VOC基础知识简介

生物化学知识点总整理

一、蛋白质 1.蛋白质的概念:由许多氨基酸通过肽键相连形成的高分子含氮化合物,由C、H、O、N、S元素组成,N的含量为16%。 2.氨基酸共有20种,分类:非极性疏水R基氨基酸、极性不带电荷R基氨基酸、带正电 荷R基氨基酸(碱性氨基酸)、带负电荷R基氨基酸(酸性氨基酸)、芳香族氨基酸。 3.氨基酸的紫外线吸收特征:色氨酸和酪氨酸在280纳米波长附近存在吸收峰。 4.氨基酸的等电点:在某一PH值条件下,氨基酸解离成阳离子和阴离子的趋势及程度相同,溶液中氨基酸的净电荷为零,此时溶液的PH值称为该氨基酸的等电点;蛋白质等电点: 在某一PH值下,蛋白质的净电荷为零,则该PH值称为蛋白质的等电点。 5.氨基酸残基:氨基酸缩合成肽之后氨基酸本身不完整,称为氨基酸残基。 6.半胱氨酸连接用二硫键(—S—S—) 7.肽键:一个氨基酸的α-羧基与另一个氨基酸α-氨基脱水缩合形成的化学键。 8.N末端和C末端:主链的一端含有游离的α氨基称为氨基端或N端;另一端含有游离的 α羧基,称为羧基端或C端。 9.蛋白质的分子结构:(1)一级结构:蛋白质分子内氨基酸的排列顺序,化学键为肽键和二硫键;(2)二级结构:多肽链主链的局部构象,不涉及侧链的空间排布,化学键为氢键, 其主要形式为α螺旋、β折叠、β转角和无规则卷曲;(3)三级结构:整条肽链中,全部氨基 酸残基的相对空间位置,即肽链中所有原子在三维空间的排布位置,化学键为疏水键、离子键、氢键及范德华力;(4)四级结构:蛋白质分子中各亚基的空间排布及亚基接触部位的布局和 相互作用。 10.α螺旋:(1)肽平面围绕Cα旋转盘绕形成右手螺旋结构,称为α螺旋;(2).螺旋上升一圈,大约需要3.6个氨基酸,螺距为0.54纳米,螺旋的直径为0.5纳米;(3).氨基酸的R基分布在 螺旋的外侧;(4).在α螺旋中,每一个肽键的羰基氧与从该羰基所属氨基酸开始向后数第五个氨基酸的氨基氢形成氢键,从而使α螺旋非常稳定。 11.模体:在许多蛋白质分子中可发现两个或三个具有二级结构的肽段,在空间上相互接近,形成一个特殊的空间构象,被称为模体。 12.结构域:大分子蛋白质的三级结构常可分割成一个或数个球状或纤维状的区域,折叠得较为紧密,各行使其功能,称为结构域。 13.变构效应:蛋白质空间结构的改变伴随其功能的变化,称为变构效应。 14.蛋白质胶体结构的稳定因素:颗粒表面电荷与水化膜。 15.什么是蛋白质的变性、复性、沉淀?变性与沉淀关系如何?导致蛋白质的变性因素?举 例说明实际工作中应用和避免蛋白质变性的例子? 蛋白质的变性:在理化因素的作用下,蛋白质的空间构象受到破坏,其理化性质发生改变,生物活性丧失,其实质是蛋白质的次级断裂,一级结构并不破坏。 蛋白质的复性:当变性程度较轻时,如果除去变性因素,蛋白质仍能恢复或部分恢复其原 来的构象及功能,这一现象称为蛋白质的复性。

生物化学基本知识

第六章生物化学实验基本知识 主编:齐锦生编委: 孔德娟齐锦生许丽辉杨崇辉周秀霞罗湘衡君智炜张晓玲王芳 实验室要求 一、实验课的目的 1、加深理解:加深对生物化学基本理论的理解。 2、掌握技术:掌握生物化学的基本实验方法和实验技术(四大基本技术:离心、电泳、层析、比色)及分子生物学的一些基本技术和方法。 3、培养能力:培养学生的思维能力、动手能力和表达能力。 4、掌握精髓:科学的精髓是实事求是、敢于探索、善于创新的精神,要对实验中出现的一切反常现象进行讨论,并大胆提出自己的看法。 二、生化实验室规则和要求 1、预习:课前要预习实验教材,了解实验目的、原理,熟悉操作规程。 2、秩序:自觉遵守纪律,维护教学秩序,不准迟到、早退,保持安静,严禁谈笑打闹,听从教师指导,未经教师同意,不得随意离开实验室。 3、整洁:搞好实验环境和仪器的卫生整洁,实验台面必须保持整洁,仪器药品要井然有序,公用试剂用毕,应立即盖严放回原处,勿使药品试剂撒在实验台面和地面。实验完毕,需将药品试剂排列整齐,仪器要洗净倒置放好。固体废物,如滤纸、棉花、血块不得倒入水池中,以免堵塞下水道;一般性废液可倒入水池中冲走,但强酸强碱或有毒有害溶液必须用水高度稀释后,方可倒入水池中,同时放水冲走,以免腐蚀水管。全体同学由班长安排轮流值日,负责当天实验室卫生、安全和一些服务性工作,经教师验收合格后,方可离开实验室。 4、节约:使用仪器、药品、试剂及各种物品必须厉行节约,并节约水电。应特别注意保持药品和试剂的纯净,严防混杂、乱用和污染。使用和洗涤仪器应小心仔细,防止损坏,贵重仪器使用前应熟悉使用方法,严格遵守操作规程,严禁随意开动,发现故障后应立即报告指导教师,不要自己动手检修,如有损坏按学校规定赔偿。 5、安全:注意人身和国家财产安全是至关重要的,要时刻注意防火、防水、防电、防危险品、防事故,以免发生意外。实验室内严禁吸烟。使用乙醚、苯、乙醇、丙酮等易燃品时,不允许在电炉、酒精灯上直接加热。实验中须远离火源,如有危险发生,应首先关掉电源;有机溶剂着火时,勿用水泼,以免扩大燃烧面积,可用沙土、灭火器具灭之。用火时必须严格做到:火着人在,人走火灭。用毕电器后及时切断电源。加热试剂、液体时,管口不要对人,要十分小心操作,避免灼伤人。实验室内一切物品未经本室负责教师批准,严禁携带出室外,有毒物品尤其如此。借物必须办理登记手续。

生物化学知识点汇总

生物化学知识点486 时间:2011-8-10 18:04:44 点击: 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要1生物化学一、填空题核心提示:折、蛋白质二级结构的主形式是(a-螺旋)、(B-元素组成的,组成蛋白质的基本单位是(氨基酸)。2(疏3、维行蛋白质的空间结稳定的化 学键主要有(氢键)、(盐键)、叠)(B-转角)(无规则卷曲)。... 水键)、(范德华力)等生物化学 一、填空题 、大多数的蛋白质都是由(碳)、(氢)、(氧)、(氮)等主要元素组成的,组成蛋白1 质的基本单位是(氨基酸)。 转角)(无规则卷曲)。、蛋白质二级结构的主形式是(a-螺旋)、(B-折叠)(B-2、维行蛋白质的空间结稳定的化学键主要有(氢键)、(盐键)、(疏水键)、(范德华3 力)等非共价键和(二硫键)。 、使蛋白质沉淀常用的方法有(盐析法)、(有机溶剂沉淀法)、、4 (重金 属盐沉淀法)。、核酸分(核糖核酸)和(脱氧核糖核酸)两大类。构成核酸的基本单位是(氨基酸),5 核酸彻底水解的最终产物是(碳酸)、(戊糖)、(含氮碱),此即组成核酸的基本成分。)、CA)和(鸟嘌呤B)两种,嘧啶碱主要有(胞嘧啶6、核酸中嘌呤碱主要有(腺嘌呤)和(胸腺嘧啶T)三种。(尿嘧啶U、酶是指(由活细胞产生的能够在体内外起催化作用的生物催化剂),酶所催化的反应称7 为(酶促反应),酶的活性是指(酶的催化能力)。 8、酶促反应的特点有(催化效率高)、(高度专一性)(酶活性的不稳定性)。 、酶促反应速度受许多因素影响,这些因素主要有(酶浓度)、(底物浓度)、(温度)、9 )、(激活剂)、(抑制剂)(PH),糖的来源有(食物中糖的消化吸收)、3.9-6.1mmol/L10、正常情况下空腹血糖浓度为((肝糖原的分解)、(糖异生作用),糖的正常去路有(氧化供能)、(合成糖原)、(转化成脂肪等),异常去路有(尿糖)。,反应在(线12)分子ATP411、三羧酸循环中有(2)次脱羧()次脱氧反应,共生成(酮戊二酸脱氢酶粒)中进行,三种关键酶是(柠檬酸合成酶)、(异柠檬酸脱氢酶)、(a- 系)。、由于糖酵解的终产物是(乳酸),因此,机体在严重缺氧情况下,会发生(乳酸)中12 毒。 、糖的主要生理功能是(氧化供能),其次是(构成组织细胞的成分),人类食物中的13 糖主要是(淀粉)。、糖尿病患者,由于体内(胰岛素)相对或绝对不足,可引起(持续)性(高血糖),14 1 甚至出现(糖尿)),并释放能量的过程称(生H2O、营养物质在(生物体)内彻底氧化生成(CO2)和(15 物氧化),又称为(组织呼吸)或(细胞呼吸)。琥珀酸氧化呼吸链),两FADH2、体内重要的两条呼吸链是(NADH氧化呼吸链)和(16 2ATP)。条呼吸链ATP的生成数分别是(3ATP)和()H2O17、氧化磷酸化作用是指代谢物脱下的(氢)经(呼吸链)的传递交给(氧)生成(ATP)的过程相(偶联)的作用。的过程与(ADP)磷酸化生成(ATP的主 要方式为(氧化磷酸化),其次是(底物水平磷酸化)。18、体内生成脱a-CO2是通过(有机物)的脱羧反应生成的,根据脱羧的位置不同,可分为(19、体内脱羧)。羧)和(B-氧化过程包括(脱氢)、(加水)、(再脱氢)、(硫解)四个步每一次B-20、脂酰CoA )。)和比原来少2

各种橡胶基本知识

各种橡胶基本知识 橡胶基本知识 橡胶是高弹性的高分子材料,由于橡胶具有其他材料所没有的高弹性,因而也称做弹性体,其基本特性如下: 1 有橡胶状弹性。 2 具有粘弹性。 3 有减震缓冲的作用。 4 对温度依赖大 5 具有电绝缘性。 6 有老化现象。 7 必须进行硫化。 8 必须加入配合剂 9 比重小,硬度低,柔软性好,透气性差。 前言 一. 橡胶在制鞋业中的应用: 1.历史可以远溯至1492年哥伦布发现美洲新大陆,早期的探险家发现印地安人使用巴西橡 胶树之胶乳(天然橡胶)来制作"胶鞋",防止脚被蛇虫叮咬,之後18世纪後期至19世纪初期,天然橡胶开始在欧洲用于胶管雨衣,胶鞋,但材料遇热变软发粘,遇冷变硬脆裂,实用价值不大. 2.1839年,美国人固特异(C.Goodyear)发明了橡胶的硫化,硫化後橡胶产生本质的飞跃,性能大幅度提高.此橡胶大底在制鞋业中获得了广泛应用,随著橡胶工业的发展,丁苯橡胶等人工 合成橡胶由于其性能突出,1951年後开始引入制鞋业大量使用. 生胶天然橡胶(NR) 1 来源 1. 野生橡胶:由野生树木植物采制的橡胶。银色橡胶菊,野藤橡胶等也属此类。 2. 栽培橡胶:主要是三叶橡胶树。 3. 橡胶草橡胶。一公顷可收150-200KG。 4. 杜仲胶:由杜仲树的枝叶根茎中提取。常温下无弹性,软化点高,比重大,耐水性好。可做塑料用。 1 天然橡胶制造和分级标准。 1. 烟片胶:消耗量占天然橡胶的80%。 按照质量分为六个等级:RSSIX;RSS1#;RSS2#;RSS3#;RSS4#;RSS5#。质量按顺序降低。 2. 绉胶片: 1)白绉胶==>质量最好 2)褐绉胶==》质量普通 3) 毛绉胶==》质量最差 3. 马来西亚标准胶。 品质稳定,杂质少,纯度高,国际标准. 4.专用天然橡胶 1 恒粘(CV):加入0.15-4%的盐酸氢胺,使橡胶门尼值保持在60+-5度。生热低,耐屈挠性和耐磨性好,为制造高速轮胎重要原料。 2 低粘(LV)橡胶:门尼值为45+-5度,可以不经过素炼直接混炼。 3 轮胎橡胶

生化基础知识---总结终极版

1.2. 常用临床生化项目的分类 1.2.1. 按化学性质分类 大概分为四类:酶类、底物代谢类、无机离子类、特种蛋白类。 1.2.1.1. 酶类 包括ALT(谷丙转氨酶),AST(谷草转氨酶),ALP(碱性磷酸酶),ACP(酸性磷酸酶),r-GT(谷氨酰转移酶),α-HBDH(α羟丁酸脱氢酶),LDH(乳酸脱氢酶),CK(肌酸激酶),CK-MB(肌酸激酶同功酶),α-AMY(淀粉酶),ChE(胆碱脂酶)等。 1.2.1.2. 底物代谢类 包括TG(甘油三脂),TC(总胆固醇),HDL-C(高密度脂蛋白胆固醇),LDL-C(低密度脂蛋白胆固醇),UA(尿酸),UREA(尿素氮),Cr(肌酐),Glu(葡萄糖),TP (总蛋白),Alb(白蛋白),T-Bil(总胆红素),D-Bil(直接胆红素),TBA(总胆汁酸),CO2(二氧化碳)等。 1.2.1.3. 无机离子类 包括Ca(钙),P(磷),Mg(镁),Cl(氯),Fe(铁)等。 1.2.1.4. 特种蛋白类 apoA1(载脂蛋白A1),apoB(载脂蛋白B),Lp(a)(脂蛋白a);补体C3,补体C4;免疫球蛋白IgA、IgG、IgM等。 1.2.2. 按临床性质分类 无机离子:包括Ca,P,Mg,Cl等; 肝功能:包括ALT,AST,r-GT,ALP,MSO,T-Bil,D-Bil,TBA,TP,Alb等; 肾功能:UA,UREA,Cr等; 心肌酶谱:CK,CK-MB,LDH,α-HBDH, AST,MSO等; 糖尿病:GLU等; 前列腺疾病:ACP,p-ACP等; 胰腺炎:α-AMY; 血脂:TC,TG,HDL-C,LDL-C,apoA1,apoB,Lp(a); 痛风:UA; 中毒:ChE; 免疫性疾病:C3,C4,IgG,IgA,IgM; 急性炎症反应:CRP(C反应蛋白),AAG(a1酸性糖蛋白),CER(铜蓝蛋白),ASO (抗链球菌溶血素O)。 1.3. 常用临床项目的医学决定水平 医学决定水平(Medicine decide level,MDL)是指不同于参考值的另一些限值,通过观察测定值是否高于或低于这些限值,可在疾病诊断中起排除或确认的作用,或对某些疾病进行分级或分类,或对预后做出估计,以提示医师在临床上应采取何种处理方式,如进一步进行某一方面的检查,或决定采取某种治疗措施等等。 医学决定水平与参考值的根本区别在于: 它不仅对健康人的数值进行研究,以决定健康人的数值区间,同时还对有关疾病的不同病情的数据进行研究,以定出不同的决定性限值。 可提示及引导医师采取不同的临床措施。所医学决定水平看来更合理、更客观、更有助于临床的应用。当然,真正建立起每一项试验的医学决定水平是一个十分复杂的问题,存在着许多的实际困难。 下列为一些常用检验项目的医学决定水平,仅供参考。 1.3.1. 钾

操作系统基础知识点详细概括复习课程

第一章: 1.什么是操作系统?os的基本特性是?主要功能是什么 OS是控制和管理计算机硬件和软件资源,合理组织计算机工作原理以及方程用户的功能的集合。 特性是:具有并发,共享,虚拟,异步的功能,其中最基本的是并发和共享。 主要功能:处理机管理,存储器管理,设备管理,文件管理,提供用户接口。 2.操作系统的目标是什么?作用是什么? 目标是:有效性、方便性、可扩充性、开放性 作用是:提供用户和计算机硬件之间的接口,提供对计算机系统资源的管理,提供扩充机 器 3.什么是单道批处理系统?什么是多道批处理系统? 系统对作业的处理是成批的进行的,且在内存中始终保持一道作业称此系统为单道批处理 系统。 用户所提交的作业都先存放在外存上并排成一个队列,然后,由作业调度程序按一定的算 法从后备队列中选择若干个调入作业内存,使他们共享CPU和系统中的各种资源。 4.多道批处理系统的优缺点各是什么? 优点:资源利用率高,系统吞吐量大。缺点:平均周转时间长,无交互能力。 引入多道程序技术的前提条件之一是系统具有终端功能,只有有中断功能才能并发。 5.什么是分时系统?特征是什么? 分时系统是指,在一台主机上连接了多个带有显示器和键盘的终端,同时允许多个用户通 过自己的终端,以交互的方式使用计算机,共享主机中的资源。 特征:多路性、独立性、及时性、交互性 *有交互性的一般是分时操作系用,成批处理无交互性是批处理操作系统,用于实时控制或实时信息服务的是实时操作系统,对于分布式操作系统与网络操作系统,如计算机之间无 主次之分就是分布式操作系统,因为网络一般有客户-服务器之分。 6.什么是实时操作系统? 实时系统:系统能及时响应外部事件的请求,在规定的时间内处理完。按照截止时间可以 分为1硬实时任务(必须在截止时间内完成)2软实时任务(不太严格要求截止时间) 7.用户与操作系统的接口有哪三种? 分为两大类:分别是用户接口、程序接口。 用户接口又分为:联机用户接口、脱机用户接口、图形用户接口。 8.理解并发和并行?并行(同一时刻)并发(同一时间间隔) 9.操作系统的结构设计 1.无结构操作系统,又称为整体系统结构,结构混乱难以一节,调试困难,难以维护2.模块化os结构,将os按功能划分为一定独立性和大小的模块。是os容易设计,维护,增强os的可适应性,加速开发工程 3.分层式os结构,分层次实现,每层都仅使用它的底层所提供的功能 4.微内核os结构,所有非基本部分从内核中移走,将它们当做系统程序或用户程序来实现,剩下的部分是实现os核心功能的小内核,便于扩张操作系统,拥有很好的可移植性。 第二章: 1.什么叫程序?程序顺序执行时的特点是什么? 程序:为实现特殊目标或解决问题而用计算机语言编写的命令序列的集合 特点:顺序性、封闭性、可再现性 2.什么是前趋图?(要求会画前趋图)P35图2-2

生物化学知识点

生物化学名词解释及基本概念整理 第一章蛋白质化学 Ⅰ基本概念 1、等电点(pI):使氨基酸离解成阳性离子和阴性离子的趋势和程度相等,总带电荷为零(呈电中性) 时的溶液pH值. A溶液pHpI,氨基酸带负电荷,在电泳时向正极运动。 2、修饰氨基酸(稀有氨基酸):蛋白质合成后,氨基酸残基的某些基团被修饰后形成的氨基酸。没有 相应的密码子,如甲基化、乙酰化、羟基化、羧基化、磷酸化等。 3、肽键(peptide bond):合成肽链时,前一个氨基酸的α-羧基与下一个氨基酸的α-氨基通过脱 水作用形成的酰胺键,具有部分双键性质。 4、肽键平面(酰胺平面):参与肽键的六个原子位于同一平面,该平面称为肽键平面。肽键平面不能 自由转动。 5、蛋白质结构: A一级结构:是指多肽链从N端到C端的氨基残基种类、 数量和顺序。主要的化学键:肽键,二硫键。 B 二级结构:是指蛋白质分子中某一段肽链的局部空间结构, 即蛋白质主链原子的局部空间排布(不涉及侧链原子的位置)。 分α-螺旋( α -helix):较重要,为右手螺旋,每圈螺旋含3.6个 氨基酸残基(13个原子),螺距为0.54nm、β-片层(β-折叠, β-pleated sheet)、β-转角(β-turn )、无规则卷曲(random coil)、π-螺旋(π -helix )。维持二级结构的化学键:氢键。 模体:蛋白质分子中,二级结构单元有规则地聚集在一起形成 混合或均有的空间构象,又称超二级结构。 C 结构域:蛋白质三级结构中,折叠紧凑、可被分割成独立的球状或纤维状,具有特定功能的 区域,称为结构域。为构成三级结构的基本单元。 D三级结构:是指整条多肽链中所有氨基酸残基的相对空间位置(肽链上所有原子的相对空间位 置).化学健:疏水键和氢键、离子键、范德华力等来维持其空间结构的相对稳定。 E 四级结构:蛋白质分子中几条各具独立三级结构的多肽链间相互结集和相互作用,排列形成 的更高层次的空间构象。作用力:亚基间以离子键、氢键、疏水力连接。此外,范德华力、二 硫键(如抗体)。 6、分子伴侣:一类在序列上没有相关性但有共同功能,在细胞中能够帮助其他多肽链(或核酸)折 叠或解折叠、组装或分解的蛋白称为分子伴侣。如热休克蛋白。 7、一级结构是形成高级结构的分子基础,蛋白质一级结构的改变,可能引起其功能的异常或丧失(“分 子病”);同功能蛋白质序列具有种属差异与保守性。 蛋白质分子的空间结构是其发挥生物学活性的基础,蛋白质分子构象的改变影响生物学功能或 导致疾病的发生,蛋白质一级结构不变,但由于折叠错误,导致蛋白质构象改变而引起的疾病, 称为蛋白质构象病(折叠病)。 8、蛋白质变性:在某些理化因素的作用下,特定的空间结构被破坏而导致其理化性质改变及生物活 性丧失的过程。为非共价键和二硫键断裂,物理(高温、高压、紫外线),化学(强酸碱、有机溶剂、重金属盐)等因素导致。 9、20种AA名称及缩写: A 非极性疏水性AA:甘氨酸(Gly)、丙氨酸(Ala)、缬氨酸(Val)、亮氨酸(Leu)、异亮氨酸(Ile)、

橡胶加工工艺基础知识

橡胶加工工艺基础知识一、塑炼 橡胶受外力作用产生变形,当外力消除后橡胶仍能保持其 形变的能力叫做可塑性。增加橡胶可塑性工艺过程称为塑 炼。橡胶有可塑性才能在混炼时与各种配合剂均匀混合; 在压延加工时易于渗入纺织物中;在压出、注压时具有较好的流动性。此外,塑炼还能使橡胶的性质均匀,便于控制生产过程。但是,过渡塑炼会降低硫化胶的强度、弹性、耐磨等性能,因此塑炼操作需严加控制。 橡胶可塑度通常以威廉氏可塑度、门尼粘度和德弗硬度等表示。 1、塑炼机理 橡胶经塑炼以增加其可塑性,其实质乃是使橡胶分子链断 裂,降低大分子长度。断裂作用既可发生于大分子主链,又可发生于侧链。由于橡胶在塑炼时,遭受到氧、电、热、机械力和增塑剂等因素的作用,所以塑炼机理与这些因素密切相关,其中起重要作用的则是氧和机械力,而且两者相辅相成。通常可将塑炼区分为低温塑炼和高温塑炼,前者以机械降解作用为主,氧起到稳定游离基的作用;后者以自动氧化降解作用为主,机械作用可强化橡胶与氧的接

塑炼时,辊筒对生胶的机械作用力很大,并迫使橡胶分子链断裂,这种断裂大多发生 在大分子的中间部分。塑炼时,分子链愈长愈容易切断。顺丁胶等之所以难以机械 断链,重要原因之一就是因为生胶中缺乏较高的分子量级分。当加入高分子量级分后, 低温塑炼时就能获得显著的效果。 氧是塑炼中不可缺少的因素,缺氧时,就无法获得预期的效果。生胶塑炼过 塑炼时,设备与橡胶之间的摩擦显然使得胶温升高。热对塑炼效果极为重要,而且在 不同温度范围内的影响也不同。 由于低温塑炼时,主要依靠机械力使分子链断裂,所以在像章区域内(天然胶低于 110C )随温度升高,生胶粘度下降,塑炼时受到的作用力较小,以致塑炼效果反而下降。相反,高温塑炼时,主要是氧化裂解反应起主导作用,因而塑炼效果在高温区 (天然胶高于110C )将随温度的升高而增大,所以温度对塑炼起着促进作用。各种橡胶由于特性不同,对应于最低塑炼效果的温度范围也不一样,但温度对塑炼效果 影响的曲线形状是相似的。由前已知,不论低温塑炼还是高温塑炼,使用化学增塑剂 皆能提高塑炼效果。接受剂型增塑剂,如苯醌和偶氮苯等,它们在低温塑炼时起游 离基接受剂作用,能使断链的橡胶分子游离基稳 定,进而生成较短的分子;引发剂型增塑剂,如过氧化二苯甲酰和偶氮二异丁腈等,它们在高温下分解成极不稳定的游离基,再引发橡胶分子生成大分子游离基,并进而氧化断裂。此外,如硫醇类及二邻苯甲酰胺基苯基二硫化物类物质,它们既能使橡胶分子游离基稳定,又能在高温下引发橡胶形成游离基加速自动氧化断裂,所以,这类化学增塑剂称为混合型增塑剂或链转移型增塑剂。 2、塑炼工艺 生胶在塑炼前通常需进行烘胶、切胶、选胶和破胶等处理。 烘胶是为了使生胶硬度降低以便切胶,同时还能解除结晶。

生物化学知识点总结

生物化学知识点总结 一、蛋白质 蛋白质的元素组成:C、H、O、N、S 大多数蛋白质含氮量较恒定,平均16%,即1g氮相当于6.25g蛋白质。6.25称作蛋白质系数。 样品中蛋白质含量=样品中含氮量×6.25 蛋白质紫外吸收在280nm,含3种芳香族氨基酸,可被紫外线吸收 等电点(pI):调节氨基酸溶液的pH值,使氨基酸所带净电荷为零,在电场中,不向任何一极移动,此时溶液的pH叫做氨基酸的等电点。 脯氨酸和羟脯氨酸与茚三酮反应产生黄色物质,其余的氨基酸与茚三酮反映均产生蓝紫色物质。氨基酸与茚三酮反应非常灵敏,几微克氨基酸就能显色。 肽平面:肽键由于C-N键有部分双键的性质,不能旋转,使相关的6个原子处于同一平面,称作肽平面或酰胺平面。 生物活性肽:能够调节生命活动或具有某些生理活动的寡肽和多肽的总称。 1)谷胱甘肽:存在于动植物和微生物细胞中的一种重要三肽,由谷氨酸(Glu)、半胱氨酸(Cys)和甘氨酸(Gly)组成,简称GSH。由于GSH含有一个活泼的巯基,可作为重要的还原剂保护体内蛋白质或酶分子中的巯基免遭氧化,使蛋白质或酶处在活性状态。 寡肽:10个以下氨基酸脱水缩合形成的肽 多肽:10个以上氨基酸脱水缩合形成的肽 蛋白质与多肽的区别: 蛋白质:空间构象相对稳定,氨基酸残基数较多 多肽:空间构象不稳定,氨基酸残基数较少 蛋白质的二级结构:多肽链在一级结构的基础上,某局部通过氢键使肽键平面进行盘曲,折叠,转角等形成的空间构象。 α?螺旋的结构特点: 1)以肽键平面为单位,以α?碳原子为转折盘旋形成右手螺旋;肽键平面与中心轴平行。2)每3.6个氨基酸残基绕成一个螺圈,螺距为0.54nm,每个氨基酸上升0.15nm。

基础生物化学知识重点

绪论(老师只要求了结部分已经自动过滤) 基本概念: 新陈代谢:生物体与外界环境之间的物质和能量简化以及生物体内物质和能量的装换过程重点内容:生物化学的主要研究内容:1.生物体内的化学组成2.生物体内的物质代谢,能量装换和代谢调节3.生物体内的信息代谢 核酸 一、基本概念: 核苷酸:核苷酸即核苷的磷酸酯 碱基互补配对:A-T,G-C 三叶草结构:t-RNA的二级结构,一般由四臂四环组成:氨基酸接受臂,二氢酸尿嘧啶环,反密码子环,额外环,假尿嘧啶核苷-胸腺嘧啶核糖核甘酸环(TΨC环) 增色效应:DNA变性后由于双螺旋分子内部的碱基暴露,260nm紫外吸收值升高。减色效应:核酸的光吸收值通常比其各个核算组成部分的光吸收值之和小30%~40%,是由于碱基密集堆积的缘故。 变性和复性:指的是在一定物理和化学因素的作用下,核酸双螺旋结构在碱基之间的氢键断裂,变成单链的过程。复性恰好相反。 重点内容: 1.核酸的生物学功能(1.生物分子遗传变异基础, 2.遗传信息的载体, 3.具有催化作用, 4.对基因的表达有调控作用),基本结构单位(核苷酸),基本组成部分(磷酸,含氮碱基,戊糖) 2.核苷酸的名称(A:腺嘌呤T:胸腺嘧啶C:胞嘧啶G:鸟嘌呤U:尿嘧啶)符号(后面统一描述) 3.DNA双螺旋结构的特点(1.有反向平行的多核苷酸链互相盘绕,2.亲水骨架在外,疏水碱基在内,一周十个碱基,螺距3.4nm,3.两条DNA链借助氢键结合在一起)和稳定因素(氢键,碱基堆积力,带负电的磷酸基团静电力,碱基分子内能): 4.核酸的紫外吸收特性(因为核酸中含有的嘌呤碱和嘧啶碱具有共轭双键的特性所以对紫外光有吸收特性,在260nm处有最大吸收值,不同的核酸吸收峰值不同)、T m(熔解温度)(把热变性过程中的光吸收达到最大吸收一半(双螺旋解开一半)时的温度叫做熔解温度)值及变性和复性的关系:(G-C)%=(T m-69.3)*2.44 5.α-螺旋、β—折叠以及β-转角的结构特点:1.主要维持空间力为氢键,2.α螺旋是一段肽链中所有的Cα的扭角都是相等的,这段肽链则会围绕某个中心轴成规则螺旋构想,3.β折叠是由两条多肽链侧向聚集,通过相邻肽链主链上的N-H与C=O之间有规则的氢键形成,4.转角结构使得肽链不时扭曲走向成为β转角 蛋白质、氨基酸化学 一、基本概念 氨基酸:羧酸分子中α碳原子上的一个氢原子被氨基取代所生成的衍生物,是蛋白质的基本结构单位。 寡肽:2~20个氨基酸残基通过肽键连接形成的肽 多肽:由20个以上的氨基酸残基组成的肽 肽键:一个氨基酸的羧基与另一氨基酸的氨基发生缩合反应脱水成肽时,羧基和氨基形成的酰胺键。具有类似双键的特性,

生物化学期末考试知识点归纳

生物化学期末考试知识点归纳 三羧酸循环记忆方法 一:糖无氧酵解过程中的“1、2、3、4”1:1分子的葡萄糖2:此中归纳为:6个2 2个阶段;经过2个阶段生成乳酸 2个磷酸化; 2个异构化,即可逆反应; 2个底物水平磷酸化;2个ATP消耗,净得2个分子的ATP; 产生2分子NADH 3:整个过程需要3个关键酶4:生成4分子的ATP. 二:糖有氧氧化中的“1、2、3、4、5、6、7”1:1分子的葡萄糖2:2分子的丙酮酸、2个定位3:3个阶段:糖酵解途径生成丙酮酸丙酮酸生成乙酰CO-A三羧酸循环和氧化磷酸化 4:三羧酸循环中的4次脱氢反应生成3个NADH和1个FADH2 5:三羧酸循环中第5步反应:底物水平磷酸化是此循环中唯一生成高能磷酸键的反应6:期待有人总结7:整个有氧氧化需7个关键酶参与:己糖激酶、6-

磷酸果糖激酶、丙酮酸激酶、丙酮酸脱氢酶复合体、拧檬酸合酶、异拧檬酸脱氢酶、a-酮戊二酸脱氢酶复合体一.名词解释: 1.蛋白质的等电点:当蛋白质溶液处在某一pH值时,蛋白质解离成正、负离子的趋势和程度相等,即称为兼性离子或两性离子,净电荷为零,此时溶液的pH值称为该蛋白质的等电点。、 2.蛋白质的一级结构:是指多肽链中氨基酸的排列的序列,若蛋白质分子中含有二硫键,一级结构也包括生成二硫键的半胱氨酸残基位置。维持其稳定的化学键是:肽键。蛋白质二级结构:是指多肽链中相邻氨基酸残基形成的局部肽链空间结构,是其主链原子的局部空间排布。蛋白质二级结构形式:主要是周期性出现的有规则的α-螺旋、β-折叠、β-转角和无规则卷曲等。 蛋白质的三级结构是指整条多肽链中所有氨基酸残基,包括相距甚远的氨基酸残基主链和侧链所形成的全部分子结构。因此有些在一级结构上相距甚远的氨基酸残基,经肽链折叠在空间结构上可以非常接近。 蛋白质的四级结构是指各具独立三级结构多肽链再以各自特定形式接触排布后,结集所形成的蛋白质最高层次空间结构。 3..蛋白质的变性:在某些理化因素的作用下,蛋白质的空间结构受到破坏,从而导致其理化性质的改变和生物学活性的丧失,这种现象称为蛋白质的变性作用。蛋白质

生物化学基础知识篇

基础知识篇 生物化学 知识点: 1、各类糖分子的结构和功能; 2、脂类中与生物膜有关的物质结构与功能; 3、核酸的基本结构、相互关系与功能; 4、各类氨基酸的基本结构、特征以及蛋白的构象与功能的关系; 5、酶的分类、作用机制、抑制类型、动力学过程与调节; 6、代谢中的生物氧化过程特别是光合磷酸化过程的机理及意义; 7、代谢中的糖代谢过程; 8、核酸的生物合成、复制、转录及基因表达; 9、各种代谢过程的调控及相互关系; 10、现代生物学的方法和实验手段特别是分离、纯化、活性册顶的基本 方法等; 11、生物化学研究进展;

◎●将两种旋光不同的葡萄糖分别溶与水后,其旋光率均逐渐变为+52.7°。,称为变旋现象。 ◎●羟甲基在糖环平面的上方的为D-型,在平面的下方的为L-型。在D-型中,半缩醛羟基在平面的下方的为α-型,在平面的上方的为β-型。 ◎●一切糖类都有不对称碳原子,都具旋光性。 ◎●区分酮糖、醛糖用Seliwanoff反应。 ◎●天然糖苷多为β-型。 ◎●糖醛酸是肝脏内的一种解毒剂。 ◎●自然界存在的糖胺都是己糖胺。 ◎●麦芽糖为[α-D-葡萄糖-α(1→4)-α-D-葡萄糖苷],异麦芽糖为[α-D-葡萄糖-α(1→6)-α-D-葡萄糖苷],蔗糖为[α-D-葡萄糖-α,β(1→4)-果糖苷],乳糖为[半乳糖-β(1→4)-α-D-葡萄糖苷],纤维二糖为[α-D-葡萄糖-β(1→4)α-D-葡萄糖苷]。 ◎●直链淀粉成螺旋状复合物,遇碘显紫蓝色,碘位于其中心腔内,在620——580nm有最大光吸收。支链淀粉分支平均有24——30个葡萄糖,遇碘显紫红色,在530——555nm有最大光吸收。糖原遇碘显棕红色,在430——5490nm有最大光吸收。◎●与糖蛋白相比,蛋白聚糖的糖是一种长而不分支的多糖链,即糖胺聚糖。其一定的部位上与若干肽链连接,糖含量超过95%,多糖是系列重复双糖结构。 ◎●糖蛋白是病毒、植物凝集素、血型物质的基本组成部分,Fe2+、Cu2+、血红蛋 素结合蛋白。参与凝血过程的糖蛋白有:凝血酶原、纤维蛋白酶原。 ◎●血型物质含75%的糖,它们是:岩藻糖、半乳糖、葡萄糖、半乳糖胺。 ◎●木糖-Ser连接为结缔组织蛋白聚糖所特有。

橡胶基础知识问答

1.天然橡胶初制品主要有哪些? 答:由于橡胶消费的需要,固态生胶有烟胶片、风干胶片、绉胶片、颗粒橡胶等;商品胶乳有离心浓缩胶乳、膏化浓缩胶乳、蒸发浓缩胶乳等。 2.固态生胶和商品胶乳主要用于生产哪些工业产品? 答:固态生胶主要用于制造各种轮胎、输送带、工业胶管、胶鞋等难于用胶乳直接成型的制品;商品胶乳主要用于地毯、各种浸渍制品、海绵和胶粘剂的生产。 3.目前世界上固态生胶的种类主要有哪些? 答:目前世界上固态生胶的主要种类有:恒粘胶、低粘胶、5号胶、10号胶、20号胶、50号胶、通用胶、烟胶片、风干胶片、白绉片、褐绉片、子午线轮胎标准橡胶、航空轮胎标准橡胶、胶清胶等。 4.国产标准橡胶分为哪几个级别? 答:GB/T 8081-1999将国产标准橡胶统一分为六个级别,即恒粘胶、浅色胶、5号胶(SCR5)、10号胶(SCR10)、20号胶(SCR20)和50号胶(SCR50)。 5.国产浓缩天然胶乳分为哪几个级别? 答:GB/T 8289-2001将国产浓缩天然胶乳统一分为高氨离心浓缩胶乳、低氨离心浓缩胶乳、中氨离心浓缩胶乳、高氨膏化浓缩胶乳、低氨膏化浓缩胶乳五个级别。 6.什么是分级? 答:每种产品都有相应的质量标准。按质量标准的要求,把产品分为相应的等级的过程就叫分级。 7.国产标准橡胶分级的依据是什么?其技术要求包含哪些质量项目? 答:国产标准橡胶分级的依据是国家标准“天然生胶标准橡胶规格”。其技术要求包含杂质含量、灰分含量、氮含量、挥发物含量、塑性初值、塑性保持率、颜色指数、门尼粘度8个质量项目。 8.国产浓缩天然胶乳分级的依据是什么?其技术要求包含哪些质量项目? 答:国产浓缩天然胶乳分级的依据是国家标准“浓缩天然胶乳氨保存离心或膏化胶乳规格”。其技术要求包含总固体含量、干胶含量、非胶固体、碱度、机械稳定度、凝块含量、铜含量、锰含量、残渣含量、挥性能脂肪酸值、KOH值11个质量项目。 9.国产标准橡胶对包装、重量和尺寸有什么要求? 答:胶包用聚乙烯薄膜袋和聚丙烯编织袋双层包装;胶包重量每包净重40kg±0.2kg;胶包长600mm±20mm、宽400mm±20mm、高200mm±20mm。 10.标准橡胶包装袋上的“SCR”含义是什么? 答:国产标准橡胶使用“SCR”代号。其中S代表“标准”、C代表“中国”、R 代表“橡胶”,意为标准中国橡胶。六个级别的代号分别为SCR CV(恒粘胶)、

生物化学知识点整理

生物化学知识点整理 注: 1.此材料根据老师的PPT及课堂上强调需掌握的内容整理 而成,个人主观性较强,仅供参考。(如有错误,请以课本为主) 2.颜色注明:红色:多为名解、简答(或较重要的内容) 蓝色:多为选择、填空 第八章脂类代谢 第一节脂类化学 脂类:包括脂肪和类脂,是一类不溶于水而易溶于有机溶剂,并能为机体利用的有机化合物。 脂肪:三脂肪酸甘油酯或甘油三酯。 类脂:胆固醇、胆固醇酯、磷脂、糖脂。

第二节脂类的消化与吸收 脂类消化的主要场所:小肠上段 脂类吸收的部位:主要在十二指肠下段及空肠上段 第三节三酰甘油(甘油三酯)代谢 一、三酰甘油的分解代谢 1.1)脂肪动员:储存在脂肪细胞中的脂肪,被肪脂酶逐步水解为 脂肪酸及甘油,并释放入血以供其他组织氧化利用的过程。 2)关键酶:三酰甘油脂肪酶 (又称“激素敏感性三酰甘油脂肪酶",HSL) 3)脂解激素:能促进脂肪动员的激素,如胰高血糖素、去甲肾上

腺素、肾上腺素等. 4)抗脂解激素:抑制脂肪动员,如胰岛素、前列腺素、烟酸、雌 二醇等。 2.甘油的氧化 甘油在甘油激酶的催化下生成3—磷酸甘油,随后脱氢生成磷酸二羟丙酮,再经糖代谢途径氧化分解释放能量或经糖异生途径生成糖。 3.脂肪酸的分解代谢 饱和脂肪酸氧化的方式主要是β氧化. 1)部位:组织:脑组织及红细胞除外。心、肝、肌肉最活跃; 亚细胞:细胞质、线粒体. 2)过程: ①脂酸的活化-—脂酰CoA的生成(细胞质) 脂肪酸+ HSCo 脂酰~SCoA + AMP + Pi 消耗了2个高能磷酸键 ②脂酰CoA进入线粒体 酶:a.肉碱酰基转移酶 I(脂肪酸氧化分解的关键酶、限速酶)b。肉碱酰基转移酶Ⅱ c。脂酰肉碱-—肉碱转位酶(转运体)

生物化学知识点梳理

生化知识点梳理 蛋白质水解 (1)酸水解:破坏色胺酸,但不会引起消旋,得到的是L-氨基酸。(2)碱水解:容易引起消旋,得到无旋光性的氨基酸混合物。 (3)酶水解:不产生消旋,不破坏氨基酸,但水解不彻底,得到的是蛋白质片断。(P16) 酸性氨基酸:Asp(天冬氨酸)、Glu(谷氨酸) 碱性氨基酸:Lys(赖氨酸)、Arg(精氨酸)、His(组氨酸) 极性非解离氨基酸:Gly(甘氨酸)、Ser(丝氨酸)、Thr(苏氨酸)、Cys(半胱氨酸),Tyr(酪氨酸)、Asn(天冬酰胺)、Gln(谷氨酰胺) 非极性氨基酸:Ala(丙氨酸)、V al(缬氨酸)、Leu(亮氨酸)、Ile(异亮氨酸)、Pro(脯氨酸)、Phe(苯丙氨酸)、Trp(色氨酸)、Met(甲硫氨酸) 氨基酸的等电点调整环境的pH,可以使氨基酸所带的正电荷和负电荷相等,这时氨基酸所带的净电荷为零。在电场中既不向阳极也不向阴极移动,这时的环境pH称为氨基酸的等电点(pI)。 酸性氨基酸:pI= 1/2×(pK1+pKR) 碱性氨基酸:pI=1/2×(pK2+pKR) 中性氨基酸:pI= 1/2×(pK1+pK2) 当环境的pH比氨基酸的等电点大,氨基酸处于碱性环境中,带负电荷,在电场中向正极移动;当环境的pH比氨基酸的等电点小,氨基酸处于酸性环境中,带正电荷,在电场中向负极移动。 除了甘氨酸外,所有的蛋白质氨基酸的α-碳都是手性碳,都有旋光异构体,但组成蛋白质的都是L-构型。带有苯环氨基酸(色氨酸)在紫外区280nm波长由最大吸收 蛋白质的等离子点:当蛋白质在某一pH环境中,酸性基团所带的正电荷预见性基团所带的负电荷相等。蛋白质的净电荷为零,在电场中既不向阳极也不向阴极移动。这是环境的pH称为蛋白质的等电点。 盐溶:低浓度的中性盐可以促进蛋白质的溶解。 盐析:加入高浓度的中性盐可以有效的破坏蛋白质颗粒的水化层,同时又中和了蛋白质分子电荷,从而使蛋白质沉淀下来。 分段盐析:不同蛋白质对盐浓度要求不同,因此通过不同的盐浓度可以将不同种蛋白质沉淀出来。 变性的本质:破坏非共价键(次级键)和二硫键,不改变蛋白质的一级结构。蛋白质的二级结构:多肽链在一级结构的基础上借助氢键等次级键叠成有规则的空间结构。组成了α-螺旋、β-折叠、β-转角和无规则卷曲等二级结构构象单元。α-螺旋α-螺旋一圈有3.6个氨基酸,沿着螺旋轴上升0.54nm,每一个氨基酸残基上升0.15nm,螺旋的直径为2nm。当有脯氨酸存在时,由于氨基上没有多余的氢形成氢键,所以不能形成α-螺旋。 β-折叠是一种相当伸展的肽链结构,由两条或多条多肽链侧向聚集形成的锯齿状结构。有同向平行式和反向平行式两种。以反向平行比较稳定。 β-转角广泛存在于球状蛋白中,是由于多肽链中第n个残基羰基和第n+3个氨基酸残基的氨基形成氢键,使得多肽链急剧扭转走向而致 超二级结构:指多肽链上若干个相邻的二级结构单元(α-螺旋、β-折叠、β-转角)彼此相互作用,进一步组成有规则的结构组合体(p63 )。主要有αα,

操作系统基础知识点详细概括

第一章: 1.什么是操作系统?的基本特性是?主要功能是什么 是控制和管理计算机硬件和软件资源,合理组织计算机工作原理以 及方程用户的功能的集合。 特性是:具有并发,共享,虚拟,异步的功能,其中最基本的是并 发和共享。 主要功能:处理机管理,存储器管理,设备管理,文件管理,提供 用户接口。 2.操作系统的目标是什么?作用是什么? 目标是:有效性、方便性、可扩充性、开放性 作用是:提供用户和计算机硬件之间的接口,提供对计算机系统资 源的管理,提供扩充机器 3.什么是单道批处理系统?什么是多道批处理系统? 系统对作业的处理是成批的进行的,且在内存中始终保持一道作业 称此系统为单道批处理系统。 用户所提交的作业都先存放在外存上并排成一个队列,然后,由作 业调度程序按一定的算法从后备队列中选择若干个调入作业内存, 使他们共享CPU和系统中的各种资源。 4.多道批处理系统的优缺点各是什么? 优点:资源利用率高,系统吞吐量大。缺点:平均周转时间长, 无交互能力。 引入多道程序技术的前提条件之一是系统具有终端功能,只有有中 断功能才能并发。 5.什么是分时系统?特征是什么? 分时系统是指,在一台主机上连接了多个带有显示器和键盘的终端,同时允许多个用户通过自己的终端,以交互的方式使用计算机,共 享主机中的资源。 特征:多路性、独立性、及时性、交互性 *有交互性的一般是分时操作系用,成批处理无交互性是批处理操作系统,用于实时控制或实时信息服务的是实时操作系统,对于分布 式操作系统与网络操作系统,如计算机之间无主次之分就是分布式 操作系统,因为网络一般有客户-服务器之分。 6.什么是实时操作系统?

最新各种橡胶基本知识

各种橡胶基本知识

各种橡胶基本知识 橡胶基本知识橡胶是高弹性的高分子材料,由于橡胶具有其他材料所没有的高弹性,因而也称做弹性体,其基本特性如 下: 1 有橡胶状弹性。 2 具有粘弹性。 3 有减震缓冲的作用。 4 对温度依赖大5 具有电绝缘性。 6 有老化现象。 7 必须进行硫化。 8 必须加入配合剂 9 比重小,硬度低,柔软性好,透气性差。前言一. 橡胶在制鞋业中的应用: 1.历史可以远溯至1492年哥伦布发现美洲新大陆,早期的探险家发现印地安人使用巴西橡胶树之胶乳(天然橡胶)来制作" 胶鞋",防止脚被蛇虫叮咬,之後18世纪後期至19世纪初期,天然橡胶开始在欧洲用于胶管雨衣,胶鞋,但材料遇热变软发粘, 遇冷变硬脆裂,实用价值不大. 2.1839年,美国人固特异(C.Goodyear)发明了橡胶的硫化,硫化後橡胶产生本质的飞跃,性 能大幅度提高.此橡胶大底在制鞋业中获得了广泛应用,随著橡胶工业的发展,丁苯橡胶等人工合成橡胶由于其性能突 出,1951年後开始引入制鞋业大量使用. 生胶天然橡胶(NR) 1 来源 1. 野生橡胶:由野生树木植物采制的橡胶。银色 橡胶菊,野藤橡胶等也属此类。 2. 栽培橡胶:主要是三叶橡胶树。 3. 橡胶草橡胶。一公顷可收150-200KG。 4. 杜仲 胶:由杜仲树的枝叶根茎中提取。常温下无弹性,软化点高,比重大,耐水性好。可做塑料用。 1 天然橡胶制造和分级

标准。 1. 烟片胶:消耗量占天然橡胶的80%。按照质量分为六个等级:RSSIX;RSS1#;RSS2#;RSS3#;RSS4#;RSS5#。 质量按顺序降低。 2. 绉胶片: 1)白绉胶==>质量最好 2)褐绉胶==》质量普通3) 毛绉胶==》质量最差 3. 马来西亚 标准胶。品质稳定,杂质少,纯度高,国际标准. 4.专用天然橡胶 1 恒粘(CV):加入0.15-4%的盐酸氢胺,使橡胶门尼值 保持在60+-5度。生热低,耐屈挠性和耐磨性好,为制造高速轮胎重要原料。 2 低粘(LV)橡胶:门尼值为45+-5度,可 以不经过素炼直接混炼。 3 轮胎橡胶 4 充油天然橡胶:低温防滑性好。 5 易操作橡胶(SP)和接枝橡胶(MG) 5.环 氧化天然橡胶ENR 环氧化天然橡胶ENR是含有环氧结构的天然橡胶。具有优 良的气密性,当环氧化程度达到70%时,和丁 基橡胶具有相同的气密性。具有良好的耐油性。良好的防滑性能。天然橡胶主要应用: 轮胎,防震,输送皮带,制鞋业, 乳胶应用. 天然橡胶未经素炼目尼值比较高(70-80),流动性也差(不易卷附Roll).所以必须经过素练,降低胶料MOONEY (45+-5)值,才可使用. 素炼方法:1.万马力机混炼6分钟后于22"ROLL束薄三次,24hr后检验硬度45-50度合格. 2.ROLL 机素炼。最少束薄15次。加入塑解剂M/DM,可缩短一半时间。特性: 优点:<1>止滑性,撕力,拉力较好;耐刺穿性 好。耐低温性好。 <2>目尼值低素炼时易卷附Roll,说明其抓力较好,利用此特点常用风胶洗车. 缺点:<1>因天然橡胶含

相关文档
最新文档