第二章力矩有固定转动轴物体的平衡-物理批注版

第二章力矩有固定转动轴物体的平衡-物理批注版
第二章力矩有固定转动轴物体的平衡-物理批注版

第二章力矩有固定转动轴物体的平衡

本章学习提要

1.理解力矩概念和定义,会运用力臂和力矩的定义计算力矩。

2.会利用力矩盘进行实验,探究有固定转动轴的物体的平衡条件。

3.理解有固定转动轴的物体的平衡,知道有固定转动轴的物体的“力矩平衡条件”,能运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。

本章内容从基础型物理课程中的质点问题(质点受力、共点力平衡条件)拓展到刚体问题(力矩、力矩平衡条件)。在日常生活和生产中所见到的物体的运动,以及分子、原子这样的微观粒子和宇宙天体的运动都包括转动,因此关于力矩和力矩平衡条件的讨论具有普遍意义。认识怎样根据实际需要引进力矩,以及力矩的定义方法和它的物理意义。通过力矩和力矩平衡条件的学习和应用,体会物理学与技术、社会的联系,了解运用力矩平衡条件设计出各类工具,以及千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。

A 力矩

一、学习要求

理解力臂和力矩概念,会用力臂和力矩的定义计算力矩。

从实际例子的分析中,明白引进力矩的必要性;认识力矩的定义方法以及力矩的物理意义。通过从实际需要中引进力矩概念,了解力矩概念与常用工具和生活、生产的联系,体会物理学与实际的密切关系。

二、要点辨析

1.为什么要引进力矩

力对质点运动的作用效果取决于它的大小和方向。而力对物体转动的作用效果不仅与力的大小和方向有关,还与力的作用点的位置有关,为了描写力的大小、方向和作用点对物体转动的作用效果,需要引进力矩这个物理量。

力臂:力的作用线与转动轴之间的距离称为力臂。

力矩:力(F)和力臂(L)的乘积称为力对转动轴的力矩。

2.关于力的作用线与转动轴的距离

力的作用线是力的方向上的一条假想的直线。力的作用线与转动轴的距离实际上涉及到两条线之间的距离。一般情况下确定空间中任意两条直线间的距离比较麻烦。我们所讨论的仅限于力的作用线都在同一个与转动轴相垂直的平面内,若该平面与转动轴的交点称为O,那么我们需考虑的空间中两条直线(力的作用线与转动轴线)间距离的问题便简化为一个点(O点)与一条直线(力的作用线)间距离的问题。

3.求力矩的两种基本方法

(1)先求力臂的方法:先求力臂,再求力矩的方法计算力臂的要点是,从转动轴作力的作用线的垂线,其垂线长即为该力对于转动轴的力臂。力臂的计算通常要用到三角函数。

(2)力的分解方法:先将力正交分解为两个分力,然后分别计算两个分力对转动轴的力矩,该力的力矩就等于这两个分力力矩的代数和(注意力矩正负的判断)。在一般情况下,可使其中一个分力的作用线过转动轴,其力臂为零,因而力矩为零,这时只要计算另一个分力的力矩即可。

三、例题分析

【示例】如图2-1(a)所示,长度为l=1 m的杆OB可绕通过O点垂直于纸面的轴转动,绳AB的拉力为20 N,杆OB刚好水平,AB与OB的夹角为30°。求拉力的力矩。

【解答】分别用先求力臂的方法和力的分解方法计算。

(1)先求出拉力F的力臂。如图2-1(b)所示,对于转轴O来说,力F的力臂为L=l sinθ,其中θ=30°,因此拉力F对于转轴O的力矩为

M=FL=Fl sinθ=20×1×sin30° N·m=10 N·m。

(2)先将拉力F分解为垂直于杆方向的分力F1=F sinθ,以及沿杆方向的分力F2=F cosθ,如图2-1(c)所示。其中沿杆方向的分力F1指向转轴,相应的力臂为零,所以相应的力矩也为零。而垂直于杆方向的分力F1的力臂就等于OB的长度l,因此相应的力矩为M=F1l=F sinθl=20×sin30°×1 N·m=10N·m。

两者结果完全相同。

四、基本训练

1.用一把柄的长度为25 cm的扳手拧紧一只汽车轮胎上的螺

帽,如图所示。如果你在扳手的一端沿与扳手柄成60°角的方向

上用200 N的力拉扳手,则所施的力矩是多少?

2.图中各物体都受到几个力的作用,并且可以分别绕通过O点且垂直于纸面的轴转动,画出图中各个力以O点为转动轴的力臂;哪些力矩是引起顺时针方向转动的力矩?哪些是引起逆时针方向转动的力矩?哪些力对O点的力矩为零?

3.OA是一根长为l,质量为m的均匀铁棒,可绕O点的轴自

由转动,问:当恒定外力F将它拉到如图所示位置的过程中,该

棒所受的重力是否改变?重力对O点的力臂和力矩是否改变?

怎样改变?F对O点的力臂和力矩是否改变?怎样改变?

4.如图所示,直杆OA可绕通过O点,且垂直于纸面的轴转

动,杆的A端分别受到F1、F2、F3、F4的作用。已知力的作

用线都在纸面内,且这四个力的矢量末端均落在一条与OA平

行的虚线上,设它们对O轴的力矩分别为M1、M2、M3、M4,

则这四个力矩大小的关系是()

(A)M1>M2>M3>M4

(B)M1=M2=M3=M4

(C)M1<M2<M3<M4

(D)以上说法都不对

5.在如图所示的绞盘的把手上,应至少施以多大的力,才能使紧绕在滚筒上的绳子产生2500 N的拉力?滚筒和把手的尺寸如图中所示。

6.联系本节课本开头的跷跷板游戏情景,求解

如下问题:

如图所示,杠杆AB可绕通过O点,且垂直于

纸面的轴转动。它受到两个力作用,力F A的大

小为80 N,其作用线与AO的夹角为θ=60°;

F B的大小为30 N,方向与OB垂直。AO=0.8

m,OB=2.2 m。求F A和F B对于转轴O的力

矩。

7.一根长为L、重为G的均匀杆,一端搁在光滑水平地面上,另

一端为转轴,如图所示。杆与水平地面的夹角为θ,则杆所受重

力对转轴的力矩为_______。如果地面对杆的支持力为F,则支持

力F对转轴的力矩为__________。

8.如图所示,AB是一根质量为m、长度为L的均匀

金属杆,静止在水平位置,其A端用细绳悬挂,细绳

与水平面的夹角为θ;转轴在C点,BC长L/4,问:

这根金属杆的AC段和CB段的重力对C点的力矩分

别是多少?如果细绳的拉力为T,那么该拉力对C点

的力矩又是多少?

9.如图所示,小型臂式起重设备的吊杆质量为150 kg,其重心与

转轴O的距离是吊杆长度的2

5。当吊杆与水平方向的夹角为θ=30°

时,最大安全负载为3000 N。如果这一最大负载是由O处的转轴

所能承受的最大力矩所确定的,那么当θ=45°和60°时,这台起重

机的最大安全负载分别是多少?

10.如图所示,重为G的L型匀质杆的一端O通过铰链与墙体

连接,一个力F作用在B端,当F与水平面成α=45°角时,杆

的OA边恰好静止在水平方向。已知OA长为2L,AB长为L。

试分别用先求力臂的方法和力的分解方法计算力对转轴O的力

矩M。

11.有一块均匀的直角三角形木板ABC,可绕通过C点且垂直于纸面的轴转动,如图(a)所示。现用力使它的BC边从水平位置转至竖直位置,在此过程中,重力对转轴的力矩大小随α角变化的图线是图(b)中的()

12.将一个横卧的油桶推上高为h的台阶。油桶的半径为

R(R>h),竖直向上的推力F1作用在桶的最左边的一点,

同时F2作用在桶的最高点,如图所示。则推力F1和F2对

转动轴O的力矩各是多少?

B 有固定转动轴物体的平衡条件

一、学习要求

理解有固定转动轴的物体的平衡,知道转动平衡状态,理解有固定转动轴的物体的“力矩平衡条件”;会利用力矩盘实验探究有固定转动轴的物体的平衡条件;会运用力矩平衡条件求解有关问题,解释生活和生产中的实际问题。

通过力矩盘实验,经历和感受从实验中归纳出力矩平衡条件的探究过程,了解运用力矩平衡条件设计出千姿百态、风格迥异的各种桥梁和大型建筑,领略科学美。

二、要点辨析

1.理解力矩平衡条件

有固定转动轴的物体处于平衡状态(即静止或匀速转动状态)时,施加在该物体上所有力的力矩应当满足的条件称为“力矩平衡条件”。

力矩平衡条件可用公式表示为:M逆=M顺,其中M逆和M顺分别表示从转轴的一个方向上看,能引起物体沿逆时针和顺时针方向转动的所有力矩之和。

2.运用力矩平衡条件解决问题的一般步骤

①明确作为研究对象的物体,以及转动轴;

②分析物体上所受的力的大小、方向、作用点,画出受力图。凡是其作用线通过转轴的力可不考虑(通过转轴的力的力臂为零,因此力矩为零);

③得出每个力对转动轴的力臂和力矩,确定每个力矩究竟是顺时针力矩还是逆时针力矩;

④列出力矩平衡条件方程,解出未知量。

3.关于转动轴的确定

在我们所讨论的问题中,“固定转动轴”比较明显,如杠杆的支点、圆盘的轴心,但是在实际中,有些问题中的转动轴并不十分明显,有些甚至没有明显的转动轴(见A节基本训练中的第12题、本节基本训练中的第9题),这时常常需要根据“转动趋势”来确定转动轴。

三、例题分析

【示例】如图2-2(a)所示,一根长4 m的

木杆,假定下端用铰链固定在地面上,杆的

顶端有根水平电线向左拉,拉力F T恒为500

N。杆的右边用一根长度为4 m的钢绳将杆

垂直固定在地面上。

(1)如果钢绳上端A离地面的高度为

3.5m,此时钢绳受到的拉力是多少?

(2)为了使钢绳受到的拉力最小,其上端

A离地面的高度应是多少?此时钢绳受到的拉力又是多少?

【解析】设杆长为L;钢绳的拉力为F;钢绳的长度为l,其上端A离地面的高度为x,下端B到铰链的距离为y,钢绳与杆的夹角为α,如图2-2(b)所示。

(1)有三个力作用在杆上:水平电线对杆的拉力F T,钢绳的拉力F,在铰链处地面对杆的支持力。其中地面对杆的支持力对转轴的力矩为零;F T对转动轴的力矩为M逆=F T L;F对转轴的力矩为M顺=Fx sinα。由力矩平衡条件,得

Fx sinα=F T L

考虑到sin α=y l =l 2-x 2l

,并将已知量F T =500 N 、L =4 m 、x =4 m 、x =3.5 m 代入,由上式可得解:

F =F T Ll x l 2-x 2 =500×4×43.5×42-3.52

N =1180.3 N 。 (2)由上面的力矩平衡条件,考虑到sin α=y l

,可得 F =F T Ll xy

为了得到最后结果,需应用F 最小的条件。要使F 最小,xy 必需最大。考虑到2xy =x 2+y 2-(x -y )2=l 2-(x -y )2,可见要使xy 最大,应取x =y ,故

x =y =l 2 =42

m =2.83m 。 因此,

F =2F T L l =2×500×44

N =1000 N 。 即钢绳应固定在杆上离地面高度为2.83 m 处,此时钢绳受到的拉力最小,为1000 N 。

四、基本训练

13.如图所示,T 型架ABO 可绕过O 点且垂直于纸面的轴自由转

动,现在其A 端和B 端分别施以力F 1和F 2,它们的方向如图所示。

则关于这两个力的力矩M 1和M 2的下列说法正确的是( )

(A )都会引起物体顺时针方向转动

(B )都会引起物体逆时针方向转动

(C )M 1会引起物体逆时针方向转动,M 2会引起物体顺时针方向转

(D )M 1会引起物体顺时针方向转动,M 2会引起物体逆时针方向转动

14.如图所示,一根均匀直杆OA 可绕过O 点且垂直于纸面的

轴转动。为了测量杆的质量,用一个F =12 N 的水平力在A 端

将它拉到与竖直方向成30°角的位置并处于静止状态,杆的质量

是多少?

15.一架简单的起重机结构示意图如图所示。设均匀杆

OB 长为L ,重为G 1,B 端所挂物件的重力为G 2。杆可

绕过O 点且垂直于纸面的轴自由转动。杆的B 端用轻质

钢绳紧拉,系于地面上的A 点。杆与地面成60°角,钢

绳与地面成30°角。此时钢绳AB 的拉力对O 点的力臂

为_______;悬挂物体轻质钢绳的拉力对O 点的力矩为

____,钢绳AB 的拉力为_______。

16.道路上有时使用的交通指示牌及其支架如图所示。若指示牌

的质量为5 kg,它悬挂在长度为3 m的水平杆AB的一端,杆CD

的长度为2 m,θ=30°,这些杆的质量都不计,求CD杆中的拉力。

17.从图(a)起重吊车工作时的情景可抽象出一个如图(b)所示的关于力矩平衡的物理问题。质量为m=500 kg,长度OA=6 m的均质吊杆OA可绕通过O点且垂直于纸面的轴转动,吊杆与地面的夹角为α=45°。A处吊挂物件的质量为M=2000 kg。撑杆BC此时与吊杆间的夹角为β=30°,OC=2.5 m。求撑杆的支撑力F T。

18.如图所示,已知O为杆的中点,G=200 N,杆的质量忽略

不计。分别沿DA(水平向左)、DB(与杆垂直)、DC(竖直向

上)三个不同方向用力拉住杆,使其静止,问:此时的拉力各是

多少?哪一种情况最省力?为什么?

19.单臂斜拉桥示意图如图所示。均匀桥板重为G,可绕

通过O点且垂直于纸面的轴转动,三根平行钢索与桥面成

30°角,间距AB=BC=CD=DO。如果每根钢索所受拉力

大小相等,求拉力的大小。

大学物理-刚体的定轴转动-习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度?是否有法向加速度?切向和法向加速度的大小是否随时间变化? 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系? 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快?(2)如果它们的角速度相同,哪个轮子的角动量大? 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动?如小汽车突然刹车,此过程角动量是否守恒?动量是否守恒?能量是否守恒? 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

【大题】工科物理大作业04_刚体定轴转动

04 04 刚体定轴转动 班号 学号 姓名 成绩 一、选择题 (在下列各题中,均给出了4个~5个答案,其中有的只有1个是正确答案,有的则有几个是正确答案,请把正确答案的英文字母序号填在题后的括号内) 1.某刚体绕定轴作匀变速转动,对刚体上距转轴为r 处的任一质元来说,在下列关于其法向加速度n a 和切向加速度τa 的表述中,正确的是: A .n a 、τa 的大小均随时间变化; B .n a 、τa 的大小均保持不变; C .n a 的大小变化,τa 的大小保持恒定; D .n a 的大小保持恒定,τa 大小变化。 (C ) [知识点]刚体匀变速定轴转动特征,角量与线量的关系。 [分析与题解] 刚体中任一质元的法向、切向加速度分别为 r a n 2 ω=,r a τβ= 当 恒量时,t βωω+=0 ,显然r t r a n 2 02)(βωω+==,其大小随时间而变, r a τβ=的大小恒定不变。 2. 两个均质圆盘A 和B ,密度分别为 A 和 B ,且B ρρ>A ,但两圆盘的质量和厚度相同。若 两盘对通过盘心且与盘面垂直的轴的转动惯量分别为A I 和B I ,则 A . B I I >A ; B. B I I ,所以2 2B A R R < 且转动惯量22 1 mR I = ,则B A I I <

第五讲 有固定转动轴的物体的平衡

第五讲 有固定转动轴的物体的平衡 一、知识要点: 1.力臂:从转动轴到力的作用线的垂直距离。用L 来表示。 2.力矩:力和力臂的乘积。用M 表示。公式;M=F×L 。单位;牛顿·米。计算力矩,关键是正确找到力臂。 3.有固定轴的物体的平衡状态:静止或匀速转动。 有固定轴的物体平衡的条件:顺时针力矩的总和等于逆时针力矩的总和。 公式;ΣM 顺=ΣM 逆 二、典型例题: (一)力臂、力矩的运算: 1.均匀杆OA 可绕过O 点的水平轴自由转动,在其A 端用竖直向上的力F 拉,使杆缓慢的转动,杆与天花板的夹角θ逐渐减小,如图所示。在此过程中,拉力F 大小的变化情况是 ,F 力的力矩大小的变化情况是 。 2.如图,直杆OA 可绕O 点转动,图中虚线与杆平行,杆端A 点受四个力F 1、F 2、F 3、F 4的作用,力的作用线跟OA 杆在同一竖直平面内,四个力对轴O 的力矩分别是M 1、M 2、M 3、M 4。则力矩的大小关系是:( ) A .M 3=M 4

刚体的定轴转动

《物理学》多媒体学习辅导系统 第三章 刚体的定轴转动 教学要求 一.理解定轴转动刚体运动的角速度和角加速度的概念,理解角量与线量的关系。 二.理解刚体定轴转动定律,能解简单的定轴转动问题。 三.了解力矩的功和转动动能的概念。 四.了解刚体对定轴的角动量定理及角动量守恒定律。 五.理解转动惯量的概念,能用平行轴定理和转动惯量的可加性计算刚体对定轴的转动惯量。 基本内容 本章的重点是刚体定轴转动的力矩、转动惯量、角动量等物理量的概念和转动定律,难点是刚体绕定轴转动的角动量守恒定律及其应用。 一.角量与线量的关系 2 ωαω θ r a r a r v r s ====n t 二.描述刚体定轴转动的物理量和运动规律与描述质点直线运动的物理量和运动规律有类比关系,有关的数学方程完全相同, 为便于比较和记忆,列表如下。只要将我们熟习的质点直线运动的公式中的x 、v 、a 和m 、F 换成θ、ω、α和I 、M , 就成为刚体定轴转动的公式。 表3—1 质点的直线运动 刚体定轴转动 位置 x 角位置 θ 位移 x ? 角位移 θ? 速度 t x v d d = 角速度 t d d θω=

加速度 2 2d d d d t x t v a == 角加速度 2t t d d d d 2θωα== 匀速直线运动 vt x x +=0 匀角速转动 t 0ωθθ+= 20021at t v x x + += 2002 1 t t++ =αωθθ ()02022x x a v v -=- ()02 02 2 θθαωω-=- 质量 m 转动惯量 i i m r I ?=∑2 力 F 力矩 r F M θ= 牛顿第二定律 ma F = 定轴转动定律 αI M = 力的功 ? = x x x F A 0 d 力矩的功 ?=θ θθ0 d M A 动能 221mv E =k 动能 k 22 1 ωI E = 动能定理 2 02210 mv mv x F x x 2 1d -=? 动能定理 2 022 121d ωωθθ θ I I M -= ?20 冲量 ? t t t F 0 d 冲量矩 ? t t t M 0 d 动量 mv 角动量( 动量矩 ) ωI 动量定理 00 mv mv t F t t -=? d 角动量定理 ? -=t t I I t M 0 0d ωω 系统的机械能守恒定律 系统的机械能守恒定律 若0=+非保内外A A ,则 若0=+非保内外A A ,则 =+p k E E 常量 =+p k E E 常量 系统的动量守恒定律 系统的角动量守恒定律 若 0=∑外 F ,则 若0=∑外M ,则 =∑i i v m 常量 =∑i L 常量

(完整版)物理竞赛讲义(三)力矩、定轴转动物体的平衡条件、重心

郑梁梅高级中学高一物理竞赛辅导讲义 第三讲:力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【典型例题】 【例题1】如图所示,光滑圆弧形环上套有两个质量不同的小球A 和B 两球之间连有弹簧,平衡时圆心O 与球所在位置的连线与竖直方向的夹角分别为α和β,求两球质量之比。 y y y 2α β A B O

刚体的定轴转动习题解答

- 第五章 刚体的定轴转动 一 选择题 1. 一绕定轴转动的刚体,某时刻的角速度为,角加速度为,则其转动 加快的依据是:( ) A. > 0 B. > 0,> 0 C. < 0,> 0 D. > 0,< 0 解:答案是B 。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则 它们对过盘心且垂直盘面的轴的转动惯量。 ( ) A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:?? ???===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的力。 得:)/(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线

- 作定轴转动,则在2秒F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。 简要提示:由定轴转动定律: α221MR FR = ,得:mR F t 4212==?αθ 所以:m F M W /42=?=θ 5. 一电唱机的转盘正以 0的角速度转动,其转动惯量为J 1,现将一转动 惯量为J 2的唱片置于转盘上,则共同转动的角速度应为: ( ) A .0211ωJ J J + B .0121ωJ J J + C .021ωJ J D .01 2ωJ J 解:答案是A 。 简要提示:角动量守恒 6. 已知银河系中一均匀球形天体,现时半径为R ,绕对称轴自转周期为T ,由于引力凝聚作用,其体积不断收缩,假设一万年后,其半径缩小为r ,则那时该天体的:( ) A. 自转周期增加,转动动能增加; B. 自转周期减小,转动动能减小; C. 自转周期减小,转动动能增加; D. 自转周期增加,转动动能减小。 解:答案是C 。 简要提示: 由角动量守恒,ωω2025 252Mr MR =,得转动角频率增大,所以转动周期减小。转动动能为22k 2020k 5 221,5221ωωMr E MR E ==可得E k > E k0。 7. 绳子通过高处一固定的、质量不能忽略的滑轮,两端爬着两只质量相等 的猴子,开始时它们离地高度相同,若它们同时攀绳往上爬,且甲猴攀绳速度为乙猴的两倍,则 ( ) A. 两猴同时爬到顶点 B. 甲猴先到达顶点 C. 乙猴先到达顶点

大学物理_刚体的定轴转动_习题及答案

第4章 刚体的定轴转动 习题及答案 1.刚体绕一定轴作匀变速转动,刚体上任一点是否有切向加速度是否有法向加速度切向和法向加速度的大小是否随时间变化 答:当刚体作匀变速转动时,角加速度β不变。刚体上任一点都作匀变速圆周运动,因此该点速率在均匀变化,v l ω=,所以一定有切向加速度t a l β=,其大小不变。又因该点速度的方向变化, 所以一定有法向加速度2 n a l ω=,由于角速度变化,所以法向加速度的大小也在变化。 2. 刚体绕定轴转动的转动定律和质点系的动量矩定理是什么关系 答:刚体是一个特殊的质点系,它应遵守质点系的动量矩定理,当刚体绕定轴Z 转动时,动量矩定理的形式为z z dL M dt = ,z M 表示刚体对Z 轴的合外力矩,z L 表示刚体对Z 轴的动量矩。()2z i i L m l I ωω==∑,其中()2i i I m l =∑,代表刚体对定轴的转动惯量,所以 ()z z dL d d M I I I dt dt dt ω ωβ= ===。既 z M I β=。 所以刚体定轴转动的转动定律是质点系的动量矩定理在刚体绕定轴转动时的具体表现形式, 及质点系的动量矩定理用于刚体时在刚体转轴方向的分量表达式。 3.两个半径相同的轮子,质量相同,但一个轮子的质量聚集在边缘附近,另一个轮子的质量分布比较均匀,试问:(1)如果它们的角动量相同,哪个轮子转得快(2)如果它们的角速度相同,哪个轮子的角动量大 答:(1)由于L I ω=,而转动惯量与质量分布有关,半径、质量均相同的轮子,质量聚集在边缘附近的轮子的转动惯量大,故角速度小,转得慢,质量分布比较均匀的轮子转得快; (2)如果它们的角速度相同,则质量聚集在边缘附近的轮子角动量大。 4.一圆形台面可绕中心轴无摩擦地转动,有一玩具车相对台面由静止启动,绕轴作圆周运动,问平台如何运动如小汽车突然刹车,此过程角动量是否守恒动量是否守恒能量是否守恒 答:玩具车相对台面由静止启动,绕轴作圆周运动时,平台将沿相反方向转动;小汽车突然刹车过程满足角动量守恒,而能量和动量均不守恒。 5.一转速为1200r min 的飞轮,因制动而均匀地减速,经10秒后停止转动,求: (1) 飞轮的角加速度和从开始制动到停止转动,飞轮所转过的圈数; (2) 开始制动后5秒时飞轮的角速度。 解:(1)由题意飞轮的初角速度为 0240()n rad s ωππ== 飞轮作均减速转动,其角加速度为 20 0404/10 rad s t ωωπ βπ--= = =-? 故从开始制动到停止转动,飞轮转过的角位移为 201 2002 t t rad θωβπ?=?+?= 因此,飞轮转过圈数为

刚体定轴转动

1、语句进一步变为你讲的简单句, 2、要标好各标题, 3、公式整齐、字体大小一样,重要公式要标号。 4、摘要重写,内容:本文中你作了什么,得出什么 结论, 5、总结是摘要的扩充,详细论述你作了什么,得出 什么结论。 6、参考文献少,并标页(如4到8页),力学、理论 力学书上都有刚体内容 7、好多公式中角速度符号不对, 8、论述顺序: 1)刚体定轴转动的角位移、角速度、角加速度如何 表示,文字和公式都写 2)刚体定轴转动的角动量、动能如何表示,文字和公式都写 3)固定轴的动量矩定理如何表示,文字和公式都写 4)线量与角量的关系如何表示,文字和公式都写 9 刚体定轴转动与质点匀加速直线运动的对比: 这段中列表给出两种运动的相应量,并论述 刚体定轴转动的教学研究

陈爽(学号:20081116127) (物理与电子信息学院物理学专业2008级汉班,内蒙古呼和浩特 010022) 指导老师:赵凤岐 1摘要刚体力学是理论力学中一节比较重点的章节。它是继学习了质点力 学与质点组力学之后又一重点、难点课程,它是质点后又一个重要的物理模型。刚体这种模型比质点更接近实际,这个章节理解的情况直接关系到以后其他物理模型的建立。 关键词:刚体定轴转动直线运动 1 刚体定轴转动的内容 2·1刚体 在任何力的作用下,体积和形状都不发生改变的物体叫做刚体。在物理学内,理想的刚体是一个固体的,尺寸值有限的,形变情况可以被忽略的物体。不论有否受力,在刚体内任意两点的距离都不会改变。在运动中,刚体上任意一条直线在各个时刻的位置都保持平行。 刚体是力学中的一个科学抽象概念,即理想模型。事实上任何物体受到外力,不可能不改变形状。实际物体都不是真正的刚体。若物体本身的变化不影响整个运动过程,为使被研究的问题简化,可将该物体当作刚体来处理而忽略物体的体积和形状,这样所得结果仍与实际情况相当符合。 2.2刚体定轴转动的定义及特点 刚体上每点绕同一轴线做圆周运动,且转轴空间位置及转动方向保持不变. 如果刚体在运动过程中,至少有两个质点保持不动,那么将这两个质点的连线取为一个坐标系的一个公共坐标轴(z)轴,则刚体上各点都饶此轴作圆周运动,这种运动称为定轴转动。 刚体作定轴转动时,整个刚体绕一固定的轴转动.其上各点的位移、速度和加速度是不相同的.但各点转过的角度却相同.所以在定轴转动中,应当用角度来描述刚体的运动.作定轴转动的刚体只有一个自由度 2·3定轴转动各个基本量的描述 P,都在垂刚体绕固定轴转动时,如取固定轴为z轴,则刚体中任何一点 i 直于z轴的平面内,亦即在平行于xy平面内作圆周运动,而以z轴与此平面的交点O'为圆点,如图1所示。

《刚体定轴转动》答案

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). v ≈15.2 m /s ,n 2=500 rev /min (2). s (3). g / l g / (2l ) (4). N ·m (5). rad/s (6). 0.25 kg ·m 2 (7). Ma 2 1 (8). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1 d /0=? (9). ()2 1 2 mR J mr J ++ω (10). l g /sin 3θω= 三、计算题 1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止(已知圆形平板的转动惯量22 1 mR J = ,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为 r r r R mg M d 2d 2 ?π?π=μ 总摩擦力矩 mgR M M R μ3 2 d 0==? 故平板角加速度 =M /J 设停止前转数为n ,则转角 = 2n 由 J /Mn π==422 0θβω 可得 g R M J n μωωπ16/342 020=π= 2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为 22 1 MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 m M R

《刚体定轴转动》答案讲课教案

《刚体定轴转动》答 案

第2章 刚体定轴转动 一、选择题 1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1). v ≈15.2 m /s ,n 2=500 rev /min (2). 62.5 1.67s (3). g / l g / (2l ) (4). 5.0 N ·m (5). 4.0 rad/s (6). 0.25 kg ·m 2 (7). Ma 2 1 (8). mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1d /0=? (9). ()21 2 mR J mr J ++ω (10). l g /sin 3θω= 三、计算题 1. 有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22 1mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为 r r r R mg M d 2d 2 ?π?π=μ 总摩擦力矩 mgR M M R μ3 2d 0==? 故平板角加速度 β =M /J 设停止前转数为n ,则转角 θ = 2πn 由 J /Mn π==4220 θβω 可得 g R M J n μωωπ16/342020=π=

2. 如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳 子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、 半径为R ,其转动惯量为221MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 对物体: mg -T =ma ① 对滑轮: TR = J β ② 运动学关系: a =R β ③ 将①、②、③式联立得 a =mg / (m +21M ) ∵ v 0=0, ∴ v =at =mgt / (m +2 1M ) 3. 为求一半径R =50 cm 的飞轮对于通过其中心且与盘面垂直的固定转轴的转动惯量,在飞轮上绕以细绳,绳末端悬一质量m 1=8 kg 的重锤.让重锤从高2 m 处由静止落下,测得下落时间t 1=16 s .再用另一质量m 2=4 kg 的重锤做同样测量,测得下落时间t 2=25 s .假定摩擦力矩是一个常量,求飞轮的转动惯量. 解:根据牛顿运动定律和转动定律,对飞轮和重物列方程,得 TR -M f =Ja / R ① mg -T =ma ② h =221at ③ 则将m 1、t 1代入上述方程组,得 a 1=2h /21t =0.0156 m / s 2 T 1=m 1 (g -a 1)=78.3 N J =(T 1R -M f )R / a 1 ④ 将m 2、t 2代入①、②、③方程组,得 a 2=2h /22t =6.4×10-3 m / s 2 T 2=m 2(g -a 2)=39.2 N J = (T 2R -M f )R / a 2 ⑤ 由④、⑤两式,得 J =R 2(T 1-T 2) / (a 1-a 2)=1.06×103 kg ·m 2 a

第七讲 定轴转动物体的平衡(教案)

第七讲定轴转动物体的平衡(教案) 第七讲定轴转动物体的平衡一.教学目标: 1.进一步理解力矩、力偶与力偶矩的概念。 2.能够准确把握平衡状态与平衡条件,并能够灵活的解决定轴转动物体的平衡和确定重心的位置。二.教学重难点:1.灵活运用力平衡与力矩平衡的知识解决定轴转动物体的平衡问题。 2.正确确定物体重心位置。三.教学工具:多媒体白板、录播教室四.教学过程设计:1力矩力的三要素是大小、方向和作用点。作用点和力的方向所确定的射线称为力的作用线。力作用于物体,经常能使物体发生转动,这时外力的作用效果不仅取决于外力的大小和方向,而且取决于力臂。从转动轴到力作用线的垂直距离叫力臂。力和力臂的乘积叫力对转动轴的力矩。记为M?F?L,单位为“牛·米”。如图1所示,

O为垂直于纸面的固定轴,力F在纸面内。力矩是改变物体转动状态的原因。力的作用线与轴平行时,此力对物体绕该轴的转动没有起到作用。若力F 不在与轴垂直的平面内,可先将力分解为垂直于轴的分量F?和平行于轴的分量O F L 图1 F,F对转动不起作用,这时力F的力矩为M?F??L。通常规定,绕逆时方向转动的力矩为正。当物体受到多个力作用时,物体所受的总力矩等于各个力产生力矩的代数和。2力偶和力偶矩一对大小相等、方向相反但不共线的力称为力偶。如图2中F1、F2即为力偶,力偶不能合成为一个力,是一个基本力学量。对于与力偶所在平面垂直的任一轴,这一对力的力矩的代数和称为力偶矩,注意到F1?F2?F,不难得到M?F?L,式中L为两力间的距离;力偶矩与所相对的轴无关。F2 F1 r2 r1 O 图2 3有固定转轴物体的平衡条件有固定转轴的物体,若处于平衡状态,

05刚体的定轴转动习题解答

第五章 刚体的定轴转动 一 选择题 1. 一绕定轴转动的刚体,某时刻的角速度为ω,角加速度为α,则其转动加快的依据是:( ) A. α > 0 B. ω > 0,α > 0 C. ω < 0,α > 0 D. ω > 0,α < 0 解:答案是B 。 2. 用铅和铁两种金属制成两个均质圆盘,质量相等且具有相同的厚度,则它们对过盘心且垂直盘面的轴的转动惯量。 ( ) A. 相等; B. 铅盘的大; C. 铁盘的大; D. 无法确定谁大谁小 解:答案是C 。 简要提示:铅的密度大,所以其半径小,圆盘的转动惯量为:2/2Mr J =。 3. 一轻绳绕在半径为r 的重滑轮上,轮对轴的转动惯量为J ,一是以力F 向下拉绳使轮转动;二是以重量等于F 的重物挂在绳上使之转动,若两种情况使轮边缘获得的切向加速度分别为a 1和a 2,则有: ( ) A. a 1 = a 2 B. a 1 > a 2 C. a 1< a 2 D. 无法确定 解:答案是B 。 简要提示:(1) 由定轴转动定律,1αJ Fr =和11αr a =,得:J Fr a /21= (2) 受力分析得:?? ???===-2222ααr a J Tr ma T mg ,其中m 为重物的质量,T 为绳子的张力。 得:)/(222mr J Fr a +=,所以a 1 > a 2。 4. 一半径为R ,质量为m 的圆柱体,在切向力F 作用下由静止开始绕轴线作定轴转动,则在2秒内F 对柱体所作功为: ( ) A. 4 F 2/ m B. 2 F 2 / m C. F 2 / m D. F 2 / 2 m 解:答案是A 。

竞赛之第三节、力矩、定轴转动物体的平衡条件、重心

力矩、定轴转动物体的平衡条件、重心 【知识要点】 (一)力臂:从转动轴到力的作用线的垂直距离叫力臂。 (二)力矩:力和力臂的乘积叫力对转动轴的力矩。记为M=FL ,单位“牛·米”。一般规定逆时针方向转动为正方向,顺时针方向转动为负方向。 (三)有固定转轴物体的平衡条件 作用在物体上各力对转轴的力矩的代数和为零或逆时针方向力矩总是与顺时针方向力矩相等。即ΣM=0,或ΣM 逆=ΣM 顺。 (四)重心:物体所受重力的作用点叫重心。 计算重心位置的方法: 1、同向平行力的合成法:各分力对合力作用点合力矩为零,则合力作用点为重心。 2、割补法:把几何形状不规则的质量分布均匀的物体分割或填补成形状规则的物体,再由同向(或反向)平行力合成法求重心位置。(见上一讲) 3、公式法:如图所示,在平面直角坐标系中,质量为m 1和m 2的A 、B 两质点坐标分别为A (x 1,y 1),B (x 2,y 2)则由两物体共同组成的整体的重心坐标为: 212211m m x m x m x C ++= 212211m m y m y m y C ++= 一般情况下,较复杂集合体,可看成由多个质点组成的质点系, 其重心C 位置由如下公式求得: i i i C m x m x ∑∑= i i i C m y m y ∑∑= i i i C m z m z ∑∑= 本节内容常用方法有:①巧选转轴简化方程:选择未知量多,又不需求解结果的力线交点为轴,这些力的力矩为零,式子简化得多;②复杂的物体系平衡问题有时巧选对象:选整体分析,常常转化为力矩平衡问题求解;③无规则形状的物体重心位置计算常用方法是通过割补思想,结合平行力合成与分解的原则处理,或者助物体重心公式计算。 【例题1】如图所示,c 为杆秤秤杆系统的重心,a 为杆称的定盘星,证明:无论称杆的粗细如何变化,杆秤的刻度沿杆轴线的方向总是均匀分布的。 【例题2】(第十届全国预赛)半径为R ,质量为m 1的均匀圆球与一质量为m 2的重物分别用细绳AD 和ACE 悬挂于同一点 A ,并处于平衡。如图所示,已知悬点A 到球心O 的距离为L ,若不考 虑绳的质量和绳与球的摩擦,试求悬挂圆球的绳AD 和竖直方向的夹角 θ。 y y y 2

有固定转轴的物体的平衡

第9单元:有固定转动轴的物体的平衡 教学目标: 一、知识目标 1:知道什么是转动轴和有固定转动轴的物体的平衡状态。 2:掌握力臂的概念,会计算力矩。 3:理解有固定转动轴的物体的平衡条件。 二、能力目标: 通过有固定转动轴的物体的平衡条件的得到过程,培养学生的概括能力和分析推理能力。 三、德育目标: 使学生了解物理学的研究方法 教学重点: 1:什么是转动平衡; 2:有固定转动轴的物体的平衡条件。 教学难点: 力矩的概念及物体的转动方向的确定。 教学方法: 实验法、归纳法、讲授法 教学用具: 力矩盘、钩码、弹簧秤、投影仪、投影片 教学步骤: 一、导入新课: 1:复习:前边我们共同学习了物体在共点力作用下的平衡条件及其应用,请同志们回答以下问题: (1)什么是共点力作用下物体的平衡状态? (2)在共点力作用下物体的平衡条件是什么? 2:引入:本节课我们来学习另外一种平衡——转动平衡 二、新课教学 (一)用投影片出示本节课的学习目标: 1:了解转动平衡的概念 2:理解力臂和力矩的概念 3:理解有固定转动轴的物体的平衡条件 (二)学习目标完成过程: 1:转动平衡 (1)举例:生活中,我们常见到有许多物体在力的作用下转动;例如:门、砂轮、电唱机的唱盘,电动机的转子等; (2)引导学生分析上述转动物体的共同特点,即上述物体转动之后,物体上的各点都沿圆周运动,但所有各点做圆周运动的中心在同一直线上,这条直线就叫转动轴。 (3)介绍什么是转动平衡。 一个有固定转动轴的物体,在力的作用下,如果保持静止,我们就说这个物体处于转动平衡状态。 (4)课堂讨论:举几个物体处于转动平衡状态的实例。 2:力矩: (1)引言:通过上面例子的分析,我们知道,力可以使物体转动,那么力对物体的转动作用跟什么有关系呢? (2)举例: a:推门时,如果在离转轴不远的地方推,用比较大的力才能把门推开;在离转动轴较远的地方推门,用比较小的力就能把门推开。 b:用手直接拧螺帽,不能把它拧紧;用扳手来拧,就容易拧紧了。 (3)总结得到:力越大,力和转动轴之间的距离越大,力的转动作用就越大。

6.刚体定轴转动定律

《大学物理》作业 No.6 刚体定轴转动定律 班级 ___________ 学号 __________ 姓名 _________ 成绩 ________ 基本要求: (1) 理解描述刚体定轴转动的基本物理量以及角量与线量之间的关系 (2) 掌握力矩、转动惯量的概念和转动定律及应用 内容提要 1. 刚体绕定轴转动的角速度和角加速度 t t t d d lim 0θθω=??=→?, t d d ωβ = 2. 刚体绕定轴转动匀变速转动公式 2002 1 t t αωθθ++=, t αωω+=0,)(202 02θθαωω-+= 3. 力矩F r M ?= 注意对固定点的力矩与对转轴的力矩的区别 力矩是使物体转动状态变化的原因,力是使物体平动状态变化的原因,合外力为零,合外力矩不一定为零; 4. 刚体的定轴转动定律: β J M = 5. 刚体转动惯量:质量分布不连续的质点系∑?= 2i i r m J 连续物体m r J d 2?= 6. 转动惯量有关的因素: a. 刚体的质量; b. 质量的分布; c. 转轴的位置; 7. 几种特殊情况的转动惯量大小: a: 长为L 、质量为m 的均匀细棒绕一端的转动惯量:3/2mL J = b: 质量分布均匀的圆盘绕中心转轴: 22 1mR J =

一、选择题 1.以下说法正确的是 [ ](A) 合外力为零,合外力矩一定为零; (B) 合外力为零,合外力矩一定不为零; (C) 合外力为零,合外力矩可以不为零; (D) 合外力不为零,合外力矩一定不为零; (E) 合外力不为零,合外力矩一定为零. 2. 有A、B两个半径相同,质量相同的细圆环.A环的质量均匀分布,B环的质量不均匀分布,设它们对过环心的中心轴的转动惯量分别为I A和I B,则有 [ ](A) I A>I B. (B) I A<I B. (C) 无法确定哪个大. (D)I A=I B. 3.将细绳绕在一个具有水平光滑轴的飞轮边缘上,如果在绳端挂一质量为m的重物时,飞轮的角加速度为β1.如果以拉力2mg代替重物拉绳时, 飞轮的角加速度将 [ ] (A)小于β1. (B )大于β1,小于2β1. (C)大于2β1. (D)等于2β1. 4. 一轻绳跨过一具有水平光滑轴、质量为M的定滑轮,绳的两端分别悬有质量为m1和m2的物体(m1<m2﹚,如图所示.绳与轮之间无相对滑动.若某时刻滑轮沿逆时针方向转动,则绳中的张力 [ ] (A) 处处相等.(B) 左边大于右边. (C) 右边大于左边.(D) 哪边大无法判断. 二、填空题 1.半径为r = 1.5m的飞轮作匀变速转动,初角速度ω0=10rad/s,角加速度 β=-5rad/s2, 则在t= 时角位移为零,而此时边缘上点的线速度v= . 2.半径为20cm的主动轮,通过皮带拖动半径为50cm的被动轮转动,皮带与轮之间无相对滑动, 主动轮从静止开始作匀角加速转动. 在4s内被动轮的角速度达到8πrad/s,则主动轮在这段时间内转过了圈. 3. 如图所示一长为L的轻质细杆,两端分别固定质量为m和2m的小球,此系统在竖直平面内可绕过中点O且与杆垂直的水平光滑轴(O轴)转动, 开始时杆与水平成60°角,处于静止状态.无初转速地释放后,杆球这一刚体系统绕O轴转动,系统绕O轴的转动惯量J= .释放后,当杆转到水平位置时,刚体受到的合外力矩M= ; 角加速度β= . 三、计算题 ○2m ○m O ·╮60°

《刚体定轴转动》答案

第2章刚体定轴转动 一、选择题 1(B),2(B),3(A),4(D),5(C),6(C),7(C),8(C),9(D),10(C) 二、填空题 (1).v ≈15.2 m/s ,n 2=500rev/min (2).62.51.67s (3).g /lg /(2l ) (4).5.0N ·m (5).4.0rad/s (6).0.25 kg ·m 2 (7).Ma 2 1 (8).mgl μ21参考解:M =?M d =()mgl r r l gm l μμ2 1d /0=? (9).()21 2 mR J mr J ++ω (10).l g /sin 3θω= 三、计算题 1.有一半径为R 的圆形平板平放在水平桌面上,平板与水平桌面的摩擦系数为μ,若平板绕通过其中心且垂直板面的固定轴以角速度ω0开始旋转,它将在旋转几圈后停止?(已知圆形平板的转动惯量22 1mR J =,其中m 为圆形平板的质量) 解:在r 处的宽度为d r 的环带面积上摩擦力矩为 总摩擦力矩mgR M M R μ3 2d 0==? 故平板角加速度?=M/J 设停止前转数为n ,则转角?=2?n 由J /Mn π==422 0θβω 可得g R M J n μωωπ16/342020=π= 2.如图所示,一个质量为m 的物体与绕在定滑轮上的绳子相联,绳子质量可以忽略,它与定滑轮之间无滑动.假设定滑轮质量为M 、半径为R ,其转动惯量为 22 1MR ,滑轮轴光滑.试求该物体由静止开始下落的过程中,下落速度与时间的关系. 解:根据牛顿运动定律和转动定律列方程 对物体:mg -T =ma ① 对滑轮:TR =J ?② 运动学关系:a =R ?③ 将①、②、③式联立得

第2章刚体定轴转动

第2章 刚体定轴转动 2.28 质量为M 的空心圆柱体,质量均匀分布,其内外半径为R 1和R 2,求对通过其中心轴的转动惯量. 解:设圆柱体的高为H ,其体积为V = π(R 22 – R 12)h ,体密度为ρ = M/V .在圆柱体中取一面积为S = 2πRH ,厚度为d r 的薄圆壳,体积元为d V = S d r = 2πrH d r ,其质量为d m = ρd V , 绕中心轴的转动惯量为d I = r 2d m = 2πρHr 3d r , 总转动惯量为2 1 3 4 42112d ()2 R R I H r r H R R πρπρ==-? 22211()2m R R =+. 2.29 一矩形均匀薄板,边长为a 和b ,质量为M ,中心O 取为原点,坐标系OXYZ 如图所示.试证明: (1)薄板对OX 轴的转动惯量为21 12OX I Mb =; (2)薄板对OZ 轴的转动惯量为221 ()12 OZ I M a b =+. 证: 薄板的面积为S = ab ,质量面密度为σ = M/S . (1)在板上取一长为a ,宽为d y 的矩形元,其面积为d S = a d y , 其质量为d m =σd S , 绕X 轴的转动惯量为d I OX = y 2d m = σay 2d y , 积分得薄板对OX 轴的转动惯量为/2/2 2 3 /2 /2 1 d 3b b OX b b I a y y a y σσ--==?3211 1212 ab Mb σ= =. 同理可得薄板对OY 轴的转动惯量为21 12 OY I Ma = . (2)方法一:平行轴定理.在板上取一长为b ,宽为d x 的矩形元,其面积为d S = b d x ,质量为d m = σd S , 绕过质心的O`Z`轴的转动惯量等于绕OX 轴的转动惯量 d I O`Z` = b 2d m /12. 根据平行轴定理,矩形元对OZ 轴的转动惯量为 d I OZ = x 2d m + d I O`Z ` = σbx 2d x + b 2d m /12, 积分得薄板对OZ 轴的转动惯量为 /22 2/2 1 d d 12a M OZ a I b x x b m σ-=+??/2 3 2/2 11312 a a b x b M σ-=+ 221 ()12M a b =+. 方法二:垂直轴定理.在板上取一质量元d m ,绕OZ 轴的转动惯量为d I OZ = r 2d m . 由于r 2 = x 2 + y 2,所以d I OZ = (x 2 + y 2)d m = d I OY + d I OX , 因此板绕OZ 轴的转动惯量为221 ()12 OZ OY OX I I I M a b =+= +. 2.30 一半圆形细杆,半径为R ,质量为M ,求对过细杆二端AA `轴的转动惯量. 解:半圆的长度为C = πR ,质量的线密度为λ = M/C .在半圆上取 图 2.28

有固定转动轴物体的平衡

标准教案 第二章物体平衡 §2.3有固定转动轴物体的平衡 高考对应考点: 1.力矩(学习水平B级) 2. 有固定转动轴的物体的平衡(学习水平B级) 课时目标: 1.了解转动平衡的概念,理解力臂和力矩的概念。 2.理解有固定转动轴物体平衡的条件 3.会用力矩平衡条件分析问题和解决问题 重点难点: 1.力矩平衡计算 2.动态平衡问题的分析方法 知识精要: 一.转动平衡: 有转动轴的物体在力的作用下,处于静止或,叫平衡状态。 二.力矩: 1.力臂:转动轴到力的作用线的。 2.力矩:的乘积。 (1)计算公式:; (2)单位:; (3)矢量:在中学里,只研究固定转动轴物体的平衡,所以只有顺时针和逆时针转动两种方向 三.力矩平衡条件: 力矩的代数和为零或所有使物体向方向转动的力矩之和等于所有使物体向方向转动的力矩之和。 或 = ∑=∑∑ M0M M 顺逆 热身练习: 1.如图所示,要使圆柱体绕A点滚上台阶,试通过作图来判 断在圆柱体上的最高点所施加的最小力的方向 _____________。 2.匀质杆AO可绕O轴转动,今用水平力使它缓缓抬起的过程中,如图所示,重力对 O轴的力臂变化是_____________,重力对O轴的力矩变化情况是_____________,已 知抬起过程中水平拉力力矩的大小应等于重力的力矩,则水平拉力F的变化情况是

_____________。 3. 如图,把物体A 放在水平板OB 的正中央,用始终垂直于杆的力F 将板的B 端缓慢抬高(O 端不动),设A 相对平板静止,则力 F 的将 ,F 的力矩F M 将 ;若F 始终 竖直向上,则力F 的大小将 , F 的力矩 F M 将 。 4.如图所示,ON 杆可以在竖直平面内绕O 点自由转动,若 在N 端分别沿图示方向施力123F F F 、、,杆均能静止在图示 位置上.则三力的大小关系是( ) A . 123F F F == B . 123F F F >> C .2 13F F F >> D .132F F F >> 5.如图所示,直杆OA 可绕O 点转动,图中虚线与杆平行,杆 端A 点受四个力1234F F F F 、、、的作用,力的作用线与OA 杆 在同一竖直平面内,它们对转轴O 的力矩分别为 1234M M M M 、、、,则它们力矩间的大小关系是( ) A .1234 M M M M ===; B .2134M M M M >=>; C .4231 M M M M >>>; D . 2134 M M M M >>>; 6.如图所示,一杆均匀,每米长的重为P=30N ,支于杆的左端,在离杆的左端a 0.2m =处挂一质量为W 300N =的物体,在杆的右端加一竖直向上的力F 杆多长时使杆平衡时所加竖直向上的拉力F 最小,此最小值为多大? 精解名题: 例1.一块均匀木板MN 长L 15m =,重 1G 400N =,搁在相距D 8m = 的两个支架A B 、上, O ’ F 2 F 3 F 4 O F 1 A ’ A

相关文档
最新文档