经济数学基础讲义 第7章 多元函数微分学

经济数学基础讲义 第7章 多元函数微分学
经济数学基础讲义 第7章 多元函数微分学

第4章 多元函数微分学

4.2.1 二元函数的概念

多元函数与一元函数类似,学习时应注意比较.

一元函数是含有一个自变量的函数:)(x f y =。多元函数是含有多个自变量的函数,例如: 二元函数:),(y x f z =,三元函数:),,(z y x f u =等等. 例1 如果圆锥体底半径为r ,高为h ,则其体积v

它是二元函数.其中,r 和h 是自变量,v 是因变量(函数).定义域:

{}

0,0),(>>=h r h r D . 例2黑白电视:在t 时刻屏幕上坐标为),(y x 处的灰度z 为:),,(t y x z z =,它是三元函数. 例3在一个有火炉的房间里,在t 时刻,点),,(z y x 处的温度u 是t z y x ,,,的函数:

),,,(t z y x u u =,称为温度分布函数,它是四元函数.

例4 求函数222y x a z --=

的定义域.

解:02

22≥--y x a ,定义域为{

}

2

22),(a y x y x D ≤+=

例5 求y

y x z )

ln(+=

的定义域. 解:由所给函数,对数真数为正,又分母根式为正,有

?

?

?>+>00

y x y {}0,0),(>+>=y x y y x D

4.3 ——4.4偏导数

二元函数),(y x f z =在点),(00y x 处关于x 的偏导数

x

y x f y x x f x ?-?+→?)

,(),(lim

00000

(注意到:y 取值不变,恒为0y )

记作:

)

,(00y x x z

??或),(00y x f x '.类似地,关于y 的偏导数:

y

y x f y y x f y ?-?+→?)

,(),(lim

00000

例如:y x z 3sin 2

=

y x y x f y

z

y 3cos 3),(2='=?? 3

3cos 3)0,1()

0,1(2)0,1(=='=??y x f y z

y

求偏导数,包括两个偏导数,一个是对x 求偏导,一个是对y 求偏导.对x 求偏导时,应把y 看作常数.这样z 就变为了一元函数,于是就可以用一元函数的微分法求导数了.对y 求偏导也类似. 注意:

一元函数)(x f y =在0x 处可导,则在0x 处连续.

多元函数),(y x f z =在),(00y x 可导和在),(00y x 连续,二者不能互推. 全微分

),(y x f z =称

y y

z x x z y y

z x x z z d d d ??+??=???+???=

为函数),(y x f z =在点),(y x 处的全微分.

例1: 求y x y x f z 3sin ),(2

==在点)0,1(处关于x 的偏导数.

解: 将y 看作常数,

y x x

z 3sin 2=??,03sin 2)0,1()0,1(==??y x x z 例2: 求x

y

y x z +

=2

在点)1,1(-处的全微分. 解: 112)2()

1,1(2

)1,1(-=+-=-=??--x y xy x z ,2)1()1,1(2

)1,1(=+=??--x x y z 因此,y x z d 2d d +-= 4.5 复合函数与隐函数微分法

复合函数求导法

设),(v u f z =,而),(y x u u =,),(y x v v =,则

x

v

v z x u u z x z ????+????=??, y v v z y u u z y z ????+????=??

例1: )sin(e

y x z xy

+=.

解法1:(利用复合求导公式)设xy u =,y x v +=,则v z u sin e =

x

v v z x u u z x z ????+????=??1)cos e ()sin e (?+?=v y v u u )cos(e )sin(e y x y x y xy xy +++= v z u sin e =,xy u =,y x v +=

y

v v z y u u z y z ????+????=??1)cos e ()sin e (?+?=v x v u u )cos(e )sin(e y x y x x xy xy +++= 解法2:(直接求)

x

y x y x x x z xy

xy ?+?++??=??))

(sin(e )sin()e ()cos(e )sin(e y x y x y xy xy +++= 同理,

=??y

z

)cos(e )sin(e y x y x x xy xy +++ 例2:),(y x xy f z +=,求

y

z x z ????,. 解:设y x v xy u +==,,则),(v u f z =,

x

v

v z x u u z x z ????+

????=??1?'+?'=v u f y f v u f f y '+'= y

v v z y u u z y z ????+????=??1?'+?'=v u f x f v u f f x '+'= 例3 ),(2

xy x f z =,求

解: 设2

,xy v x u ==,则),(v u f z =,

x

v

v z x u u z x z ????+

????=??21y f f v u ?'+?'= v u f y f '+'=2v f xy '=2

例4 )sin ,3(2

x x f z =,求

dx

dz . 注意:f 是二元函数:),(v u f , x v x u sin ,32== 而z 是关于v u ,的二元函数,最终是关于x 的一元函数.

x

v

v z x u u z x z d d d d d d ??+

??=x f x f v u cos 6?'+?'= 例5 )(3

2

y x f z =,求

y

z x z ????,.

注意:f 是一元函数,而z 是关于y x ,的二元函数.

32),(y x u u f z ==,

32xy f x

u

f x z ?'=???'=??,223y x f y u f y z ?'=???'=?? 例6 方程)0(0),(222≥=-+=y a y x y x F 其图形为上半圆周,相应的函数为

2

2

)(x a x y y -==。显然,2

222d d x a x x

y --=y x

-= 另一种观点:0222=-+a y x ,0)(2

22≡-+a x y x

022:d d

='+y y x x

,y x y -='

例7 设函数)(x y y =由方程02e ln =-+xy

y y x 所确定,求 )(x y '

解: 无法由已知方程解出)(x y .但此)(x y 应满足 02e

)()(ln )

(≡-+x xy x y x y x

xy y y

y x y x e ln :d d '+'+0)(='++y x y ye xy 由此解出:y 'xy

xy xy

xy y x y y y y e

e e ln 23+++-=', 4.6 二元函数的极值 二元函数的极值

多元函数极值的概念与一元函数极值的概念类似.

若对),(00y x 附近的),(y x 均有),(),(00y x f y x f <,则称),(00y x 是),(y x f 的极小点,),(00y x f 是极小值.若

,则称是的极大点,是极大值.

极大值点、极小值点统称为极值点.极大值、极小值统称为极值. 极值存在的必要条件

若一元函数)(x f y =在0x 处可导,且0x 是极值点,则0)(0='x f 若二元函数),(y x f z =在),(00y x 处可导,且),(00y x 是极值点,则

0),(00='y x f x ,0),(00='y x f y

二元函数最大值、最小值

若),(y x f z =在闭区域D 内连续,则),(y x f z =在D 内必有最大值和最小值.

若),(y x f z =在D 内可导,且在D 内有唯一驻点),(00y x ,则),(y x f z =在该驻点

),(00y x 处的值就是最大值或最小值.

下面我们总结一下求最大值最小值应用问题的步骤: (1)根据题意,建立函数关系; (2)求驻点;

如果驻点合理且惟一,则该驻点就是所求的应用问题的最大点(或最小点).

例2 用铁皮做一个体积为V 的无盖长方体箱子,问其尺寸为多少时,才能用料最省? 解:设长、宽分别为y x ,,则高为

xy

V

,表面积为 xy V

y xy V x

xy S 22++=x

V y V xy 22++= 022

=-='x

V y S x

,022=-='y V x S y 解得3

2V y x ==,此时高为2

23

V

xy V =

答:当长、宽、高分别为32V 、3

2V 、

2

23

V

时,无盖箱子用料最省. 4.6.3 条件极值

在例2中,给定体积V ,求用料最省的无盖长方盒,即求S=xy+2xh+2yh 在条件xyh=V 下的最小值. 拉格朗日乘数法

求函数),,(z y x f 在条件0),,(=z y x φ下的条件极值,可用如下的拉格朗日乘数法: 令拉格朗日函数:),,(),,(z y x z y x f F λφ+= 求),,(),,(z y x z y x f F λφ+=的(无条件)极值:

,0,0,0=??=??=??z

F

y F x F

0),,(==??z y x F

φλ

解此方程组.

用拉格朗日乘数法解例2:

求原题即为求yh xh xy S 22++=在条件V xyh =下的最小值. 令)(22V xyh yh xh xy L -+++=λ

,022,02,02=++=??=++=??=++=??xy y x h

L

xh h x y L

yh h y x L

λλλ V xyh = 由此可得:

λ-=+=+=+xy

y

x xh h x yh h y 2222 解得h y x 2== 由此可得:

λ-=+=+=+xy

y

x xh h x yh h y 2222 解得h y x 2==

再由V xyh =,解得3

22V h y x ===

第七章 多元函数的微分学

第七章多元函数的微分学 一、多元函数微分学网络图 二、内容与要求 1.理解多元函数的概念,理解二元函数的几何意义。 2.了解二元函数的极限与连续性的概念,以及有界闭区域上连续函数的性质。 3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件, 了解全微分形式的不变性。

4.掌握多元复合函数一阶、二阶偏导数的求法。 5.会求多元隐函数的偏导数。 6.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件, 了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值, 会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题。 重点多元函数偏导数和全微分的概念,多元复合函数一阶、二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 难点多元复合函数二阶偏导数的求法。用拉格朗日乘数法求条件极值,求简单多元函数的最大值和最小值,解决一些简单的应用问题。 三、概念、定理的理解与典型错误分析 1.求多元函数极限的方法 (1)利用初等多元函数的连续性,即若是初等函数,在的定义域中,则 注:所谓的初等多元函数就是用一个数学表达式给出的解析式. (2)利用多元函数极限的四则运算。 (3)转化为一元函数的极限,利用一元函数的极限来计算. (4)对于证明或求时,感觉极限可能时零, 而直接又不容易证明或计算,这时可用夹逼定理,即而 由夹逼定理知从而 2.判断多元函数极限不存在的方法 (1)选取两条特殊的路径,而函数值的极限存在,但不相等,则不存在。

注意: 与的区别,前面两个本质是两次求一元函数的极限, 我们称为求累次极限,而最后一个是求二元函数的极限,我们称为求二重极限。 例1 而知不存在. 例2 在原点的两个累次极限都不存在,但是 由于,因此. 由例1知两个累次极限存在,但二重极限不存在,由例2知两个累次极限不存在, 但二重极限存在,但我们有下面的结论。 定理7。1 若累次极限和二重极限都存在,则三者相等。 (2)推论。若存在且不相等,则不存在。 3.求多元函数的偏导数

第十七章多元函数微分学习题课

第十七章 多元函数微分学习题课 一 疑难问题与注意事项 1.(,)z f x y =在),(000y x P 可微的等价定义: 1)0000(,)(,)()z f x x y y f x y A x B y o ρ?=+?+?-=?+?+,0 () lim 0o ρρρ →=; 2)00000 [(,)(,)] lim 0x y z f x y x f x y y ρρ →?-?+?=; 3), y x y B x A z ?+?+?+?=?βα()() ()() ,0,0,0,0lim lim 0x y x y αβ??→??→= =. 2.求(,)f x y 在00(,)x y 处的偏导数方法小结: 答 1)利用定义求(主要适用于分段函数的分段点处的偏导数): 0000000 (,)(,) (,)lim x x f x x y f x y f x y x ?→+?-=?, 0000000 (,)(,) (,)lim y y f x y y f x y f x y y ?→+?-=?. 2)转化为一元函数的导数: ()0 000,(,)x x x df x y f x y dx ==,() 000,(,)y y y df x y f x y dy == . 例如,2(,)(f x y x y =+-(1,1)x f . 解 () ()211 ,1(1,1)2x x x d x df x f dx dx ==== =. 3)先求偏导函数,在代值,即 ()0 00(,)(,),x x x y f x y f x y =,0 00(,) (,)(,)y y x y f x y f x y =. 3.求(,)z f x y =(初等函数不含分段点)的偏导函数方法小结: 答 1)求 z x ??,把y 当常数,对x 求导,求z y ??,把x 当常数,对y 求导. 2)运用轮换性,若在(,)z f x y =中,把x 换成y , y 换成x ,(,)z f x y =不变,则称(,)z f x y =关于x 和y 具有轮换性.若已经求出 z x ??,只要在z x ??把x 换成y , y 换成x ,

高等数学习题详解-第7章 多元函数微分学

1. 指出下列各点所在的坐标轴、坐标面或卦限: A (2,1,-6), B (0,2,0), C (-3,0,5), D (1,-1,-7). 解:A 在V 卦限,B 在y 轴上,C 在xOz 平面上,D 在VIII 卦限。 2. 已知点M (-1,2,3),求点M 关于坐标原点、各坐标轴及各坐标面的对称点的坐标. 解:设所求对称点的坐标为(x ,y ,z ),则 (1) 由x -1=0,y +2=0,z +3=0,得到点M 关于坐标原点的对称点的坐标为:(1,-2,-3). (2) 由x =-1,y +2=0,z +3=0,得到点M 关于x 轴的对称点的坐标为:(-1,-2,-3). 同理可得:点M 关于y 轴的对称点的坐标为:(1, 2,-3);关于z 轴的对称点的坐标为:(1,-2,3). (3)由x =-1,y =2,z +3=0,得到点M 关于xOy 面的对称点的坐标为:(-1, 2,-3). 同理,M 关于yOz 面的对称点的坐标为:(1, 2,3);M 关于zOx 面的对称点的坐标为:(-1,-2,3). 3. 在z 轴上求与两点A (-4,1,7)和B (3,5,-2)等距离的点. 解: 设所求的点为M (0,0,z ),依题意有|MA |2=|MB |2,即 (-4-0)2+(1-0)2+(7-z)2=(3-0)2+(5-0)2+(-2-z)2. 解之得z =11,故所求的点为M (0,0, 149 ). 4. 证明以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 解:由两点距离公式可得2 12 14M M =,2 2 13236,6M M M M == 所以以M 1(4,3,1),M 2(7,1,2),M 3(5,2,3)三点为顶点的三角形是一个等腰三角形. 5. 设平面在坐标轴上的截距分别为a =2,b =-3,c =5,求这个平面的方程. 解:所求平面方程为1y x z ++=。 6. 求通过x 轴和点(4,-3,-1)的平面方程. 解:因所求平面经过x 轴,故可设其方程为 Ay +Bz =0. 又点(4,-3,-1)在平面上,所以-3A -B =0.即B=-3 A 代入并化简可得 y -3z =0. 7. 求平行于y 轴且过M 1(1,0,0),M 2(0,0,1)两点的平面方程. 解:因所求平面平行于y 轴,故可设其方程为 Ax +Cz +D =0. 又点M 1和M 2都在平面上,于是 0A D C D +=?? +=? 可得关系式:A =C =-D ,代入方程得:-Dx -Dz +D =0. 显然D ≠0,消去D 并整理可得所求的平面方程为x +z -1=0. 8. 方程x 2+y 2+z 2-2x +4y =0表示怎样的曲面? 解:表示以点(1,-2,0 9. 指出下列方程在平面解析几何与空间解析几何中分别表示什么几何图形? (1) x -2y =1; (2) x 2+y 2=1; (3) 2x 2+3y 2=1; (4) y =x 2. 解:(1)表示直线、平面。(2)表示圆、圆柱面。(3)表示椭圆、椭圆柱面。 (4)表示抛物线、抛物柱面。

中央电大经济数学基础 应用题和计算题 小抄

五、应用题(本题20分) 1.设生产某种产品q 个单位时的成本函数为:q q q C 625.0100)(2++=(万元), 求:(1)当10=q 时的总成本、平均成本和边际成本;(2)当产量q 为多少时,平均成本最小? 解:(1)总成本q q q C 625.0100)(2++=, 平均成本625.0100 )(++= q q q C , 边际成本65.0)(+='q q C . 所以,1851061025.0100)10(2=?+?+=C (万元), 5.1861025.010 100 )10(=+?+=C (万元) 116105.0)10(=+?='C . (万元) (2)令 025.0100 )(2=+-='q q C ,得20=q (20-=q 舍去). 因为20=q 是其在定义域内唯一驻点,且该问题确实存在最小值,所以当20=q 时, 平均成本最小. 2..某厂生产某种产品q 件时的总成本函数为201.0420)(q q q C ++=(元),单位销售价格为q p 01.014-=(元/件),问产量为多少时可使利润达到最大?最大利润是多少. 解:成本为:201.0420)(q q q C ++= 收益为:2 01.014)(q q qp q R -== 利润为:2002.010)()()(2 --=-=q q q C q R q L q q L 04.010)(-=',令004.010)(=-='q q L 得,250=q 是惟一驻点,利润存在最 大值,所以当产量为250个单位时可使利润达到最大,且最大利润为12302025002.025010)250(2=-?-?=L (元) 。

(完整版)多元函数微分法及其应用期末复习题高等数学下册(上海电机学院)

第八章 偏导数与全微分 一、选择题 1.若u=u(x, y)是可微函数,且,1),(2==x y y x u ,2x x u x y =??=则=??=2x y y u [A ] A. 2 1 - B. 21 C. -1 D. 1 2.函数62622++-+=y x y x z [ D ] A. 在点(-1, 3)处取极大值 B. 在点(-1, 3)处取极小值 C. 在点(3, -1)处取极大值 D. 在点(3, -1)处取极小值 3.二元函数(),f x y 在点()00,x y 处的两个偏导数()()0000,,,x y f x y f x y 存在是函数f 在该点可微的 [ B ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 4. 设u=2 x +22y +32 z +xy+3x-2y-6z 在点O(0, 0, 0)指向点A(1, 1, 1)方向的导数 =??l u [ D ] A. 635 B.635- C.335 D. 3 3 5- 5. 函数xy y x z 333-+= [ B ] A. 在点(0, 0)处取极大值 B. 在点(1, 1)处取极小值 C. 在点(0, 0), (1, 1)处都取极大值 D . 在点(0, 0), (1, 1)处都取极小值 6.二元函数(),f x y 在点()00,x y 处可微是(),f x y 在该点连续的[ A ] A. 充分而非必要条件 B.必要而非充分条件 C.充分必要条件 D.既非充分也非必要条件 7. 已知)10(0sin <<=--εεx y y , 则dx dy = [ B ] A. y cos 1ε+ B. y cos 11ε- C. y cos 1ε- D. y cos 11 ε+ 8. 函数y x xy z 2050++ = (x>0,y>0)[ D ] A. 在点(2, 5)处取极大值 B. 在点(2, 5)处取极小值 C.在点(5, 2)处取极大值 D. 在点(5, 2)处取极小值 9.二元函数(),f x y 在点()00,x y 处连续的是(),f x y 在点()00,x y 处可微的 [A ] A. 必要而非充分条件 B. 充分而非必要条件

多元函数微分学知识点梳理

第九章 多元函数微分学 内容复习 一、基本概念 1、知道:多元函数的一些基本概念(n 维空间,n 元函数,二重极限,连续等);理解:偏导数;全微分. 2、重要定理 (1)二元函数中,可导、连续、可微三者的关系 偏导数连续?可微???函数偏导数存在 ?连续 (2)(二元函数)极值的必要、充分条件 二、基本计算 (一) 偏导数的计算 1、 偏导数值的计算(计算),(00y x f x ') (1)先代后求法 ),(00y x f x '=0),(0x x y x f dx d = (2)先求后代法(),(00y x f x '=00),(y y x x x y x f ==') (3)定义法(),(00y x f x '=x y x f y x x f x ?-?+→?),(),(lim 00000)(分段函数在分段点处的偏导数) 2、偏导函数的计算(计算(,)x f x y ') (1) 简单的多元初等函数——将其他自变量固定,转化为一元函数求导 (2) 复杂的多元初等函数——多元复合函数求导的链式法则(画树形图,写求导公式) (3) 隐函数求导 求方程0),,(=z y x F 确定的隐函数),(y x f z =的一阶导数,z z x y ???? ,,,(),,y x z z F F z z x y z x F y F x y x y z ''???=-=-?''????? 公式法:(地位平等)直接法:方程两边同时对或求导(地位不平等) 注:若求隐函数的二阶导数,在一阶导数的基础上,用直接法求。 3、高阶导数的计算 注意记号表示,以及求导顺序 (二) 全微分的计算 1、 叠加原理

第7章 多元函数微分学

§7.1 空间解析几何基本知识 教学内容提要 1. 空间直角坐标系; 2. 空间两点间的距离公式与两点连线的中点坐标公式; 3. 简单的曲面方程。 教学目的与要求 1. 了解空间直角坐标系和空间两点间的距离公式及两点连线的中点公式; 2. 了解常用二次曲面的方程及其图形。 教学重点与难点 常用二次曲面的方程及其图形的简单描绘. 教学时数 4 教学过程: 一、空间直角坐标系 1.空间直角坐标系的建立 过空间定点0,作三条互相垂直的数轴,他们都以0为原点 且一般具有相同的长度单位。这三条轴分别称为x 轴,y 轴, z 轴,统称坐标轴。通常把x 轴和y 轴配置在水平面上,z 轴 z 在铅垂方向,他们的指向符合右手法则. 2、空间两点间的距离公式 空间任意两点),,(1111z y x M 和),,(2222z y x M 21221221221)()()(z z y y x x M M -+-+-= 特殊地,点),,(z y x M 与坐标原点)0,0,0(O 的距离为222z y x OM ++= 。 例1 在z 轴求与两点)7,1,4(-A 和)25,3(-B 等距离的点的坐标。 二、曲面及其方程的概念 1.曲面方程 在空间解析几何中,任何曲面都可以看作满足一定条件的点的几何轨迹 ,如果曲面S 上任一点的坐标都满足方程0),,(=z y x F ,不在曲面S 上的点的坐标都不满足该方程,则称此方程0),,(=z y x F 为曲面的方程,而曲面S 就叫做方程的图形。 例2 动点),,(z y x P 与两定点)1,3,2(),0,2,1(21-P P 的距离相等,求此动点P 的轨迹。 三、几种常见的曲面及其方程 1、平面的一般方程 任一平面都可以用三元一次方程来表示 .任一三元一次方程Ax +By +Cz +D =0的图形总是一个平面. 例3 求通过x 轴和点(4, -3, -1)的平面的方程. 解 平面通过x 轴, 一方面表明它的法线向量垂直于x 轴, 即A =0; 另一方面表明 它必通过原点, 即D =0. 因此可设这平面的方程为

2021年电大经济数学基础精编题库考点版考试必备

电大《经济数学基本12》精编题库小抄 (考试必备) 作者将此前《经济数学基本12》试题进行筛选汇编,后边加入了某些新题库,但愿可以助电大广大学习度过高数难关,笔者也是小白,但本题库比较全面,现场翻题时注意标头先题技巧,一定可以顺利过关!这里祝广大学子:考都会,蒙都对!~~顺利毕业 一、选取题: 1.设x x f 1)(= ,则=))((x f f (x ). 2.已知1sin )(-=x x x f ,当( x →0)时,)(x f 为无穷小量. 3. 若)(x F 是 )(x f 一种原函数,则下列等式成立是( ). B .)()(d )(a F x F x x f x a -=? 4.如下结论或等式对的是(对角矩阵是对称矩阵). 5.线性方程组???=+=+0121 21x x x x 解状况是(无解). 6下列函数中为偶函数是( x x y sin =) . 7.下列函数中为奇函数是( x x y -=3) 8.下列各函数对中,( 1)(,cos sin )(22=+=x g x x x f )中 两个函数相等. 9.下列结论中对的是(奇函数图形关于坐标原点对称). 10.下列极限存在是( 1 lim 22 -∞→x x x ).

11.函数?? ???=≠+-=0,0,211)(x k x x x x f 在x = 0处持续,则k =(-1). 12.曲线 x y sin =在点)0,π((处切线斜率是(1-). 13.下列函数在区间(,)-∞+∞上单调减少是(x -2). 14.下列结论对的是0x 是 )(x f 极值点,且)(0x f '存在, 则必有0)(0='x f ). 15.设某商品需求函数为2e 10) (p p q -=,则当p =6时,需求弹性为(-3). 16.若函数x x x f -=1)(, ,1)(x x g +=则=-)]2([g f ( -2 ). 17.下列函数中为偶函数是( x x y sin =). 18.函数) 1ln(1-=x y 持续区间是),(),(∞+?221 19.曲线1 1+=x y 在点(0,1)处切线斜率为( 21- ). 20.设c x x x x f +=?ln d )(,则)(x f =( 2ln 1x x - ). 21.下列积分值为0是( ?--11-d 2 e e x x x ). 22.设)21(=A ,)31(-=B ,I 是单位矩阵, 则I B A -T =( ?? ????--5232 ). 23.设 B A ,为同阶方阵,则下列命题对的是( ). B.若O AB ≠,则必有 O A ≠,O B ≠ 24.当条件( O b = )成立时,n 元线性方程组b AX =有解. 25.设线性方程组b AX =有惟一解,则相应齐次方程组 O AX =(只有0解 ) . 二、填空题:

第八章多元函数微分学自测题答案

《高等数学》单元自测题答案 第八章 多元函数微分学 一. 填空题 1.3ln 3xy y ; 2.503-; 3.y x z y ++-; 4.x x e e cos ; 5.dy dx 3 131 +; 二. 选择题 2.D ; 4.D ; 三.解答题 1.解 2 2 222222222211 )221(1y x y x y x x y x x y x x y x x x z +=+++++=++++=??, 22222222221y x x y x y y x y y x x y z +++= +++=??. 2. 解 22222)(11y x y x y x y x z +-=-+=??, 2 22 2111y x x x x y y z +=+=??, 22222222)(2)(2y x xy y x x y x z +=+?--=??, 22222222)(2)(2y x xy y x y x y z +-=+?-=??, 2 22 2 22222222) ()(2)(y x x y y x y y y x x y z y x z +-=+?++-=???=???. 3. 解 设z z y x z y x F 4),,(222-++=,有 2422''-- =--=-=??z x z x F F x z z x . 5. 解 '22'1f x y yf x z -=??, )1(1)1(''22' '212'22''12''11'12f x xf x y f x f x xf y f y x z +--++=???

=''223 ' '11'22'11f x y xyf f x f -+- . 6. 解 令?????=+-==-+=,063, 09632 '2 'y y f x x f y x 得驻点 (1,0), (1,2), (-3,0), (-3,2) 又 66' '+=x f xx , 0''=xy f , 66''+-=y f yy , 在点(1,0)处,0722>=-B AC ,012>=A ,所以5)0,1(-=f 为极小值; 在点(1,2)处,0722<-=-B AC , ,所以)2,1(f 不是极值; 在点(-3,0)处,0722<-=-B AC , 所以)0,3(-f 不是极值; 在点(-3,2)处,0722>=-B AC ,012<-=A ,所以31)2,3(=-f 为极大值. 8. 解 设长,宽,高为 z y x ,,,由题设 xy V z = ,水箱的表面积 )11(2)(2),(y x V xy z y x xy y x S S ++=++==, 问题成为求 ),(y x S 在区域 0,0:>>y x D 的最小值问题.令 ??? ????=-==-=,02,022' 2' y V x S x V y S y x 得D 内唯一驻点3002V y x ==,由问题实际意义知 ),(y x S 在D 内的最小值一定存在,因此可断定),(00y x S 就是最小值,此时 3 33 04 22V V V V z =?=.

2020年电大考试《经济数学基础1》考题库

《经济数学基础12》精编题库小抄 (考试必备) 一、选择题: 1.设x x f 1)(= ,则=))((x f f (x ). 2.已知1sin )(-=x x x f ,当( x →0)时,)(x f 为无穷小量. 3. 若)(x F 是)(x f 的一个原函数,则下列等式成立的是( ). B .)()(d )(a F x F x x f x a -=? 4.以下结论或等式正确的是(对角矩阵是对称矩阵). 5.线性方程组???=+=+0121 21x x x x 解的情况是(无解). 6下列函数中为偶函数的是( x x y sin =). 7.下列函数中为奇函数的是( x x y -=3) 8.下列各函数对中,(1)(,cos sin )(22=+=x g x x x f )中 的两个函数相等. 9.下列结论中正确的是(奇函数的图形关于坐标原点对称). 10.下列极限存在的是( 1 lim 22 -∞→x x x ). 11.函数?? ???=≠+-=0,0,211)(x k x x x x f 在x = 0处连续,则k =(-1). 12.曲线x y sin =在点)0,π((处的切线斜率是(1-). 13.下列函数在区间(,)-∞+∞上单调减少的是(x -2). 14.下列结论正确的是0x 是)(x f 的极值点,且)(0x f '存在, 则必有0)(0='x f ). 15.设某商品的需求函数为2e 10)(p p q - =,则当p =6时,需求弹性为(-3). 16.若函数x x x f -= 1)(, ,1)(x x g +=则=-)]2([g f ( -2 ). 17.下列函数中为偶函数的是( x x y sin =). 18.函数) 1ln(1-=x y 的连续区间是),(),(∞+?221 19.曲线1 1+=x y 在点(0, 1)处的切线斜率为( 21- ). 20.设c x x x x f += ?ln d )(,则)(x f =( 2ln 1x x - ).

最新多元函数微分法及其应用习题及答案

第八章 多元函数微分法及其应用 (A) 1.填空题 (1)若()y x f z ,=在区域D 上的两个混合偏导数y x z ???2,x y z ???2 ,则在D 上, x y z y x z ???=???22。 (2)函数()y x f z ,=在点()00,y x 处可微的 条件是()y x f z ,=在点()00,y x 处的偏导数存在。 (3)函数()y x f z ,=在点()00,y x 可微是()y x f z ,=在点()00,y x 处连续的 条件。 2.求下列函数的定义域 (1)y x z -=;(2)2 2 arccos y x z u += 3.求下列各极限 (1)x xy y x sin lim 00→→; (2)11lim 0 0-+→→xy xy y x ; (3)22222200)()cos(1lim y x y x y x y x ++-→→ 4.设()xy x z ln =,求y x z ???23及2 3y x z ???。 5.求下列函数的偏导数 (1)x y arctg z =;(2)()xy z ln =;(3)32z xy e u =。 6.设u t uv z cos 2+=,t e u =,t v ln =,求全导数 dt dz 。 7.设()z y e u x -=,t x =,t y sin =,t z cos =,求dt du 。 8.曲线?? ???=+= 4422y y x z ,在点(2,4,5)处的切线对于x 轴的倾角是多少? 9.求方程122 2222=++c z b y a x 所确定的函数z 的偏导数。 10.设y x ye z x 2sin 2+=,求所有二阶偏导数。

2020年电大专科经济数学基础12期末复习资料考试必考重点【最新完整版】

电大经济数学基础12期末复习资料考试小抄【最新完整版】 一、单项选择题 1.下列函数中为偶函数的是( ). (A) sin y x x = (B) 2y x x =+ (C) 22x x y -=- (D) cos y x x = 正确答案:A 2.下列函数中为奇函数的是( ). (A) sin y x x = (B) 1ln 1x y x -=+ (C) e e x x y -=+ (D) 2y x x =- 正确答案:B 3.下列各函数对中,( )中的两个函数相等. A.2(),()f x g x x == B. 21(),()11 x f x g x x x -==+- C. 2()ln , ()2ln f x x g x x == D. 22()sin cos , ()1f x x x g x =+= 正确答案:D 4.下列结论中正确的是( ). (A) 周期函数都是有界函数 (B) 基本初等函数都是单调函数 (C) 奇函数的图形关于坐标原点对称 (D) 偶函数的图形关于坐标原点对称 正确答案:C 5.下列极限存在的是( ).

A .22lim 1x x x →∞- B .01 lim 21x x →- C .limsin x x →∞ D .1 0lim e x x → 正确答案:A 6.已知()1sin x f x x =-,当( )时,)(x f 为无穷小量. A. 0x → B. 1x → C. x →-∞ D. x →+∞ 正确答案:A 7.当x →+∞时,下列变量为无穷小量的是( ) A .ln(1)x + B .21x x + C .21 e x - D .x x sin 正确答案: D 8 .函数10(),0 x f x x k x ?≠?=??=? 在x = 0处连续,则k = ( ). A .-2 B .-1 C .1 D .2 正确答案:B 9.曲线sin y x =在点)0,π(处的切线斜率是( ). (A) 1 (B) 2 (C) 21 (D) 1- 正确答案:D 10 .曲线y 在点(0, 1)处的切线斜率为( )。 A .21 B .12- C D .-正确答案:B 11.若()cos2f x x =,则()2f π ''=( ). A .0 B .1 C . 4 D .-4 正确答案:C

第八章多元函数微分法及其应用

第八章多元函数微分法及其应用 第一节多元函数的基本概念 教学目的:学习并掌握关于多元函数的区域、极限以及多元函数概念,掌握多元函数的连续性定理,能够判断多元函数的连续性,能够求出连续函数在连续点的极限。教学重点:多元函数概念和极限,多元函数的连续性定理。 教学难点:计算多元函数的极限。 教学内容: 一、区域 1.邻域 设P o(x°,y。)是xoy平面上的一个点,是某一正数。与点P o(X o,y°)距离小于:的 点p(x,y)的全体,称为点p的「?邻域,记为U(P0,、),即 U(P°,、)= {P PPo < }, 也就是 U (P o,、)= {(X, y)丨..(X -X。)2(y - y o)2、}。 在几何上,U(P o「J就是xoy平面上以点p o(x o,y。)为中心、:-0为半径的圆内部 的点P(x,y)的全体。 2.区域 设E是平面上的一个点集,P是平面上的一个点。如果存在点P的某一邻域U(P) E, 则称P为E的内点。显然,E的内点属于E。 如果E的点都是内点,则称E为开集。例如,集合E, ={(x, y)1 vx2+ y2£4}中每个点都是E,的内点,因此E,为开集。 如果点P的任一邻域内既有属于E的点,也有不属于E的点(点P本身可以属于E,也可以不属于E ),则称P为E的边界点。E的边界点的全体称为E的边界。例如上例中,E ,的边界是圆周x2 y2 = 1和x2 y2=4o

设D是点集。如果对于D内任何两点,都可用折线连结起来,且该折线上的点都属于 D,则称点集D是连通的。 连通的开集称为区域或开区域。例如,{(x, y) x + y a 0}及{( x, y)d 0}及{(x, y) | 1< x y <4} 都是闭区域。 对于平面点集E ,如果存在某一正数r,使得 E U(0,r), 其中0是原点坐标,则称E为有界点集,否则称为无界点集。例如,{(x,y) | K x2 y2< 4}是有界闭区域,{(x, y) | x y>0}是无界开区域。 二、多元函数概念 在很多自然现象以及实际问题中,经常遇到多个变量之间的依赖关系,举例如下: 例1圆柱体的体积V和它的底半径r、高h之间具有关系 V =二r2h 。 这里,当r、h在集合{(r,h) r 0,h 0}内取定一对值(r,h)时,V的对应值就随之确定。 例2 一定量的理想气体的压强p、体积V和绝对温度T之间具有关系 RT P =— V 其中R为常数。这里,当V、T在集合{(V,T) V >0,T >T0}内取定一对值(V,T)时,p的 对应值就随之确定。 定义1设D是平面上的一个点集。称映射 f : D》R为定义在D上的二元函数,通 常记为 z 二f(x, y) , (x, y) D (或z 二f(P) , P D )。 其中点集D称为该函数的定义域,x、y称为自变量,z称为因变量。数集

数学分析教案_(华东师大版)第十七章__多元函数微分学

第十七章多元函数微分学 教学目的:1.理解多元函数微分学的概念,特别应掌握偏导数、全微分、连续及 偏导存在、偏导连续等之间的关系;2.掌握多元函数特别是二元函数可微性及其应用。 教学重点难点:本章的重点是全微分的概念、偏导数的计算以及应用;难点是复合函数偏导数的计算及二元函数的泰勒公式。 教学时数:18学时 § 1 可微性 一.可微性与全微分: 1.可微性:由一元函数引入. 亦可写为, 时. 2.全微分: 例1 考查函数在点处的可微性 . P107例1 二.偏导数: 1.偏导数的定义、记法: 2.偏导数的几何意义: P109 图案17—1.

3.求偏导数: 例2 , 3 , 4 . P109—110例2 , 3 , 4 . 例5. 求偏导数. 例6. 求偏导数. 例7. 求偏导数, 并求. 例8. 求和. 解=, =. 例9 证明函数在点连续 , 并求和. 证 . 在点连续 . ,

不存在 . 三.可微条件: 1.必要条件: Th 1 设为函数定义域的内点.在点可微 , 和存在 , 且 . ( 证 ) 由于, 微分记为 . 定理1给出了计算可微函数全微分的方法. 两个偏导数存在是可微的必要条件 , 但不充分. 例10考查函数 在原点的可微性 . [1]P110 例5 . 2.充分条件:

Th 2 若函数的偏导数在的某邻域内存在 , 且和在点处连续 . 则函数在点可微 . ( 证 ) P111 Th 3 若在点处连续, 点存在 , 则函数在点可微 . 证 . 即在点可微 . 要求至少有一个偏导数连续并不是可微的必要条件 . 例11 验证函数在点可微 , 但和在点处不连续 . (简证,留为作业) 证

多元函数微分学及应用(隐函数反函数)

习题课:多元函数求偏导,多元函数微分的应用 多元复合函数、隐函数的求导法 (1) 多元复合函数 设二元函数),(v u f z =在点),(00v u 处偏导数连续,二元函数),(),,(y x v v y x u u ==在点 ),(00y x 处偏导数连续, 并且),(),,(000000y x v v y x u u ==, 则复合函数 )),(),,((y x v y x u f z = 在点),(00y x 处可微,且 ()()()() x y x v v v u f x y x u u v u f x z y x ?????+?????= 00000000) ,(,,,,00??()()()() y y x v v v u f y y x u u v u f y z y x ?????+?????= 00000000) ,(,,,,00?? 多元函数微分形式的不变性:设),(),,(),,(y x v v y x u u v u f z ===,均为连续可微, 则将z 看成y x ,的函数,有 dy y z dx x z dz ??+??= 计算 y v v f y u u f y z x v v f x u u f x z ????+????=??????+????=??,,代人, dv v f du u f dy y v dx x v v f dy y u dx x u u f dy y v v f y u u f dx x v v f x u u f dy y z dx x z dz ??+??= ???? ????+????+???? ????+????=???? ??????+????+??? ??????+????=??+??= 我们将dv v f du u f dy y z dx x z dz ??+??=??+??= 叫做微分形式不变性。 例1 设??? ??=x y xy f x z , 3 ,求y z x z ????,。

经济数学基础综合练习及参考答案----第一部分微积分

1 经济数学基础综合练习及参考答案 第一部分 微分学 一、单项选择题 1.函数() 1lg += x x y 的定义域是(1->x 且0 ≠x ). . 2.若函数)(x f 的定义域是[0,1],则函数)2(x f 的定 义域是( ]0,(-∞ ). 3.下列各函数对中,( x x x f 22cos sin )(+=,1 )(=x g )中的两个函数相等. 4.设 11 )(+= x x f ,则))((x f f =(11++x x ). 5.下列函数中为奇函数的是( 1 1 ln +-=x x y ). 6.下列函数中,( )1ln(-=x y )不是基本初等函 数. 7.下列结论中,( 奇函数的图形关于坐标原点对 ) 是正确的. 8. 当 x →0时,下列变量中( x x 21+ )是无穷 大量. 9. 已知 1tan )(-= x x x f ,当( x →0 )时, )(x f 为无穷小量. 10.函数 sin ,0(),0 x x f x x k x ?≠? =??=? 在x = 0处连续,则k = ( 1 ). 11. 函数 ?? ?<-≥=0 ,10,1)(x x x f 在x = 0处( 右连续 ). 12.曲线 1 1 += x y 在点(0, 1)处的切线斜率为 ( 2 1- ). 13. 曲线x y sin =在点(0, 0)处的切线方程为( y = x ). 14.若函数x x f =)1(,则)(x f '=(-2 1 x ). 15.若x x x f c o s )(=,则='')(x f ( x x x cos s i n 2-- ). 16.下列函数在指定区间(,)-∞+∞上单调增加的是(e x ). 17.下列结论正确的有( x 0是f (x )的极值点,且f '(x 0 )存在, 则必有 f '(x 0 ) = 0 ). 18. 设需求量q 对价格p 的函数为p p q 23)(-=,则 需求弹性为E p =( --p p 32 ). 二、填空题 1.函数???<≤-<≤-+=20,105,2)(2 x x x x x f 的定义域是[-5,2] 2.函数 x x x f -- +=21)5ln()(的定义域是(-5, 2 ) 3.若函数 52)1(2-+=+x x x f ,则= )(x f 62-x . 4.设函数1)(2-=u u f , x x u 1)(=,则 =))2((u f 4 3 -. 5.设 2 1010)(x x x f -+= ,则函数的图形关于 y 轴对称. 6.已知生产某种产品的成本函数为C (q ) = 80 + 2q ,则当产量q = 50时,该产品的平均成本为3.6 . 7.已知某商品的需求函数为q = 180 – 4p ,其中p 为该商品的价格,则该商品的收入函数R (q ) = 45q – 0.25q 2 . 8. = +∞ →x x x x sin lim 1 . 9.已知x x x f sin 1)(- =,当0→x 时,)(x f 为无穷 小量. 10. 已知 ?? ? ??=≠--=1 11 1)(2x a x x x x f ,若f x () 在 ),(∞+-∞内连续,则=a 2 . 11. 函数 1 ()1e x f x = -的间断点是0x =. 12.函数 ) 2)(1(1 )(-+= x x x f 的连续区间是)1,(--∞ ),2(∞+. ) 1处的切线斜率是 (1)0.5y '= 14.函数y = x 2 + 1的单调增加区间为(0, +∞) 15.已知x x f 2ln )(=,则[f = 0 . 16.函数 y x =-312()的驻点是x =1. 17.需求量q 对价格p 的函数为2e 100)(p p q -?=,则需 求弹性为E p =2 p -. 18.已知需求函数为 p q 3 2320-=,其中p 为价格,则需求弹 性E p = 10 -p p . 三、计算题(答案在后面) 1.4 23lim 22 2-+-→x x x x 2 . 231lim 21+--→x x x x 3.x → 4. 2343lim sin(3)x x x x →-+- 52)1tan(lim 21-+-→x x x x 6.))32)(1()23()21(lim 6 25--++-∞→x x x x x x 7.已知y x x x cos 2- =,求)(x y ' . 8.已知)(x f x x x ln sin 2+=,求)(x f ' . 9.已 知 x y cos 25=,求)2 π(y '; 10.已知y =3 2ln x ,求y d . 11.设x y x 5sin cos e +=,求y d . 12.设x x y -+=2tan 3,求y d . 13.已知2 sin 2cos x y x -=,求)(x y ' . 14.已知x x y 53e ln -+=,求)(x y ' . 15.由方程2e e )1ln(=++xy x y 确定y 是x 的隐函数,求)(x y '. 16.由方程0e sin =+y x y 确定y 是x 的隐函数,求)(x y '. 17.设函数 )(x y y =由方程y x y e 1+=确定,求0 d d =x x y . 18.由方程x y x y =++e )cos(确定y 是 x 的隐函 数,求 y d . 四、应用题(答案在后面) 1.设生产某种产品 x 个单位时的成本函数为: x x x C 625.0100)(2 ++=(万元), 求:(1)当 10=x 时的总成本、平均成本和边际成本; (2)当产量x 为多少时,平均成本最小? 2.某厂生产一批产品,其固定成本为2000元,每生产一吨产品的成本为60元,对这种产品的市场需求规律为 q p =-100010(q 为需求量,p 为价格).试求: (1)成本函数,收入函数; (2)产量为多少吨时利 润最大? 3.设某工厂生产某产品的固定成本为50000元,每生产一个单位产品,成本增加100元.又已知需求函数p q 42000-=,其中 p 为价格,q 为产量,这种产品在市场上是畅销的,试 求:(1)价格为多少时利润最大?(2)最大利润是多少? 4.某厂生产某种产品q 件时的总成本函数为C (q ) = 20+4q +0.01q 2(元),单位销售价格为p = 14-0.01q (元/件),试求:(1)产量为多少时可使利润达到最大?(2)最大利润是多少? 5.某厂每天生产某种产品 q 件的成本函数为 9800365.0)(2++=q q q C (元).为使平均成本最低, 每天产量应为多少?此时,每件产品平均成本为多少? 6.已知某厂生产 q 件产品的成本为 C q q q ()=++ 2502010 2(万元).问:要使平均成本最少, 应生产多少件产品? 三、极限与微分计算题(答案) 1.解 4 23lim 222 -+-→x x x x = ) 2)(2()1)(2(lim 2+---→x x x x x = )2(1lim 2+-→x x x = 41 2.解: 231lim 2 1 +--→x x x x =) 1)(2)(1(1 lim 1+---→x x x x x = 2 1 ) 1)( 2(1lim 1 - =+-→x x x 3.解 l i x →0x → =x x x x x 2sin lim )11( lim 00 →→++=2 ?2 = 4 4.解 2343 lim sin(3) x x x x →-+-=3(3)(1)lim sin(3)x x x x →--- = 33 3 lim lim(1)sin(3)x x x x x →→-?--= 2 5.解 ) 1)(2()1tan(lim 2)1tan(lim 121 -+-=-+-→→x x x x x x x x 1 )1tan(lim 21lim 11 --?+=→→x x x x x 31131 =?= 6.解 ))32)(1()23()21(lim 6 25 --++-∞→x x x x x x = ))3 2)(11()2 13()21(lim 6 25x x x x x x --++-∞→ =2 32 3 ) 2(6 5- =?- 7.解:

相关文档
最新文档