优化原理与方法_作业答案

优化原理与方法_作业答案
优化原理与方法_作业答案

《优化原理与方法》作业解答要点

5.1 建造一容积为V (m 3)的长方形蓄水池(无盖),要求选择其长、宽、高,使表面积最小,从而建筑用料最省。试写出此问题的数学模型。

[解] 选择设计变量x 1、x 2、x 3分别代表蓄水池的长、宽、高,优化数学模型为:

5.2 某公司有资金a 万元,可供选择购置的设备有n 种,已知相应于第i 种设备所需资金为b i 万元,可得收益为c i 万元,要求收益最大的投资安排。试写出其数学模型。

[解] 选择设计变量x 1、x 2、…、x n 分别代表n 种可选购设备的购买数量,优化数学模型为:

5.3 某城市要建造一供应服务中心,向该市m 个用户提供服务,设第i 个用户的位置为(a i ,b i ),需要货物量为w i 吨,试寻求这个中心最经济的位置,使运输量(吨公里数)最小。 [解] 选择设计变量x 1、x 2代表中心的位置坐标,优化数学模型为:

5.4 对于二次型函数 (1)写出它的矩阵-向量形式; (2)写出海赛矩阵;

(3)证明H (x )的正定性;

(4)f (x )是凸函数吗?为什么? [解] (1)

??

??

???

?

?

≥≥≥=??++= t..s 22 .min ],,[ 3min 32min 21min 1321313221321x x x x x x V x x x x x x x x x x x x T 使得寻求x ??

??

??

????

????=?=≥≤?=∑

==n i x n i x a x b x c x x x i i n i i i n i i i T n ,1,2, , ,1,2, ,0 t..s .max ] , ,,[ 1

1

21为整数使得寻求x ?????-+-=∑

=m

i i i i T

b x a x w x x 1222121)()( .min ],[ 使得寻求x T

x x x x f ],[ 8222],[21)(2

121??????--=x 2

2

212142)(x x x x f +-=x

(2)

(3)

(4)因H 为正定阵,f (x )为凸函数

5.5 试判定以下函数的凹、凸性:

(1) (2) (3) (4)

[解] (1)因f 〞(x )=6(4- x )≧0,所以f (x )(x ≦4时)为凸函数。 (2)

(3)因f 〞(x )=1/ x 2 > 0,所以f (x )(x >0时)为凸函数。

(4)

5.6 试判别下列非线性规划是否为凸规划: (1)

(2)

22??

?

???--=82)(x H 为正定阵 ,135 , 22-2

H H 0121082)(>±=+-=----=λλλλλλI x 为凸函数)(为正定阵, ,224 ,88 62

2-2x f H H 02)(>±=+-=--=λλλλ

λλI x 。函数凹为为负定阵,

,,)( 0526 1612 1022

2-)(2x f H H <±-=++=----=λλλλλλI x ;

, 4 )4()(3≤-=x x x f ; 32)(222121x x x x f ++=x ;

, 0 , ln )(1>∈-=x E x x f x 。 105102 )(22

21212

1x x x x x x f --++-=x 0 0 0 105 4 .t .s 2)( .min 321312

2212

3

2221≥≥≥=+≤+++=x x x x x x x x x x f ,,x 0 9

.t .s 2)( .min 22

22121≥≤++=x x x x x f x

[解](1)先化为标准式

然后判别目标函数f (x )的凸性

再判别不等式约束函数g (x )=2

22

14x x --的凸性

等式约束函数h (x )为线性函数;

目标函数为凸函数,可行域为凸集,故该问题为凸规划

(2)为凸规划(证略)

5.7 用牛顿法求下列函数的极小点,终止准则

(1) (2)

[解](1)

;为凸函数)(为正定阵,, , 2000200

04-x f H H 02,2,40)2)(2)(4()(321>====---=---=λλλλλλλλλλI x 0 0 0 10

5 04 .t .s 2)( .min 321312

2212

32221≥≥≥=+≥--++=x x x x x x x x x x f ,,x ;函数凹为)(为半负定阵,,02 ,02 000020002-x g H H 0,2,0))(2)(()(321≤=-=-==-----=-----=λλλλλλλ

λλλI x ????

? ??+-=???

????????=182)(321x x x f H 1882)( , 1800080002x x 10182901* 101* 000)(101101000 18021800080002000)()(1

1-101001-=--++=?

???? ??-=????? ??=???

??

?

??-=????? ??--????? ??=????? ??-??????????-????? ??=?-=-f f f H ,为极小点。,x x x x x x x 。 0.2 2

≤?)(k f x ;

, ]0 ,0 ,0[ 81294 031

232221

T x x x x x =+-++x ;,

]1 ,0[ 2)1(022

4

1T

x x =+-x

(2)

5.8 用共轭梯度法求解

[解] ???

? ??---=?122124242)( x x x x f x ,0d =-)(0

x f ?

039.0)94(*0//0/9/203/127/324003/1603/1)(27/3203/113/110444001210)(4

212

1≈≈???? ??≈

? ??-=?????

??=???? ??--???? ??=???? ??-??????-???? ??=?-=>????? ?

?-=??

??? ??=???? ??--???? ??=???? ??-??????-???? ??=?-=--f f f f H f f f H , 95* 作为近似极小点。 达到迭代精度要求, ,0.2)( , 0729256)(950 0)(继续迭代。 ,0.2)( , 0)( )(2

121-111211-1

001x x x x x x x x x x x x x x 81616816 ,

24* , 为极小点 , 0)(,

24 , 1 , 令 3/23/22421)(- 1/45/20)(/)( , 1)( ,

22 , 41 , 804令444 , 4 24 1)( 2

2221

1

2

0112

021110

01-=--+=???

? ??==???? ??=????

?

??===-=---+++='++-+-+++=?

??

?

??++=???? ??+???? ??=+=?

???

??=???? ??-+???? ??---=+?===??=?

??

? ??--=????

?

??===-=-+---+='-+-+--++=???

? ??-+=???? ??--???? ??=?-=*00558128)2/32/1(6)22(4)()

2/32/1)(22(2)22(4)2/32/1(2)22()(2/32/12222/122412/1/02043216)21(8)1(8)()

21)(1(2)1(4)21(2)1()(21112222f f t t t t t t t t t t t t t t t t f f f f t t t t t t t t t t t t t t t f t x x x x x d x x d x d x x x x x x x ??ββ?????

? ??-=????

???-=231214)1(4)( 400)1(12)(x x f x H x x ,。取T

x x x x x f ]1 ,1[ 242)( .min 02

112221=--+=x x

5.9

试用图解法讨论,当β取何值时:

(1)有唯一的最优解,并指出其x *及f *;(2)有无穷多个最优解;(3)不存在有界的最有界。

[解]

负梯度方向

(1) 有唯一解的情况

当①负梯度方向介于d 1与d 2之间时,即-β < 0亦即β > 0时有唯一解x *=(0,0), f *=0;

②负梯度方向介于d 2与d 3之间时,即1>-β >0或-1<β<0时有唯一解x *=(0,1), f *=β; ③负梯度方向介于d 3与d 4之间时,即2>-β >1或-2<β<-1时有唯一解x *=(2,3),f *=2+3β。 (2) 有无穷多解的情况

β=0时,解点在OA 上; β=-1时,解点在AB 上; β=-2时,解点在BC 上。 (3) 有无界解的情况

β <-2时,不存在有界的最优解。 5.10 试用单纯形法求解

?

??? ??--=

?-β1)( x f 0 0 42 1 .t .s )( .min 212121221≥≥≤+-≤+-∈+=x x x x x x E

x x f ,,x x β

[解]

(1)(求解过程略) 答案:x *=[1, 0, 1, 3, 0, 0]T ,f *=-4 (2)(求解过程略) 先化成标准式再求解。答案:x *=[4, 5, 0, 0, 0, 11]T ,f *=-11

5.11 已知线性规划

(1) 试写出其对偶形式;

(2) 已知原问题最优点x *=[1, 1, 2]T ,试根据对偶理论,求出对偶问题的最优点W *。 [解] (1)根据对称形式的对偶关系,其对偶问题为:

(2)由x *=[1, 1, 2]T 知,x 1、x 2、x 3均为基变量,基矩阵及其价格系数矩阵为

根据对偶理论,y *=[c B T B -1] T =

W *=3*2+6*2+2*1=20

0 0 0 2 63 3 2 .t .s 368)( .min 321332121321≥≥≥≥≥++≥+++=x x x x x x x x x x x x f ,,x 0 0 0 3 6 2 8 3 .t .s 263 .max 321322121321≥≥≥≤+≤+≤+++=y y y y y y y y y y y y W ,,????

? ??=??

????????=368 100113021B c B ,?

?

???

??=????? ??=????

??

??????

????????????? ??=????????????????????????? ??1225-10-10--1/55-001-13-22-13681/5- -100113021368 1T T

T

T

5.12 考虑非线性规划:

试用KT 条件判别:

是否为问题的KT 点。

[解] KT 条件为:

将x 1

代入得

第3、5、6式自然满足,由第2式得ν=0,代入第1式得μ=1/8>0,满足第4式,故x 1满足KT 条件,是KT 点。

将x 2代入得

13)2()3()( 0 )4(61)( .t .s )( .min 2221222

11=--+-=≥---==x x h x x g x f x x x

2] 13[3 3.2] [6.4 0] [0321T T T ,,,,,+===x x x ????????

?=--+-≥---≥=?=?-?-?013)2()3(0 )4(6100)(0)()()(2

2

212221x x x x g h g f μμνμx x x x ??

?

?????

?=--+-≥---≥=---?=????

??---???? ??-+--???? ??013)2()3(0 )4(6100))4(6(1042622820122

212

2212

2212121x x x x x x x x x x μμνμ????

????

?=≥≥=?=????

??---???? ??-???? ??000 00000460801μμνμ???

?

????

?=≥≥=?=????

??-???? ??---???? ??0

00 000004.26.84.68.401μμνμ

第3、5、6式自然满足,由第1、2式解得ν=0.2,μ=3/40>0,满足第4式,故x 2满足KT 条件,是KT 点。

将x 3代入得

第5、6式自然满足,由第3式μ=0,且满足第2、4式,代入第1式得

ν= ,故x 3满足KT 条件,是KT 点。

5.13 用KT 条件解下列问题,并写出它的对偶问题,验证二者最优值是否相等:

[解] (1)利用KT 条件求解。KT 条件为:

???

??

???

?=≥≥=?=????

??-?-???? ??000

5.21005.210

0132)(01μμνμx g 2613

0 0 31 ≥≥-++=213

2311.t .s )1()(.min x x x x f x ???

??????

??≥≥-≥≥=?=?=?-?-?00 000)( 0)( 0)()(2112121221121)(x x g g g g f μμμμμμx x x x x ??????

?

?

????

?≥≥-≥≥=?=-?=????

??-????

??-???? ??+0

0 0

000

) (0100132122121221122111)1(x x x x x x μμμμμμ

由第1式得μ1>0,则由第3式得x 1=1,代回第1式得μ1=4;

由第2式得μ2=2

2x 3,则由第4式得x 2= μ2=0;

其余式子均能满足,故x =(1, 0)T 满足KT 条件,是KT 点。

此外,在可行域内目标函数的Hesse 阵半正定,目标函数为凸函数,约束函数为线性函数,可行域为凸集,故x *= (1, 0)T 是全局最优点, f *=8/3。 (2)通过对偶问题求解。对偶问题为

令▽x L (x , μ)=0得

(3) 补充:利用罚函数法求解。构造响应函数:

22113

231212121)1()1(,.t .s .max x x x x L μμμμθμμμμθ---++==≥≥31)( .min ),( 其中0 0 ),( μx x 33)1(221122211μμμμ=-==???

? ??--+x x x x , 1 , 02。

与原问题的最优解一致 , 8/388*32 故得略去。 ,0),(,则0若。8/388*32),(故; 11回代得 , , 02 即 ,0),( ,则极大点满足若两种情况,0和0,分为对于232),(,,0,故0取极大且),(要对为单调递减函数,由于对于),(32232-231),( **2323=+-==<===+-==-===+-=?>>=+-====≥-+-=+--=θμμθμμμθμμμμμθμμμμμμμμθμμμμμθμμμθμμμμμμμμμμθ,)0,1(,3/84003333)()(21121111121111111

1212

222212213211323

32113121T x x x μ}

)],0[min()]1,0{[min()1(}))](,0[min())](,0{[min()()(22213

2312221x x M x x g g M f F k k +-+++=++=31 x x x x ??

?

?

?-

=-+±--=--+±--==????

??+-++≤≤-=?k

k

k k k k k k M x M M M M M x x M x x M x x x F 324)2()21()1(023)}1(2)1(001,)(22122212121211 , 时、当有: 0令x

其中4)2(121-++--=k k M M x 为平稳点、非极小点,

故时∞→k M ,有???==01

2

1x x

故 x *= (1, 0)T 是最优点, f *=8/3。

5.14

[解] 可采用标号法求解,求解过程参见PPT 材料。

答案:最短路线12:AB 2C 1D 3E 或AB 2C 2D 3E 。

[解] 以甲、乙、丙为分配顺序,视为3个阶段,以各阶段分配之前的设备数为输入状态,

无解。,时、当 01)}1(2)1( 00112121=????

??-++>≤-x M x x x k 无解。,时、当 01)1( 0012121=???

? ??+>>-x x x 无解。

,时、当 021)1( 00122121=????

??++≤>-x M x x x

k

以各阶段分配后剩下的设备数作为输出状态,建立动态规划模型。可通过列表法求解。(简略过程见下表)

答案:最佳分配为甲2、乙2、丙1 或甲0、乙2、丙3,最大盈利21(百万元)

补充习题

1. ⑴下图所示为两个分目标f 1、f 2张成的像空间。可达域的含义是什么?试在图中直接标

出该多目标优化问题的有效解像域(有效解集所对应的像空间中的区域);

⑵根据图中所给定的A 、B 和C 三个理想点位置,在图中标出用理想点法分别获得的在像空间中的多目标解点A ′、B ′和C ′; 上述的三个理想点位置,哪些是合理的、哪些是不合理的?

⑶如果以双目标的线性加权之和作为多目标的评价函数,f 1和f 2的权系数分别为w 1、w 2(如图),试在图中标出线性加权法获得的多目标解点D ′。 (本题为f 1、f 2双目标极小化问题)

概念题或简答题题型

? 非线性规划的最优性条件是什么?

? 一维搜索的作用是什么?简述其迭代步骤

? 简述非线性规划各常用优化方法的特点和迭代步骤

? 动态规划适合于解决哪一类优化问题?它的算法依据什么最优性原理?该最优性原理的具体表述是什么?

? 简述???算法的主要优化迭代步骤和算法特点,它比较适合于求解哪一类优化问题?

理想点B

1

北航最优化方法大作业参考

北航最优化方法大作业参考

1 流量工程问题 1.1 问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1,其余元素为0。再令b m=(b m1,…,b mN)T,f m=(f m1,…,f mE)T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5…,5)1 )T, ×13 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x12,x13,…,x75)1× )。 13 图 1 网络拓扑和流量需求

1.2 7节点算例求解 1.2.1 算例1(b1=[4;-4;0;0;0;0;0]T) 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.2 算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 X2>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.3 算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0 利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T 对应的最优值c T x3=40

最优化理论与方法

课程报告题目最优化理论与方法 学生姓名 学号 院系 专业 二O一二年十一月十日

最优化理论与方法综述 最优化方法是近几十年形成的,它主要运用数学方法研究各种系统的优化途径及方案,为决策者提供科学决策的依据。最优化方法的主要研究对象是各种管理问题及其生产经营活动。最优化方法的目的在于针对所研究的系统,求得一个合理运用人力、物力和财力的最佳方案,发挥和提高系统的效能及效益,最终达到系统的最优目标。实践表明,随着科学技术的日益进步和生产经营的日益发展,最优化方法已成为管理科学的重要理论基础和不可缺少的方法,被人们广泛地应用到公共管理、经济管理、工程建设、国防等各个领域,发挥着越来越重要的作用。这就是我理解的整个课程的流程。在这整个学习的过程当中,当然也会遇到很多的问题,不论是从理论上的还是从实际将算法编写出程序来解决一些问题。下面给出学习该课程的必要性及结合老师讲解以及在作业过程中遇到的问题来阐述自己对该课程的理解。 20世纪40年代以来,由于生产和科学研究突飞猛进地发展,特别是电子计算机日益广泛应用,使最优化问题的研究不仅成为一种迫切需要,而且有了求解的有力工具。因此最优化理论和算法迅速发展起来,形成一个新的学科。至今已出现线性规划、整数规划、非线性规划、几何规划、动态规划、随机规划、网络流等许多分文。 最优化理论与算法包括线性规划单纯形方法、对偶理论、灵敏度分析、运输问题、内点算法、非线性规划K-T条件、无约束最优化方法、约束最优化方法、参数线性规划、运输问题、线性规划路径跟踪法、信赖域方法、二次规划路径跟踪法、整数规划和动态规划等内容。 最优化理论所研究的问题是讨论在众多的方案中什么样的方案最优以及怎样找出最优方案。这类问题普遍存在。例如,工程设计中怎样选择设计参数,使得设计方案满足设计要求,又能降低成本;资源分配中,怎样分配有限资源,使得分配方案既能满足各方面的基本要求,又能获得好的经济效益;生产评价安排中,选择怎样的计划方案才能提高产值和利润;原料配比问题中,怎样确定各种成分的比例,才能提高质量,降低成本;城建规划中,怎样安排基本单位的合理布局,才能方便群众,有利于城市各行各业的发展;农田规划中,怎样安排各种农作物的合理布局,才能保持高产稳产,发挥地区优势;军事指挥中,怎样确定最佳作战方案,才能有效地消灭敌人,保存自己,有利于战争的全局;在人类活动的各个领域中,诸如此类,不胜枚举。最优化这一数学分支,正是为这些问题的解决,提供理论基础和求解方法,它是一门应用广泛、实用性强的学科。 一、最优化学习的必要性 最优化,在热工控制系统中应用非常广泛。为了达到最优化目的所提出的各种求解方法。从数学意义上说,最优化方法是一种求极值的方法,即在一组约束为等式或不等式的条件下,使系统的目标函数达到极值,即最大值或最小值。从经济意义上说,是在一定的人力、物力和财力资源条件下,使经济效果达到最大,或者在完成规定的生产或经济任务下,使投入的人力、物力和财力等资源为最少。

最优化方法大作业答案

1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x 列成表格:

1 2 1 610011460105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 1 2 1 2102310401162010021212 11-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 2 12 32 30 210231040116201002121211- ------ 再从底行中选元素-3,和第二列正元素2,迭代一次得 4 2 3 3 410120280114042001112--- 再迭代一次得 10 2 30 2 10 6 221023 1010213000421021013-- 选取最优解:

最优化方法大作业

发动机空燃比控制器 引言:我主要从事自动化相关研究。这里介绍我曾经接触过的发动机空燃比控制器设计中的优化问题。 发动机空燃比控制器设计中的最优化问题 AFR =a f m m && (1) 空燃比由方程(1)定义,在发动机运行过程中如果控制AFR 稳定在14.7可以获 得最好的动力性能和排放性能。如果假设进入气缸的空气流量a m &可以由相关单元检测得到,则可以通过控制进入气缸的燃油流量f m &来实现空燃比的精确控制。由于实际发动机的燃油喷嘴并不是直接对气缸喷燃油,而是通过进气歧管喷燃油,这么做会在进 气歧管壁上液化形成油膜,因此不仅是喷嘴喷出的未液化部分燃油会进入气缸,油膜 蒸发部分燃油也会进入气缸,如方程(2)。这样如何更好的喷射燃油成为了一个问题。 1110101122211ττττ?? ?? -?? ??????????=+????????-????????????-???? ? ??? ?? ????????? ?f f f v X x x u x x X x y =x && (2) 其中12、,==ff fv x m x m &&=f y m &,=fi u m &这里面,表示油膜蒸发量ff m &、fv m &表示为液化部分燃油、fi m &表示喷嘴喷射的燃油,在τf 、τv 、X 都已知的情况下,由现代控制理论知识,根据系统的增广状态空间模型方程(3) 0000001 1 011011114.70ττττ????-?? ??????????=-+-??????????????? ??????????????? ?? ??=?????? f f v v a X X u +q q m y q x x x &&& (3) 其中()0 14.7?t a q = y -m &。由极点配置方法,只要设计控制器方程(4),就可以 使得y 无差的跟踪阶跃输入,那么y 也能较好的跟踪AFR *a m /&。 12-- u =K q K x (4) 这里面的12、K K 确定,可由主导极点概念降维成两个参数12C ,C ,虽然都是最终稳态无差,但是目标是使得瞬态过程中y 和阶跃输入y r 的差异尽可能的小。所以原问

最优化原理大作业

基于粒子群算法的神经网络在电液伺服系统中的应用 摘要:由于人工神经网络在解决具有非线性、不确定性等系统的控制问题上具有极大的潜力,因而在控制领域正引起人们的极大关注,并且已在一些响应较慢的过程控制中获得成功应用。由于电液伺服系统属 于非线性系统,因此本文利用神经网络控制电液伺服系统,并利用粒子群优化算法训练该神经网络的 权值。通过对神经网络的优化实现对电液伺服系统的控制。 关键词:神经网络电液伺服系统粒子群算法优化 近年来,由于神经网络具有大规模并行性、冗余性、容错性、本质的非线性及自组织自学习自适应能力,所以已成功地应用于众多领域。但在具有复杂非线性特性的机电设备的实时控制方面,虽然也有一些神经网络技术的应用研究,但距实用仍有一段距离。电液伺服系统就属于这类设备[1]。 神经网路在用于实时控制时,主要是利用了网络所具有的其输人——输出间的非线性映射能力。它实际上是通过学习来逼近控制对象的动、静态特性。也就是构造实际系统的神经网络模型[2]。本文利用神经网络控制一电液伺服系统,并利用粒子群优化算法训练该神经网络的权值,将结果与BP神经网络控制该系统的结果进行比较。从而得在电液伺服系统中引入神经网络是可行的。 1、粒子群算法 粒子群优化算法(Particle Swarm optimization, PSO)是一种进化计算技术, 由Eberhart博士和kennedy博士发明, 源于对鸟群捕食的行为研究, 粒子群优化算法的基本思想是通过群体中个体之间的协作和信息共享来寻找最优解[3]。算法最初受到飞鸟和鱼类集群活动的规律性启发,利用群体智能建立了一个简化模型,用组织社会行为代替了进化算法的自然选择机制,通过种群间个体协作来实现对问题最优解的搜索[4]。 在找到这两个最优值时, 粒子根据如下的公式来更新自己的速度和新的位置 v[]=v[]+c1*rand()*(pbest[]-present[]) + c2*rand()*(gbest[]-present[]) present[]=persent[]+v[] 式中ω为惯性权重,ω取大值可使算法具有较强的全局搜索能力,ω取小值则算法倾向于局部搜索。一般的做法是将ω初始取0.9并使其随迭代次数的增加而线性递减至0.4,这样就可以先侧重于全局搜索,使搜索空间快速收敛于某一区域,然后采用局部精细搜索以获得高精度的解;c1、c2为两个学习因子,一般取为2;randl和rand2为两个均匀分布在(0,l)之间的随机数;i=1,2,?,m;k=1,2,?,d。另外,粒子在每一维的速度Vi都被一个最大速度Vmax所限制。如果当前粒子的加速度导致它在某一维的速度 超过该维上的最大速度Vmax,则该维的速度被限制为最大速度[5]。 粒子群算法流程如下: (一)初始化粒子群。设群体规模为m,在允许的范围内随机设置粒子的初始位置和速 度。 (二)评价每个粒子的适应值。 (三)调整每一个粒子的位置和速度。 (四)如果达到最大迭代次数genmax或误差达到最初设定数值终止迭代,否则返回(2)。 2、神经网络 神经网络一般由输入层、隐含层、输出层组成。对于输入信号,先向前传播到隐节点,经过节点作用函数后,再把隐节点的输出信息传播到输出节点,最后输出结果。节点的作用函数通常选取S 型函数f(x)=1/(1+e-x)。神经网络算法的学习过程分为正

北航惯性导航大作业

惯性导航基础课程大作业报告(一)光纤陀螺误差建模与分析 班级:111514 姓名: 学号 2014年5月26日

一.系统误差原理图 二.系统误差的分析 (一)漂移引起的系统误差 1. εx ,εy ,εz 对东向速度误差δVx 的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVx1=e*g*sin(L)/(Ws^2-Wie^2)*(sin(Wie*t)-Wie*sin(Ws*t)/Ws); mcVx2=e*((Ws^2-(Wie^2)*((cos(L))^2))/(Ws^2-Wie^2)*cos(Ws*t)-(Ws^2)*((sin(L))^2)*cos(Wi e*t)/(Ws^2-Wie^2)-(cos(L))^2); mcVx3=(sin(L))*(cos(L))*R*e*((Ws^2)*cos(Wie*t)/(Ws^2-Wie^2)-(Wie^2)*cos(Ws*t)/(Ws^2-Wi e^2)-1); plot(t,[mcVx1',mcVx2',mcVx3']); title('Ex,Ey,Ez 对Vx 的影响'); xlabel('时间t'); ylabel('Vx(t)'); 0,δλδL ,v v δδ

legend('Ex-mcVx1','Ey-mcVx2','Ez-mcVx3'); grid; axis square; 分析:εx,εy,εz对东向速度误差δVx均有地球自转周期的影响,εx,εy还会有舒勒周期分量的影响,其中,εy对δVx的影响较大。 2.εx,εy,εz对东向速度误差δVy的影响 clc;clear all; t=1:0.01:25; g=9.8; L=pi/180*39; Ws=2*pi/84.4*60; Wie=2*pi/24; R=g/(Ws)^2; e=0.1*180/pi; mcVy1=e*g*(cos(Wie*t)-cos(Ws*t))/(Ws^2-Wie^2); mcVy2=g*sin(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); mcVy3=g*cos(L)*e/(Ws^2-Wie^2)*(sin(Wie*t)-Wie/Ws*sin(Ws*t)); plot(t,[mcVy1',mcVy2',mcVy3']); title('Ex,Ey,Ez对Vy的影响'); xlabel('时间t'); ylabel('Vy(t)'); legend('Ex-mcVy1','Ey-mcVy2','Ez-mcVy3'); grid; axis square;

最优化理论与方法论文(DOC)(新)

优化理论与方法

全局及个性化web服务组合可信度的动态规划评估方法 摘要:随着Internet的快速发展,web服务作为一种软件构造形式其应用越来越广泛。单个web服务无法满足日益复杂的用户需求,web服务组合有效地解决了这个问题。然而,随着功能相似的web服务实例的不断出现,如何选择可信的web服务组合成为了人们关注的热点。服务选择依赖于web服务组合的评估结果,因此,本文主要从web服务组合着手,对其可信性进行研究,提供一种可信web服务组合评估方法。:针对web服务组合的全局及个性化问题,提出了基于全局的个性化web服务组合可信评估方法。从全局角度动态地调整评估模型;同时引入用户业务关注度来描述原子web服务对服务组合可信性的影响程度;结合前文的度量及评估方法,构建一个全局的个性化服务组合可信评估模型;并分析了模型的相关应用,给出了改进的动态规划模型。 关键字:web服务组合可信评价;全局个性化;动态规划; 0.引言 随着软件系统规模的日趋复杂,运行环境的不断开放,软件的可信性要求日益增加,可信软件成为了研究的热点。据《中国互联网发展状况统计报告》统计显示,截至2014年12月底,我国网民数量突破8亿,全年新增网民5580万。互联网普及率较上年底提升4个百分点,达到38。3%。因此,随着Internet 的广泛应用和网络技术的快速发展,面向服务的软件体系结构(SOA)作为一种新型的网络化软件应用模式已经被工业界和学术界广为接受。同时,网民对互联网电子商务类应用稳步发展,网络购物、网上支付、网上银行和在线旅游预订等应用的用户规模全面增长。因而,对web服务的可信性要求更高。单个web服务的功能有限,往往难以满足复杂的业务需求,只有通过对已有web服务进行组合,才能真正发挥其潜力。在现有的web服务基础上,通过服务组装或者Mashup方式生成新web服务作为一种新型的软件构造方式,已成为近年的研究热点之一。web服务组合并不是多个原子web服务的简单累加,各原子web服务之间有着较强的联系。因此对web服务组合的可信需求更高。目前大量的研究工作着重于如何实现原子web服务间的有效组合,对服务组合的可信评估研究较少。如今,随着web服务资源快速发展,出现了大量功能相同或相似的web服务,对web服务组合而言,选择可信的web服务变得越来越难。在大量的功能相似的原子web服务中,如何选出一组可信的web服务组合,成为了人们关注的热点问题。本文将从web服务组合着手,对其可信性进行研究,旨在提供一种可信web服务组合评估方法,为web服务组合的选择提供依据。web服务组合的可信度主要包括以下三个部分: 1)基于领域本体的web服务可信度量模型。 2)基于偏好推荐的原子web服务可信评估方法。 3)基于全局的个性化web服务组合可信评估方法。 研究思路: 本文主要研究基于全局的个性化web服务组合的可信评估方法,其研究思路可以大致如下:基于领域本体的web服务可信度和基于偏好推荐的原子web 服务可信评估方法。针对web服务组合的四种基本组合结构模式,主要研究如

最优化方法大作业答案

武工院你们懂的 1.用薄钢板制造一体积5m 3,长度不小于4m ,无上盖的货箱,要求钢板耗量最小。确定货箱的长x 1、宽x 2和高x 3。试列出问题的数学模型。 解:min 32312122x x x x x x z ++= s.t 5321=x x x 41≥x 0,,321≥x x x 2.将下面的线性规划问题表示为标准型并用单纯形法求解 max f=x 1+2x 2+x 3 s .t .2x 1+x 2-x 3≤2 -2x 1+x 2-5x 3≥-6 4x 1+x 2+x 3≤6 x i ≥0 i=1,2,3 解:先化标准形: Min 321x x x z -+= 224321=+-+x x x x 6525321=++-x x x x 646321=+++x x x x

列成表格: 00001216 100114 60105122001112----- 可见此表已具备1°,2°,3°三个特点,可采用单纯形法。首先从底行中选元素-1,由2/2,6/2,6/4最小者决定选第一行第一列的元素2,标以记号,迭代一次得 0000 1 2 121023 10 40116201002 1 21 211-------- 再从底行中选元素-2/3,和第二列正元素1/2,迭代一次得 1 002 1232 30210231 040116201002121211-- ----- 再从底行中选元素-3,和第二列正元素2,迭代一次得 4002 3 03410120280114042001112--- 再迭代一次得

10 23021 062 21023 1010 213 000421 2 10 13- - 选取最优解: 01=x 42=x 23=x 3. 试用DFP 变尺度法求解下列无约束优化问题。 min f (X )=4(x 1-5)2+(x 2-6)2 取初始点X=(8,9)T ,梯度精度ε=0.01。 解:取I H =0,初始点()T X 9,8= 2221)6()5(4)(-+-=x x x f ??????--=?122408)(21x x x f ???? ??=?624)() 0(x f T x f d )6,24()()0()0(--=-?= )0(0)0()1(d x x α+= T )69,248(00αα--= ])669()5248(4min[)(min 2020)0(0)0(--+--?=+αααd x f )6()63(2)24()2458(8) (00)0(0)0(=-?-+-?--=+ααααd d x df 13077.013017 0≈= α ???? ??=???? ??--?+???? ??=21538.886153.462413077.098)1(x

北航数值分析大作业第二题精解

目标:使用带双步位移的QR 分解法求矩阵10*10[]ij A a =的全部特征值,并对其中的每一个实特征值求相应的特征向量。已知:sin(0.50.2)() 1.5cos( 1.2)(){i j i j ij i j i j a +≠+== (i,j=1,2, (10) 算法: 以上是程序运作的逻辑,其中具体的函数的算法,大部分都是数值分析课本上的逻辑,在这里特别写出矩阵A 的实特征值对应的一个特征向量的求法: ()[]()() []()[]()111111I 00000 i n n n B A I gause i n Q A I u Bu u λλ-?-?-=-?-?? ?-=????→=??????→= ?? ? 选主元的消元 检查知无重特征值 由于=0i A I λ- ,因此在经过选主元的高斯消元以后,i A I λ- 即B 的最后一行必然为零,左上方变 为n-1阶单位矩阵[]()()11I n n -?-,右上方变为n-1阶向量[]()11n Q ?-,然后令n u 1=-,则 ()1,2,,1j j u Q j n ==???-。

这样即求出所有A所有实特征值对应的一个特征向量。 #include #include #include #define N 10 #define E 1.0e-12 #define MAX 10000 //以下是符号函数 double sgn(double a) { double z; if(a>E) z=1; else z=-1; return z; } //以下是矩阵的拟三角分解 void nishangsanjiaodiv(double A[N][N]) { int i,j,k; int m=0; double d,c,h,t; double u[N],p[N],q[N],w[N]; for(i=0;i

大连理工优化方法大作业MATLAB编程

function [x,dk,k]=fjqx(x,s) flag=0; a=0; b=0; k=0; d=1; while(flag==0) [p,q]=getpq(x,d,s); if (p<0) b=d; d=(d+a)/2; end if(p>=0)&&(q>=0) dk=d; x=x+d*s; flag=1; end k=k+1;

if(p>=0)&&(q<0) a=d; d=min{2*d,(d+b)/2}; end end %定义求函数值的函数fun,当输入为x0=(x1,x2)时,输出为f function f=fun(x) f=(x(2)-x(1)^2)^2+(1-x(1))^2; function gf=gfun(x) gf=[-4*x(1)*(x(2)-x(1)^2)+2*(x(1)-1),2*(x(2)-x(1)^2)]; function [p,q]=getpq(x,d,s) p=fun(x)-fun(x+d*s)+0.20*d*gfun(x)*s'; q=gfun(x+d*s)*s'-0.60*gfun(x)*s'; 结果: x=[0,1]; s=[-1,1]; [x,dk,k]=fjqx(x,s) x =-0.0000 1.0000 dk =1.1102e-016 k =54

function f= fun( X ) %所求问题目标函数 f=X(1)^2-2*X(1)*X(2)+2*X(2)^2+X(3)^2+ X(4)^2- X(2)*X(3)+2*X(1)+3*X(2)-X(3); end function g= gfun( X ) %所求问题目标函数梯度 g=[2*X(1)-2*X(2)+2,-2*X(1)+4*X(2)-X(3)+3,2*X(3)-X(2)-1,2*X(4)]; end function [ x,val,k ] = frcg( fun,gfun,x0 ) %功能:用FR共轭梯度法求无约束问题最小值 %输入:x0是初始点,fun和gfun分别是目标函数和梯度 %输出:x、val分别是最优点和最优值,k是迭代次数 maxk=5000;%最大迭代次数 rho=0.5;sigma=0.4;

2011年下学期最优化理论与方法考试试卷(A)

中南大学考试试卷 2011--2012学年 1 学期 时间100分钟 最优化理论与方法 课程 48 学时 学分 考试形式: 闭 卷 专业年级: 信科08、应数08 总分100分,占总评成绩 70 % 注:此页不作答题纸,请将答案写在答题纸上,可用中英文作答。 1.(15 points ) For an unconstrained optimization problem: ),(min x f Let )0(x be a given point, )0(d be a descent search direction at )0(x . (1) With the exact line search, show that there is a steplength 0α satisfying .0)()0()0(0)0(=+?d d x f T α (2)Show that when applied to a quadratic objective function, the Newton method with the exact line search terminates in at most one iteration. 2. (15 points )For an unconstrained optimization problem: .2)(min 2 221x x x f += (1) Find a descent direction )0(d of f at .)1,1() 0(T x = (2) By the Armijo line search, find a steplength 0α along )0(d at .)0(x 3.(15 points ) (1)Let .2113???? ??=A Find two directions 1d and 2d such that 1d and 2d are conjugate with respect to the matrix A . (2)Show that when applied to a quadratic objective function, with the exact line search, the PRP conjugate gradient method is equivalent to the FR conjugate gradient method.

结构优化设计大作业(北航)

《结构优化设计》 大作业报告 实验名称: 拓扑优化计算与分析 1、引言 大型的复杂结构诸如飞机、汽车中的复杂部件及桥梁等大型工程的设计问题,依靠传统的经验和模拟实验的优化设计方法已难以胜任,拓扑优化方法成为解决该问题的关键手段。近年来拓扑优化的研究的热点集中在其工程应用上,如: 用拓扑优化方法进行微型柔性机构的设计,车门设计,飞机加强框设计,机翼前缘肋设计,卫星结构设计等。在其具体的操作实现上有两种方法,一是采用计算机语言编程计算,该方法的优点是能最大限度的控制优化过程,改善优化过程中出现的诸如棋盘格现象等数值不稳定现象,得到较理想的优化结果,其缺点是计算规模过于庞大,计算效率太低;二是借助于商用有限元软件平台。本文基于matlab软件编程研究了不同边界条件平面薄板结构的在各种受力情况下拓扑优化,给出了几种典型结构的算例,并探讨了在实际优化中优化效果随各参数的变化,有助于初学者初涉拓扑优化的读者对拓扑优化有个基础的认识。

2、拓扑优化研究现状 结构拓扑优化是近20年来从结构优化研究中派生出来的新分支,它在计算结构力学中已经被认为是最富挑战性的一类研究工作。目前有关结构拓扑优化的工程应用研究还很不成熟,在国外处在发展的初期,尤其在国内尚属于起步阶段。1904 年Michell在桁架理论中首次提出了拓扑优化的概念。自1964 年Dorn等人提出基结构法,将数值方法引入拓扑优化领域,拓扑优化研究开始活跃。20 世纪80 年代初,程耿东和N. Olhoff在弹性板的最优厚度分布研究中首次将最优拓扑问题转化为尺寸优化问题,他们开创性的工作引起了众多学者的研究兴趣。1988年Bendsoe和Kikuchi发表的基于均匀化理论的结构拓扑优化设计,开创了连续体结构拓扑优化设计研究的新局面。1993年Xie.Y.M和Steven.G.P 提出了渐进结构优化法。1999年Bendsoe和Sigmund证实了变密度法物理意义的存在性。2002 年罗鹰等提出三角网格进化法,该方法在优化过程中实现了退化和进化的统一,提高了优化效率。目前常使用的拓扑优化设计方法可以分为两大类:退化法和进化法。结构拓扑优化设计研究,已被广泛应用于建筑、航天航空、机械、海洋工程、生物医学及船舶制造等领域。 3、拓扑优化建模(SIMP) 结构拓扑优化目前的主要研究对象是连续体结构。优化的基本方法是将设计区域划分为有限单元,依据一定的算法删除部分区域,形成带孔的连续体,实现连续体的拓扑优化。连续体结构拓扑优化方法目前比较成熟的是均匀化方法、变密度方法和渐进结构优化方法。 变密度法以连续变量的密度函数形式显式地表达单元相对密度与材料弹性模量之间的对应关系,这种方法基于各向同性材料,不需要引入微结构和附加的均匀化过程,它以每个单元的相对密度作为设计变量,人为假定相对密度和材料弹性模量之间的某种对应关系,程序实现简单,计算效率高。变密度法中常用的插值模型主要有:固体各向同性惩罚微结构模型(solidisotropic microstructures with penalization,简称SIMP)和材料属性的合理近似模型(rational approximation ofmaterial properties,简称RAMP)。而本文所用即为SIMP插值模型。

最优化大作业

最优化方法大作业 ---------用优化算法求解函数最值问题

摘要 最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。最小化问题分为两类,即约束最小化和无约束最小化问题。在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。 在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。 报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。 本报告中所用程序代码一律用MATLAB编写。 【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB

一,问题描述 1, 分别用共轭梯度发法和牛顿法来求解一下优化问题 ()()()()()4 41432243221102510min x x x x x x x x x f -+-+-++= 2, 分别用外点法和内点发求解一下优化问题 ?? ?≥-++0 1.min 212 231x x t s x x 二、问题求解 用牛顿法求解 ()()()()()4 414 322 432 21102510min x x x x x x x x x f -+-+-++= 1.1.1问题分析: 取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[] ()k k k k x f x f x x ??-=-+1 21,直到终止条件成立时停止。 1.1.2 问题求解 注:本程序编程语言为MATLAB ,终止条件为()162 110-≤?x f ,初始取值为 [10 10 10 10] M 文件(求解函数)如下: function s=newton1(f,c,eps) %c 是初值,eps 为允许误差值 if nargin==2 eps=; elseif nargin<1 error('') % return end syms x1 x2 x3 x4

北航最优化方法大作业参考

1流量工程问题 1.1问题重述 定义一个有向网络G=(N,E),其中N是节点集,E是弧集。令A是网络G的点弧关联矩阵,即N×E阶矩阵,且第l列与弧里(I,j)对应,仅第i行元素为1,第j行元素为-1, 其余元素为0。再令b m =(b m1 ,…,b mN )T,f m =(f m1 ,…,f mE )T,则可将等式约束表示成: Af m=b m 本算例为一经典TE算例。算例网络有7个节点和13条弧,每条弧的容量是5个单位。此外有四个需求量均为4个单位的源一目的对,具体的源节点、目的节点信息如图所示。这里为了简单,省区了未用到的弧。此外,弧上的数字表示弧的编号。此时,c=((5,5 (5) 1×13 )T, 根据上述四个约束条件,分别求得四个情况下的最优决策变量x=((x 12,x 13 ,…,x 75 ) 1×13 )。 图 1 网络拓扑和流量需求

1.27节点算例求解 1.2.1\ T) 1.2.2算例1(b1=[4;-4;0;0;0;0;0] 转化为线性规划问题: Minimize c T x1 Subject to Ax1=b1 x1>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x1*=[4 0 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x1=20 1.2.3算例2(b2=[4;0;-4;0;0;0;0]T) Minimize c T x2 Subject to Ax2=b2 \ X2>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x2*=[0 4 0 0 0 0 0 0 0 0 0 0 0]T 对应的最优值c T x2=20 1.2.4算例3(b3=[0;-4;4;0;0;0;0]T) Minimize c T x3 Subject to Ax3=b3 X3>=0利用Matlab编写对偶单纯形法程序,可求得: 最优解为x3*=[4 0 0 0 4 0 0 0 0 0 0 0 0]T

大连理工大学优化方法上机大作业

2016年大连理工大学优化 方法上机大作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

2016年大连理工大学优化方法上机大作业学院: 专业: 班级: 学号: 姓名: 上机大作业1: 1.最速下降法:

function f = fun(x) f = (1-x(1))^2 + 100*(x(2)-x(1)^2)^2; end function g = grad(x) g = zeros(2,1); g(1)=2*(x(1)-1)+400*x(1)*(x(1)^2-x(2)); g(2) = 200*(x(2)-x(1)^2); end function x_star = steepest(x0,eps) gk = grad(x0); res = norm(gk); k = 0; while res > eps && k<=1000 dk = -gk;

ak =1; f0 = fun(x0); f1 = fun(x0+ak*dk); slope = dot(gk,dk); while f1 > f0 + 0.1*ak*slope ak = ak/4; xk = x0 + ak*dk; f1 = fun(xk); end k = k+1; x0 = xk; gk = grad(xk); res = norm(gk); fprintf('--The %d-th iter, the residual is %f\n',k,res); end x_star = xk; end >> clear >> x0=[0,0]'; >> eps=1e-4; >> x=steepest(x0,eps)

最优化大作业

最优化大作业 -标准化文件发布号:(9456-EUATWK-MWUB-WUNN-INNUL-DDQTY-KII

最优化方法大作业 ---------用优化算法求解函数最值问题

摘要 最优化(optimization) 是应用数学的重要研究领域.它是研究在给定约束之下如何寻求某些因素(的量),以使某一(或某些)指标达到最优的一些学科的总称。最优化问题一般包括最小化问题和最大化问题,而最大化问题可以通过简单的转化使之成最最小化问题。最小化问题分为两类,即约束最小化和无约束最小化问题。在此报告中,前两个问题属于无约束最小化问题的求解,报告中分别使用了“牛顿法”和“共轭梯度法”。后两个问题属于有约束最小化问题的求解,报告中分别用“外点法”和“内点法”求解。虽然命名不一样,其实质都是构造“惩罚函数”或者“障碍函数”,通过拉格朗日乘子法将有约束问题转化为无约束问题进行求解。再此报告中,“外点法”和“内点法”分别用了直接求导和调用“牛顿法”来求解无约束优化问题。 在此实验中,用“共轭梯度法”对“牛顿法”所解函数进行求解时出现错误,报告中另取一函数用“共轭梯度法”求解得到正确的结果。此实验中所有的函数其理论值都是显见的,分析计算结果可知程序正确,所求结果误差处于可接受范围内。 报告中对所用到的四种方法在其使用以前都有理论说明,对“外点法”中惩罚函数和“内点法”中障碍函数的选择也有相应的说明,另外,对此次试验中的收获也在报告的三部分给出。 本报告中所用程序代码一律用MATLAB编写。 【关键字】函数最优化牛顿法共轭梯度法内点法外点法 MATLAB

一,问题描述 1, 分别用共轭梯度发法和牛顿法来求解一下优化问题 ()()()()()4 41432243221102510min x x x x x x x x x f -+-+-++= 2, 分别用外点法和内点发求解一下优化问题 ?? ?≥-++0 1.min 212 231x x t s x x 二、问题求解 1.1 用牛顿法求解 ()()()()()4 414 322 432 21102510min x x x x x x x x x f -+-+-++= 1.1.1问题分析: 取步长为1而沿着牛顿方向迭代的方法称为牛顿法,在牛顿法中,初始点的取值随意,在以后的每次迭代中,()[] ()k k k k x f x f x x ??-=-+1 21,直到终止条件成立时停止。 1.1.2 问题求解 注:本程序编程语言为MATLAB ,终止条件为()162 110-≤?x f ,初始取值为[10 10 10 10] M 文件(求解函数)如下: function s=newton1(f,c,eps) %c 是初值,eps 为允许误差值 if nargin==2 eps=1.0e-16; elseif nargin<1 error('')

最优化理论与方法

内点法基本原理 摘要:内点法是求解含不等式约束最优化问题的一种十分有效的算法。内点法通过构造障碍函数,求解一系列只含等式约束最优化问题,逐步得到原问题的最优解,具有找初始点容易、线性收敛、迭代次数少等特点。本文主要介绍了内点法的基本原理,障碍方法的一般步骤并分析了该方法的优缺点,进行了算例实践。 关键词:内点法;障碍方法;Newton法 The Theory of Interior Point Method Abstract: Interior point method is a very effective algorithm for solving optimization problems with inequality constrained. Interior point method is constructed to solve a series of optimization problems with equality constraints, and the optimal solution of the original problem is obtained, which has the characteristics of finding the initial point easier, linear convergence, less iteration number and so on. This paper mainly introduces the theory of interior point method, the general steps of barrier method and analyzing the advantages and disadvantages of the method. Key words: interior point method; barrier method;Newton method

相关文档
最新文档