弹的射程要远、精度要最高、重量要最轻以及消耗燃料要最省等,这就是一个含有四个目标的最优化问题。Jo等人将遗传算法与有限元模拟软件结合应用于汽车零件多工序冷挤压工艺的优化。Chung等人也成功应用遗传算法对锻件工艺进行了优化。 3)投资 假设某决策部门有一笔资金要分配给若干个建设项目, 在确定投资方案时, 决策者总希望做到投资少收益大。Branke等人采用基于信封的多目标进化算法成功地解决了计划投资地选择问题。 4)模拟移动床过程优化与控制 一个工业化模拟移动床正常运行时, 一般有七股物料进、出吸附塔, 其中起关键作用的物料口将作为决策量引起目标值的变化。根据实际生产要求通常包括生产率、产品纯度、吸附剂消耗量等多个目标。模拟移动床分离过程由于其过程操作变量的强耦合性、工艺机理的复杂性及分离性能的影响因素繁多性, 需要众多学者对其操作优化和过程控制进行深入的研究。Huang等人利用TPS 算法解决了模拟移动床多个冲突目标的最大最小的问题, 并与NSGA2 算法的结果进行了比较。吴献东等人运用粒子群算法开发出一种非线性模拟移动床( SMB )色谱分离过程的优化策略。 5)生产调度 在离散制造生产系统中, 一个工件一般经过一系列的工序加工完成, 每道工序需要特定机器和其他资源共同完成, 各工件在各机器上的加工顺序(称技术约束条件)通常是事先给定的。车间调度的作用

(整理)多元函数的极值及其求法.

第六节 多元函数的极值及其求法 在实际问题中,我们会大量遇到求多元函数的最大值、最小值的问题. 与一元函数的情形类似,多元函数的最大值、最小值与极大值、极小值密切的联系. 下面我们以二元函数为例来讨论多元函数的极值问题. 内容分布图示 ★ 引例 ★ 二元函数极值的概念 例1-3 ★ 极值的必要条件 ★ 极值的充分条件 ★ 求二元函数极值的一般步骤 ★ 例4 ★ 例5 ★ 求最值的一般步骤 ★ 例6 ★ 例7 ★ 例8 ★ 例9 ★ 例10 ★ 例11 ★ 条件极值的概念 ★ 拉格郎日乘数法 ★ 例12 ★ 例 13 ★ 例 14 ★ 例 15 ★ 例 16 *数学建模举例 ★ 最小二乘法 ★ 线性规划问题 ★ 内容小结 ★ 课堂练习 ★ 习题6-6 ★ 返回 内容提要: 一、二元函数极值的概念 定义1 设函数),(y x f z =在点),(00y x 的某一邻域内有定义, 对于该邻域内异于),(00y x 的任意一点),(y x , 如果 ),,(),(00y x f y x f < 则称函数在),(00y x 有极大值;如果 ),,(),(00y x f y x f > 则称函数在),(00y x 有极小值; 极大值、极小值统称为极值. 使函数取得极值的点称为极值点. 定理1 (必要条件) 设函数),(y x f z =在点),(00y x 具有偏导数, 且在点),(00y x 处有极值, 则它在该点的偏导数必然为零,即 .0),(,0),(0000==y x f y x f y x (6.1) 与一元函数的情形类似,对于多元函数,凡是能使一阶偏导数同时为零的点称为函数的驻点. 定理2 (充分条件) 设函数),(y x f z =在点),(00y x 的某邻域内有直到二阶的连续偏导

多目标优化问题

多目标优化方法 基本概述几个概念优化方法 一、多目标优化基本概述 现今,多目标优化问题应用越来越广,涉及诸多领域。在日常生活和工程中,经常要求不只一项指标达到最优,往往要求多项指标同时达到最优,大量的问题都可以归结为一类在某种约束条件下使多个目标同时达到最优的多目标优化问题。例如:在机械加工时,在进给切削中,为选择合适的切削速度和进给量,提出目标:1)机械加工 成本最低2)生产率低3)刀具寿命最长;同时还要满足进给量小于加工余量、刀具强度等约束条件。 多目标优化的数学模型可以表示为: X=[x i,x 2,…,x n ] T ---------------------------------- n 维向量 min F(X)=[f i(X),f 2(X),…,f n(X)] T- --------- 向量形式的目标 函数 s.t. g i(X) < 0,(i=1,2,…,m) h j (X)=0,(j=1,2,…,k) ------ 设计变量应满足的约 束条件 多目标优化问题是一个比较复杂的问题,相比于单目标优化问题,在 多目标优化问题中,约束要求是各自独立的,所以无法直接比较任意两个解的优劣。 二、多目标优化中几个概念:最优解,劣解,非劣解。 最优解X*:就是在乂所在的区间D中其函数值比其他任何点的函数值要小即f(X *)

如图:在[0,1] 中 X*=1为最优解 在[0,2] 中X*=a为劣解 在[1,2] 中X*=b为非劣解 多目标优化问 题中绝对最优解存 在可能性一般很 小,而劣解没有 意义,所以通常去 求其非劣解来解决 问题。 三、多目标优化方法 多目标优化方法主要有两大类: 1)直接法:直接求出非劣解,然后再选择较好的解 将多目标优化问题转化为单目标优化问题。 2)间接法女口:主要目标法、统一目标法、功效系数法等。 将多目标优化问题转化为一系列单目标优化问题。女口:分层系列法等。 1、主要目标法 求解时从多目标中选择一个目标作为主要目标,而其他目标只需满足一定要求即可,因此可将这些目标转化成约束条件,也就是用约束条件的形式保证其他目标不致太差,这样就变成单目标处理方法。 例如:多目标函数f 1(X),f 2(X),.?…,f n(X)中选择f k(X)作为主 要目标,这时问题变为求min f k(x) D={x|f min < f i(X)< f ma》,D为解所对应的其他目标函数应满足上下限。 2、统一目标法 通过某种方法将原来多目标函数构造成一个新的目标函数,从而将多目标函数转变为单目标函数求解。 ①线性加权和法 根据各目标函数的重要程度给予相应的权数,然后各目标函数与

相关文档
最新文档