铁铬碳平衡相图

铁铬碳平衡相图

铁碳平衡组织观察

铁碳合金平衡组织观察 一、实验目的 1)认识铁碳合金的平衡组织。 2)了解含碳量对铁碳合金平衡组织的影响规律。 二、实验原理 碳钢合金的显微组织是研究钢铁材料性能的基础。碳钢合金平衡状态的组织是指合金在极为缓慢的冷却条件下(如退火状态)所得到的组织,其相变过程均按相图进行,因此可以根据该相图来分析碳钢合金的平衡组织。如图1所示,含碳量小于2.11%的合金为碳钢,含碳量大于2.11%的合金为白口铸铁。所有碳钢 C)这两个基本相所和白口铸铁在室温下的组织均有铁素体(F)和渗碳体(Fe 3 组成。只是因含碳量不同,铁素体和渗碳体的相对数量及分布形态有所不同,因而呈不同的组织形态。 图1铁碳平衡组织图 1)铁素体碳溶于α-Fe晶格问隙中形成的间隙固溶体称为铁素体,用符号F表示。其组织和性能与纯铁相似,具有良好的塑性和韧性,而强度与硬度较低。 C。 2)渗碳体渗碳体是碳和铁以一定比例化合成的金属化合物,用分子式Fe 3 硬度高(HBW=800),塑性和冲击韧度几乎为零,脆性很大。 3)珠光体由铁菜体和渗碳体组成的机械混合物称为珠光体,用符号P表示。其力学性能介于铁素体和渗碳体之间,强度较高,硬度适中,有一定的塑性。 4)莱氏体是铁碳合金中的共晶混合物,即碳的质量分数(含碳量)为4.3%的液态铁碳合金,在1480摄氏度时,同时从液体中结晶出奥氏体和渗碳体的机械混合物称为莱氏体,用符号Ld表示。由于奥氏体在727℃时转变为珠光体,故在室温时莱氏体由珠光体和渗碳体组成。为区別起见将727℃以上的莱氏体称为高温莱氏体(Ld),727℃以下的莱氏体称为低温莱氏体(L'd)。莱氏体的性能与渗碳体相似,硬度很高塑性差。

铁碳相图详解

三、典型铁碳合金的平衡结晶过程 铁碳相图上的合金,按成分可分为三类: ⑴工业纯铁(<0.0218% C),其显微组织为铁素体晶粒,工业上很少应用。 ⑵碳钢(0.0218%~2.11%C),其特点是高温组织为单相A,易于变形,碳钢又分为亚共析钢(0.0218%~0.77%C)、共析钢(0.77%C)和过共析钢(0.77%~2.11%C)。 ⑶白口铸铁(2.11%~6.69%C),其特点是铸造性能好,但硬而脆,白口铸铁又分为亚共晶白口铸铁(2.11%~4.3%C)、共晶白口铸铁(4.3%C)和过共晶白口铸铁(4.3—6.69%C) 下面结合图3-26,分析典型铁碳合金的结晶过程及其组织变化。 图3-26 七种典型合金在铁碳合金相图中的位置 ㈠工业纯铁(图3-26中合金①)的结晶过程 合金液体在1~2点之间通过匀晶反应转变为δ铁素体。继续降温时,在2~3点之间,不发生组织转变。温度降低到3点以后,开始从δ铁素体中析出奥氏体,在3~4点之间,随温度下降,奥氏体的数量不断增多,到达4点以后,δ铁素体全部转变为奥氏体。在4~5点之间,不发生组织转变。冷却到5点时,开始从奥氏体中析出铁素体,温度降到6点,奥氏体全部转变为铁素体。在6-7点之间冷却,不发生组织转变。温度降到7点,开始沿铁素体晶界析出三次渗碳体Fe3C III。7点以下,随温度下降,Fe3C III量不断增加,室温下Fe3C III的最大 量为: % 31 .0 % 100 0008 .0 69 .6 0008 .0 0218 .0 3 = ? - - = Ⅲ C Fe Q 。图3-27为工业纯铁的冷却曲线及组织转变示意图。工业纯铁的室温组织为α+Fe3C III,如图3-28所示,图中个别部位的双晶界内是Fe3C III。

铁碳合金相图全面分析

铁碳平衡图 (The Iron-Carbon Diagrams) 连聪贤 本章阐述了铁碳合金的基本组织,铁碳合金状态图,碳钢的分类、编号和用途。要求牢固掌握铁碳合金的基本组织(铁素体、奥氏体、渗碳体、珠光体、莱氏体)的定义、结构、形成条件和性能特点。牢固掌握简化的铁碳合金状态图;熟练分析不同成分的铁碳合金的结晶过程;掌握铁碳合金状态图各相区的组织及性能,以及铁碳合金状态图的实际应用。掌握碳钢中常存元素对碳钢性能的影响;基本掌握碳钢的分类、编号、性能和用途。 铁碳合金基本组织铁素体、奥氏体、渗碳体、珠光体和莱氏体的定义、表示符号、晶体结构、显微组织特征、形成条件及性能特点。铁碳合金状态图的构成、状态图中特性点、线的含义。典型合金的结晶过程分析及其组织,室温下不同区域的组织组成相。碳含量对铁碳合金组织和性能的影响。铁碳合金状态图的实际应用。锰、硅、硫、磷等常存杂质元素对钢性能的影响。碳铁的分类、编号、性能和用途。 铁碳合金状态图是金属热处理的基础。必须配合铁碳合金平衡组织的金相观察实验,结合课堂授课,作重点分析铁碳合金的基本组织及其室温下不同成分铁碳合金的组织特征。练习绘制铁碳合金状态 四、课程纲要 (一)铁碳合金的构成元素及基本相

1. 合金的构成元素与名词解释 (1)金属特性:具有不透明、金属光泽良好的导热和导电性并且其导电能力随温度的增高而减小,富有延性和展性等特 性的物质。金属内部原子具有规律性排列的固体(即晶 体)。 (2)合金:由两种或两种以上金属或金属与非金属组成,具有金属特性的物质。 (3)相:合金中成份、结构、性能相同的组成部分,物理上均质且可区分的部分。 (4)固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态 金属晶体,固溶体分间隙固溶体和置换固溶体两种。(5)固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 (6)化合物:合金组元间发生化合作用,生成一种具有金属性能的新的晶体固态结构。 (7)机械混合物:由两种晶体结构而组成的合金组成物,虽然是两面种晶体,却是一种组成成分,具有独立的机械性能。

铁碳相图归纳

第四章 纯铁:α-Fe 在770℃(居里温度)发生由铁磁性转变为顺磁性,即铁磁性消失。 工业纯铁的力学性能特点是:强度、硬度低,塑性、韧性好 C在钢铁中存在的三种形式: 溶入Fe的晶格形成固溶体(间隙固溶体)-钢 以游离石墨存在于钢铁中-铸铁。 与铁成金属间化合物如Fe3C, Fe2C, FeC)-金属间化合物 石墨性能:耐高温,可导电,润滑性好,强度、硬度、塑性和韧性低。 实线为 Fe-Fe3C 相图虚线为 Fe-C 相图 α相 C在α-Fe中的间隙固溶体,晶体结构为bcc,仅由α相形成的组织称为铁素体,记为 F(Ferrite)。α= F γ相 C在γ-Fe中的间隙固溶体,晶体结构为fcc,仅由γ相形成的组织称为奥氏体,记为 A(Austenite)。γ= A δ相 C在δ-Fe中的间隙固溶体,晶体结构也为bcc,δ相出现的温度较高,组织形貌一般不易观察,也有称高温铁素体。

Fe3C相铁与碳生成的间隙化合物,其中碳的重量百分比为6.69%,晶体结构是复杂正交晶系,仅由Fe3C相构成的组织称为渗碳体,依然记为Fe3C,也有写为 Cm(Cementite)。 石墨在铁碳合金中的游离状态下存在的碳为石墨,组织记G(Graphite)。 L相碳在高温下熔入液体,相图中标记 L(Liquid)。 的冷却过程中组织还会发生变化。 Ld(Ledeburite) 的共析体组织,称为珠光体,记为P(Pearlite)

(1) ABCD ―液相线(2) AHJECF ―固相线 (3) HJB ―包晶反应线 (1495 C) L B+δH←→A J (4) ECF ―共晶反应线 (1148 C) L C←→ A E+Fe3C I (称为莱氏体) (5) PSK ―共析反应线 (727 C)As←→Fp+Fe3C (称为珠光体) (6) A CM线(ES线)―从奥氏体析出Fe3CⅡ的临界温度线 (7) A3线(GS线)―从奥氏体转变为铁素体线 五个单相区:液相区 L 高温固溶体δ;γ相(奥氏体,A) ;α相(铁素体,F) Fe3C相(渗碳体,Cm) 七个双相区:L+δ, L+γ, L+ Fe3C,δ+γ,γ+ Fe3C,α+γ;α+Fe3C 三个三相区:HJB线 L+δ+γ;ECK线 L +γ+ Fe3C;PSK线γ+α+Fe3C 工业纯铁 (C%<0.02%) 碳钢 ( C%= 0.02% 2.11 wt %) 依据C含量不同,又分为: 亚共析钢:C<0.77 wt% 共析钢: C=0.77 wt% 过共析钢:C>0.77 wt% 白口铸铁 (生铁)(C%= 2.11 6.69 wt %) 依据C含量不同,又分为: 亚共晶白口铸铁 C<4.3 wt% 共晶白口铸铁 C=4.3 wt% 过共晶白口铸铁 C>4.3 wt% 灰口铸铁(C%= 2.11 6.69 wt %) 亚共晶、共晶、过共晶灰口铸铁 工业纯铁(C%<0.02%):组织:F 相:α (F) 共析钢(C%≈0.77%):组织:P 相:α(F)+Fe3C 亚共析钢(C%=0.02 0.77%):组织:F+P 相:α (F)+Fe3C 组织转变: L→L+A→A→F+A→F+P 过共析钢(C%=0.77 2.11%):组织:P+Fe3C II相;α (F) +Fe3C 组织转变:L→L+A →A→A+Fe3C II→P+Fe3C II 共晶白口铁(C%≈4.3%):组织:L’d 相:α (F) +Fe3C 组织转变 L → Ld(A+Fe3C I)→A+Fe3C II+Fe3C I → (P + Fe3C I(Fe3CⅡ)) 亚共晶白口铁(C%=2.11~4.3%):组织:P+Fe3C II+L’d 相:α (F) +Fe3C 组织转变L→L+A→A+Ld→A+Fe3C II+Ld→P+Fe3C II+L’d 过共晶白口铁(C%=4.3 ~ 6.69%):组织:Fe3C I+L’d 相:α (F) +Fe3C 组织转变 L→L+Fe3C I→Fe3C I+Ld→Fe3C I+L’d

详解铁碳相图

详解铁碳相图 (注:在解读上面铁碳相图之前,我们要明白纯铁在不同的温度下会发生同素异晶转变,这个对于我们解读上面相图很有用。) 1:ACD线: ACD线上面完全是液相,没有固相产生。在温度1538℃时候,此时的液态铁的晶格类型为δ-Fe,如果此时的碳溶解在δ-Fe的晶格间隙中,那么就会产生一种新的相,即为铁素体相,为了区别碳溶解在α-Fe中的铁素体相,分别给它们前面加上一个δ或者α,即如果是碳溶解到晶格类型为δ-Fe的间隙中形成间隙固溶体相的就命名为δ-铁素体或直接写δ,如果是溶解到晶格类型为α-Fe的间隙中形成间隙固溶体相的就命名为α-铁素体或α或F。 伴随着温度的下降,组元----温度----成分三者是这个铁碳相图的核心理念。要看懂这个相图,弄明白组元----温度----成分关系,就能读懂这个相图。 从图中你可以看见,即便同一个温度,不同的碳含量,它的成分是不一样的,这就是为什么要提到组元----温度----成分这三者关系的原因。而铁碳相图会一直要用到这三者的关系来加以理解。 重点:铁素体就是碳溶解到δ-Fe和α-Fe的晶格间隙而形成的一种间隙固溶体相。 2:AEC区域和CDF区域 AEC和CDF区域有液相也有固相,但是,它们的成分是不一样的,AEC区域为什么是奥氏体+液相呢?为什么CDF区域是渗碳体+液相呢?首先,AEC区域之所以是奥氏体+液相,那是因为在1500℃---1148℃时候δ-Fe会转变成γ-Fe(转变温度为1394℃),也就是说,当温度从1394℃再次冷却到1148℃的时候,这时候δ-Fe已经转变成了γ-Fe,此时的碳就会溶解到γ-Fe晶格中形成一种新的间隙固溶体相,即为奥氏体,由于受到温度原因,液相并没

最全的铁碳相图

最全的铁碳相图 首先,想要了解铁碳合金、铁碳相图,则需要一些准备知识,比如合金、相、组元成分的概念等,基本如下: 合金:一种金属元素与另外一种或几种元素,通过熔化或其他方法结合而成的具有金属特性的物质。 相:合金中同一化学成分、同一聚集状态,并以界面相互分开的各个均匀组成部分。 固溶体:是一个(或几个)组元的原子(化合物)溶入另一个组元的晶格中,而仍保持另一组元的晶格类型的固态金属晶体,固溶体分间隙固溶体和置换固溶体两种。 固溶强化:由于溶质原子进入溶剂晶格的间隙或结点,使晶格发生畸变,使固溶体硬度和强度升高,这种现象叫固溶强化现象。 金属化合物:合金的组元间以一定比例发生相互作用儿生成的一种新相,通常能以化学式表示其组成。 铁碳合金相图实际上是Fe-Fe3C相图,铁碳合金的基本组元也应该是纯铁和Fe3C。铁存在着同素异晶转变,即在固态下有不同的结构。不同结构的铁与碳可以形成不同的固溶体,Fe—Fe3C相图上的固溶体都是间隙固溶体。由于α-Fe和γ-Fe 晶格中的孔隙特点不同,因而两者的溶碳能力也不同。 在铁碳合金中一共有三个相,即铁素体、奥氏体和渗碳体。

1.铁素体 铁素体是碳在α-Fe中的间隙固溶体,用符号“F”(或α)表示,体心立方晶格;虽然BCC的间隙总体积较大,但单个间隙体积较小,所以它的溶碳量很小,最多只有0.0218%(727℃时),室温时几乎为0,因此铁素体的性能与纯铁相似,硬度低而塑性高,并有铁磁性。 δ=30%~50%,A KU=128~160J,σb=180~280MPa,50~80HBS. 铁素体的显微组织与纯铁相同,用4%硝酸酒精溶液浸蚀后,在显微镜下呈现明亮的多边形等轴晶粒,在亚共析钢中铁素体呈白色块状分布,但当含碳量接近共析成分时,铁素体因量少而呈断续的网状分布在珠光体的周围。 2.奥氏体 奥氏体是碳在γ-Fe中的间隙固溶体,用符号“A”(或γ)表示,面心立方晶格;虽然FCC的间隙总体积较小,但单个间隙体积较大,所以它的溶碳量较大,最多有2.11%(1148℃时),727℃时为0.77%。 在一般情况下,奥氏体是一种高温组织,稳定存在的温度范围为727~1394℃,故奥氏体的硬度低,塑性较高,通常在对钢铁材料进行热变形加工,如锻造,热轧等时,都应将其加热成奥氏体状态,所谓“趁热打铁”正是这个意思。σb=400MPa, 170~220HBS,δ=40%~50%. 另外,奥氏体还有一个重要的性能,就是它具有顺磁性,可用于要求不受磁场的零件或部件。

铁碳平衡相图实用性分析

定义 铁碳平衡相图,又称铁碳相图或铁碳状态图。它以温度为纵坐标,铁碳含量为横坐标,表示在接近平衡条件和亚稳条件下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 实用性分析 铁碳平衡相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。 铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。 所以说铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。 铁碳相图的用途究竟是什么?(转自汪庆华文章) 在很多资料中说明铁碳平衡相图在热处理中是十分重要的知识,是制定钢铁材料加热工艺的依据,而且指出:尤其是热处理工必须熟练掌握铁碳平衡相图。但是在实际生产运用中,例如:淬火、回火过程中,铁碳相图的直接应用是十分有限的,直接实用的是各种钢材的CCT、TTT、以及各种钢材的淬透性参数(曲线)、临界加热参数、临界冷却速度参数曲线,回火硬度曲线等。 铁碳相图是铁碳合金在平衡状态时的组织组成图,而不是获得非平衡的马氏体、贝氏体等组织的转变图。铁碳相图的临界温度参数仅仅局限在碳钢和铸铁,非合金钢和合金铸铁。合金钢和合金铸铁的平衡状态图由于添加了其它合金元素,与铁碳平衡状态图相差还是很大的。即使对于碳钢,直接在铁碳平衡图上读取成分----温度之间的对应关系参数值,也是不够精确的。实际上是借助于钢的加热温度临界参数手册而不是从相图上直接获得,那样得到的数值要精确和直观,对应关系明确。 另外,铁碳平衡相图是加热和冷却过程中的速度是及其缓慢的结果,而且又局限于铁碳合金钢种,这个理论状态,是不可能在实际生产中大量运用,实际淬火等热处理加热冷却过程中组织转变都是在一定加热速度和冷却速度下进行的,不是完全达到平衡状态。所以,铁碳平衡相图仅仅是研究热处理、学习热处理的必备基础知识和出发点,而不是直接在热处理工艺过程中运用的相图。

铁碳相图

§5.6 铁碳相图和铁碳合金 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是 它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe和C能够形成Fe3C, Fe2C 和FeC等多种稳定化合物。所以,Fe-C相图可以划分成Fe-Fe3C, Fe3C-Fe2C, Fe2C-FeC和FeC-C四个部分。由于化合物是硬脆相,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过5%),因此,通常所说的铁碳相图就是Fe-Fe3C部分。 化合物Fe3C称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe和C,C原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe3C和Fe-石墨双重相图(图5.6-1)。Fe-Fe3C相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe3C相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe3C。 图5.6-1 铁碳双重相图 【说明】图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。

铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。【说明】 图5.6-1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下: 由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图5.6-2。 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图5.6-2)碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图5.6-3,图5.6-4表示碳原子存在于面心立方晶格中正八面体的中心。 图5.6-3奥氏体的显微组织图5.6-4碳在γ-Fe晶格中的位置渗碳体 (Fe3C)渗碳体是铁和碳形成的化合物,含碳量为6.67%(有些书上为6.69%),具有复杂的晶体结构(图

铁碳平衡相图

铁碳平衡相图 又称铁碳相图或铁碳状态图。它以温度为纵坐标,碳含量为横坐标,表示在接近平衡条件(铁-石墨)和亚稳条件(铁-碳化铁)下(或极缓慢的冷却条件下)以铁、碳为组元的二元合金在不同温度下所呈现的相和这些相之间的平衡关系。 简史早期利用热分析法和金相法发现铁的加热和冷却曲线上出现两个驻点,即临界点A3和A2,它们的在 1868 年,俄国学者切尔诺夫(Д.к.Чернов)就注意到只有把钢加热到某一温度”a”以上再快冷,才能使钢淬硬,从而有了临界点的概念。至1887~1892年奥斯蒙(F.Osmond)温度视加热或冷却 (分别以A c和A r表示)过程而异。奥斯蒙认为这表明铁有同素异构体,他称在室温至A2温度之间保持稳定的相为α铁;A2~A3间为β铁;A3以上为γ铁。1895年,他又进一步证明,如铁中含有少量碳,则在690或710℃左右出现临界点,即A r1点,标志在此温度以上碳溶解在铁中,而在低于这一温度时,碳以渗碳体形式由固溶体中分解出来,随铁中碳量提高,A r3下降而与A r2 1合为一点。1904年又发现A4至熔点相合,然后断续下降,至含碳为0.8~0.9%时与A r 间为δ铁。以上述临界点工作的成果为基础,1899年罗伯茨-奥斯汀(W.C.Roberts-Austen)制定了第一张铁碳相图;而洛兹本 (H.W.Bakhius Roozeboom)更首先在合金系统中应用吉布斯(Gibbs)相律,于1990年制定出较完整的铁碳平衡图。随着科学技术的发展,铁碳平衡图不断得到修订,日臻完善。目前采用的铁碳平衡图示于图1,图中各重要点的温度、浓度及含义如下表所列。当铁中含碳量不同时,得到的典型组织如图2所示。

打印铁碳相图习题参考答案

一、解释下列名词 1、铁素体:碳溶入α-Fe中形成的间隙固溶体。奥氏体:碳溶入γ-Fe中形成的间隙固溶体。渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。珠光体:铁素体和渗碳体组成的机械混合物。莱氏体:由奥氏体和渗碳体组成的机械混合物。 2、Fe3CⅠ:由液相中直接析出来的渗碳体称为一次渗碳体。Fe3CⅡ:从A中析出的Fe3C称为二次渗碳体。 Fe3CⅢ:从铁素体中析出的Fe3C称为三次渗碳体。共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。共晶Fe3C:经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3、钢:含碳量大于%,小于%的铁碳合金白口铸铁:含碳量大于%的铁碳合金。 二、填空题 1、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe3C)等两个。 2、Fe-Fe3C相图有4个单相区,各相区的相分别是液相(L)、δ相、铁素体(F)、奥氏体(A)。 3、Fe-Fe3C 相图有三条水平线,即HJB、ECF和PSK线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4、工业纯铁的含碳量为≤%,室温平衡组织为F+ Fe3CⅢ。 5、共晶白口铁的含碳量为%,室温平衡组织P占%,Fe3C共晶占%,Fe3CⅡ占%。 6、一钢试样,在室温平衡组织中,珠光体占60%,铁素体占40%,该钢的含碳量为。 7、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1、为什么γ-Fe 和α- Fe 的比容不同一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化 答:因为γ-Fe和α- Fe原子排列的紧密程度不同,γ-Fe的致密度为74%,α- Fe的致密度为68%,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2、铁素体(F),奥氏体(A),渗碳体(Fe3C),珠光体(P),莱氏体(Ld)的结构、组织形态、性能等各有何特点 答:铁素体结构为体心立方晶格。由于碳在α-Fe中的溶解度`很小,它的性能与纯铁相近。塑性、韧性好,强度、硬度低。它在钢中一般呈块状或片状。 奥氏体(A)结构为面心立方晶格。因其晶格间隙尺寸较大,故碳在γ-Fe中的溶解度较大。有很好的塑性。 渗碳体(Fe3C)具有复杂晶格的间隙化合物。渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片状存在或网络状存在于晶界。在莱氏体中为连续的基体,有时呈鱼骨状。 珠光体(P)为铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。珠光体有较高的强度和硬度,但塑性较差。 莱氏体(Ld)为奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗碳体很脆,所以莱氏体是塑性很差的组织。 3、Fe-Fe3C合金相图有何作用在生产实践中有何指导意义又有何局限性 答:⑴碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,对于钢铁材料的研究和使用,各种热加工工艺的制订以及工艺废品原因的分析等方面都有重要指导意义。 ⑵为选材提供成分依据:铁碳相图描述了铁碳合金的组织随含碳量的变化规律,合金的性能决定于合金的组织,这样根据零件的性能要求来选择不同成分的铁碳合金;

铁碳平衡图

第四章 铁碳合金相图 碳钢与铸铁是使用最为广泛的金属材料,是铁和碳组成的合金,不同成分的碳钢和铸铁,组织和性能也不相同。在研究和使用钢铁材料、制定其热加工和热处理工艺以及分析工艺废品的原因时,都需要应用铁碳相图。 在铁碳合金中,根据结晶条件不同,组元碳可具有碳化物Fe 3C (渗碳体)和石墨两种形式,渗碳体在热力学上是一个亚稳定相(meta-stable phase ),而石墨是稳定的相。在通常情况下,铁碳合金是按Fe-Fe 3C 系进行转变,本章我们讨论的铁碳相图实际上就是Fe-Fe 3C 相图。 4-1 铁碳合金的组元 一、纯铁 纯铁的熔点为1538℃,其冷却曲线如图7.1所示。 纯铁由液态结晶为固态后,继续冷却到1394℃及912℃时,先后发生两次晶格类型的转变。金属在固态下发生的晶格类型的转变称为同素异晶转变(allotropic transformation )。同素异构转变伴有热效应产生,因此在纯铁的冷却曲线上,在1394℃及912℃处出现平台。铁的同素异晶转变如下: (体心立方) (面心立方) (体心立方) Fe Fe Fe C C O O ?????αγδ9121394 温度低于912℃的铁为体心立方晶格,称为α-Fe ;温度在912~1394℃间的铁为面心立方晶格,称为γ-Fe ;温度在1394~1538℃间的铁为体心立方晶格,称为δ-Fe 。 工业纯铁的机械性能特点是强度、硬度低,塑性好,其机械性能大致如下: 时间 温度(℃) 图7.1 纯铁的冷却曲线及晶体结构的变化

拉伸强度σb18×107~28×107N/m2 屈服强度σ0.2 10×107~17×107N/m2 延伸率δ 30~50% 断面收缩率ψ70~80% 冲击值160~200J/cm2 布氏硬度HB 50~80 二、碳在铁中的固溶体 碳的原子半径较小,在α-Fe和γ-Fe中均可进入Fe原子间的空隙而形成间隙固溶体。 碳在α-Fe中形成的间隙固溶体称为铁素体(ferrite),常用符号F或α表示,其最大溶解度为0.0218wt%C,发生于727℃,碳多存在于体心立方α结构的八面体空隙。铁素体与α-Fe在居里点770℃以下均具有铁磁性。 碳在γ-Fe中形成的间隙固溶体称为奥氏体(austenite),常用符号A或γ表示,其最大溶解度为2.11wt%C,发生于1148℃,碳多存在于面心立方γ结构的八面体空隙。奥氏体与γ-Fe均具有顺磁性。 三、铁碳化合物 当铁碳合金中碳含量超过它在铁中的溶解限度时,多余的碳主要以碳化物Fe3C的形式存在。 Fe3C称为渗碳体,是一种具有复杂结构的间隙化合物,其中含碳6.69wt%,其硬度很高,塑性几乎为零。 4-2 Fe-Fe3C相图分析 Fe-Fe3C相图如图7.2所示。

铁碳相图以及铁碳合金

铁碳相图以及铁碳合金 发布日期:[08-03-10 14:26:26] 浏览人次:[5779 ] https://www.360docs.net/doc/df4510082.html, 马棚网 钢(Steels)和铸铁(Cast irons)是应用最广的金属材料,虽然它们的种类很多,成分不一,但是它们的基本组成都是铁(Fe)和碳(C)两种元素。因此,学习铁碳相图、掌握应用铁碳相图的规律解决实际问题是非常重要的。 Fe 和C 能够形成Fe 3C, Fe 2C 和FeC 等多种稳定化合物。所以,Fe-C 相图可以划分成Fe-Fe 3C, Fe 3C-Fe 2C, Fe 2C-FeC 和FeC-C 四个部分。由于化合物是硬脆相5%),因此,通常所说的铁碳相图就是Fe-Fe 3C 部分。,后面三部分相图实际上没有应用价值(工业上使用的铁碳合金含碳量不超过 化合物Fe 3C 称为渗碳体(Cementite),是一种亚稳定的化合物,在一定条件下可以分解为Fe 和C ,C 原子聚集到一起就是石墨。因此,铁碳相图常表示为Fe-Fe 3C 和Fe-石墨双重相图(图1)。Fe-Fe 3C 相图主要用于钢,而Fe-石墨相图则主要用于铸铁的研究和生产。这里主要分析讨论Fe-Fe 3C 相图,Fe-石墨相图与此类似,只是右侧的单相是石墨而不是Fe 3C 。 图1 铁碳双重相图 【说明】 图1中虚线表示Fe-石墨相图,没有虚线的地方意味着两个相图完全重合。 铁具有异晶转变,即固态的铁在不同的温度具有不同的晶体结构。纯铁的同素异晶转变如下:

由于Fe的晶体结构不同,C在Fe中的溶解度差别较大。碳在面心立方(FCC)的γ-Fe中的最大溶解度为2.11%,而在体心立方(BCC)的α-Fe和δ-Fe中最大仅分别为0.0218%和0.09%。 纯铁 纯铁的熔点1538℃,固态下具有同素异晶转变:912℃以下为体心立方(BCC)晶体结构,912℃到1394℃之间为面心立方(FCC), 1394℃到熔点之间为体心立方。工业纯铁的显微组织见图2。 图2 工业纯铁的显微组织图3 奥氏体的显微组织 铁的固溶体 碳溶解于α-Fe和δ-Fe中形成的固溶体称为铁素体(Ferrite),用α、δ或F表示, 由于δ-Fe 是高温相,因此也称为高温铁素体。铁素体的含碳量非常低(室温下含碳仅为0.005%),所以其性能与纯铁相似:硬度(HB50~80)低,塑性(延伸率δ为30%~50%)高。铁素体的显微组织与工业纯铁相同(图2) 碳溶解于γ-Fe中形成的固溶体称为奥氏体(Austenite),用γ或A表示。具有面心立方晶体结构的奥氏体可以溶解较多的碳,1148℃时最多可以溶解2.11%的碳,到727℃时含碳量降到0.8%。奥氏体的硬度(HB170~220)较低,塑性(延伸率δ为40%~50%)高。奥氏体的显微组织见图3,图4表示碳原子存在于面心立方晶格中正八面体的中心。

第三章铁碳相图(含答案)

第三章铁碳相图(含答案) 以下是为大家整理的第三章铁碳相图(含答案)的相关范文,本文关键词为第三章,铁碳,相图,答案,第三章,铁碳,相图,填空,空白处,,您可以从右上方搜索框检索更多相关文章,如果您觉得有用,请继续关注我们并推荐给您的好友,您可以在交流材料中查看更多范文。 第三章铁碳相图 一、填空题(在空白处填上正确的内容) 1、从相变的角度来看,钢与铸铁是按________来区分的,钢与工业纯铁是按________来 区分的。

答案:有无共晶转变、有无共析转变 2、碳溶解在________中形成的间隙固溶体称为奥氏体,常用符号________表示;奥氏体 的力学性能是________和________不高,但具有良好的________。 答案:γ-Fe、A、强度、硬度、塑性 3、渗碳体是铁和碳的化合物,常用________表示;渗碳体的含碳量为6.69%,具有复杂的晶格,它的________很高,脆性很大,而________和________几乎等于零。 c、硬度、塑性、韧性 答案:Fe 3 c相图,它由三个典型的二元合金相图组合而成,即________、________和4、统观Fe-Fe

3 ________。 答案:匀晶(型)相图、共晶(型)相图、包晶(型)相图 5、铁碳合金在固态下的基本相有________、________和________三种。 答案:铁素体(F)、奥氏体(A)、渗碳体(Fe3c) 6、在钢中,由于铁与碳的相互作用,可以形成四种基本组织,即________、________、 ________和________。 答案:铁素体(F)、奥氏体(A)、渗碳体(Fe3c)、珠光体(p) 7、Fe-Fe c相图中,根据e点(含碳量为________)可将铁碳合金分为

第三章 铁碳相图(含答案)

第三章铁碳相图 一、填空题(在空白处填上正确的内容) 1、从相变的角度来看,钢与铸铁是按________来区分的,钢与工业纯铁是按________来 区分的。 答案:有无共晶转变、有无共析转变 2、碳溶解在________中形成的间隙固溶体称为奥氏体,常用符号________表示;奥氏体 的力学性能是________和________不高,但具有良好的________。 答案:γ-Fe、A、强度、硬度、塑性 3、渗碳体是铁和碳的化合物,常用________表示;渗碳体的含碳量为6.69%,具有复杂的晶格,它的________很高,脆性很大,而________和________几乎等于零。 C、硬度、塑性、韧性 答案:Fe 3 C相图,它由三个典型的二元合金相图组合而成,即________、________和4、统观Fe-Fe 3 ________。 答案:匀晶(型)相图、共晶(型)相图、包晶(型)相图 5、铁碳合金在固态下的基本相有________、________和________三种。 答案:铁素体(F)、奥氏体(A)、渗碳体(Fe3C) 6、在钢中,由于铁与碳的相互作用,可以形成四种基本组织,即________、________、 ________和________。 答案:铁素体(F)、奥氏体(A)、渗碳体(Fe3C)、珠光体(P) 7、Fe-Fe C相图中,根据E点(含碳量为________)可将铁碳合金分为________和________ 3 两大部分。 答案:2.11%、(碳)钢、铸铁 8、在铁碳合金的基本相中,属于固溶体的有________、________,属于金属间化合物的 有________。 答案:奥氏体、铁素体、渗碳体 9、含碳量为4.3%的铁碳合金叫________,在1148℃以上为________,缓冷至1148℃时发 生________反应,继续冷却到727℃时发生________转变,其室温组织为________。答案:共晶铸铁、液相、共晶、共析、变态莱氏体 10、在钢中,铁与碳的相互作用有两种形式,即________和________。 答案:形成固溶体、形成(金属间)化合物 11、在Fe-Fe C相图中ECF线称为________,合金冷却到此线时(1148℃),从液体合金中 3 同时结晶出________和________的机械混合物,即莱氏体。 答案:共晶反应线、奥氏体、渗碳体 12、铁素体和渗碳体组成的机械混合物称为_________,用符号_________表示;其力学性能是_________较高,硬度适中,具有一定的_________。 答案:珠光体、P、强度、塑性 13、含碳量为0.77%的铁碳合金叫_________钢,其室温组织为_________。 答案:共析、珠光体

详解铁碳相图钢材牌号

第三章 铁碳合金相图 非合金钢[(GB /T 13304-91),将钢分为非合金钢、低合金钢和合金钢三大类]和铸铁是应用极其广泛的重要金属材料,都是以铁为基主要由铁和碳组成的铁碳合金。了解铁碳合金成分与组织、性能的关系,有助于我们更好地研究和使用钢铁材料。本章将着重讨论铁碳相图及其应用方面的一些问题。 铁与碳可以形成一系列化合物:C Fe 3、C Fe 2、FeC 等。C Fe 3的含碳量为6.69%,铁碳合金含碳量超过6.69%,脆性很大,没有实用价值,所以本章讨论的铁碳相图,实际是Fe -C Fe 3相图。相图的两个组元是Fe 和C Fe 3。 3.1 Fe -C Fe 3系合金的组元与基本相 3.l.l 组元 ⑴纯铁 Fe 是过渡族元素,1个大气压下的熔点为1538℃,20℃时的密度为2/m kg 3107.87?。纯铁在不同的温度区间有不同的晶体结构(同素异构转变),即: δ-Fe (体心)γ-Fe (面心) α-Fe (体心) 工业纯铁的力学性能大致如下:抗拉强度b σ=180~230MPa ,屈服强度2.0σ=100~170MPa ,伸长率=δ30~50%,硬度为50~80HBS 。 可见,纯铁强度低,硬度低,塑性好,很少做结构材料,由于有高的磁导率,主要作为电工材料用于各种铁芯。 ⑵C Fe 3 C Fe 3是铁和碳形成的间隙化合物,晶体结构十分复杂,通常称渗碳体,可用符号Cm 表示。C Fe 3具有很高的硬度但很脆,硬度约为950~1050HV ,抗拉强度b σ=30MPa ,伸长率0=δ。 3.1.2 基本相 Fe -C Fe 3相图中除了高温时存在的液相L ,和化合物相C Fe 3外,还有碳溶于铁形成的几种间隙固溶体相: ⑴高温铁素体 碳溶于δ-Fe 的间隙固溶体,体心立方晶格,用符号δ表示。 ⑵铁素体 碳溶于α-Fe 的间隙固溶体,体心立方晶格,用符号α或F 表示。F 中碳的固溶度极小,室温时约为0.0008%,600℃时约为0.0057%,在727℃时溶碳量最大,约为0.0218%,但也不大,在后续的计算中,如果无特殊要求可忽略不计。力学性能与工业纯铁相当。 ⑶奥氏体 碳溶于γ-Fe 的间隙固溶体,面心立方晶格,用符号γ或A 表示。奥氏体中碳的固溶度较大,在1148℃时最大达2.11%。奥氏体强度较低,硬度不高,易于塑性变形。 3.2 Fe -C Fe 3相图 3.2.1 Fe -C Fe 3相图中各点的温度、含碳量及含义 Fe -C Fe 3相图及相图中各点的温度、含碳量等见图3.1及表3.1所示。

解析铁碳平衡相图

鐵碳平衡圖 (The Iron-Carbon Diagrams) 連聰賢 ㄧ、目的及要求 本章闡述了鐵碳合金的基本組織,鐵碳合金狀態圖,碳鋼的分類、編號和用途。要求牢固掌握鐵碳合金的基本組織(肥粒體、沃斯田體、雪明碳體、波來體、粒滴斑體)的定義、結構、形成條件和性能特點。牢固掌握簡化的鐵碳合金狀態圖;熟練分析不同成分的鐵碳合金的結晶過程;掌握鐵碳合金狀態圖各相區的組織及性能,以及鐵碳合金狀態圖的實際應用。掌握碳鋼中常存元素對碳鋼性能的影響;基本掌握碳鋼的分類、編號、性能和用途。 二、內容 鐵碳合金基本組織肥粒體、沃斯田體、雪明碳體、波來體和粒滴斑體的定義、表示符號、晶體結構、顯微組織特徵、形成條件及性能特點。鐵碳合金狀態圖的構成、狀態圖中特性點、線的含義。典型合金的結晶過程分析及其組織,室溫下不同區域的組織組成相。碳含量對鐵碳合金組織和性能的影響。鐵碳合金狀態圖的實際應用。錳、矽、硫、磷等常存雜質元素對鋼性能的影響。碳鐵的分類、編號、性能和用途。 三、學習要領 鐵碳合金狀態圖是金屬熱處理的基礎。必須配合鐵碳合金平衡組織的金相觀察實驗,結合課堂授課,作重點分析鐵碳合金的基本組織

及其室溫下不同成分鐵碳合金的組織特徵。練習繪製鐵碳合金狀態圖,對不同成分的合金結晶過程進行分析。 四、課程綱要 (一)鐵碳合金的構成元素及基本相 1. 合金的構成元素與名詞解釋 (1)金屬特性:具有不透明、金屬光澤良好的導熱和導電性並且其導電能力隨溫度的增高而減小,富有延性和展性等特 性的物質。金屬內部原子具有規律性排列的固體(即晶 體)。 (2)合金:由兩種或兩種以上金屬或金屬與非金屬組成,具有金屬特性的物質。 (3)相:合金中成份、結構、性能相同的組成部分,物理上均質且可區分的部分。 (4)固溶體:是一個(或幾個)組元的原子(化合物)溶入另一個組元的晶格中,而仍保持另一組元的晶格類型的固態 金屬晶體,固溶體分間隙固溶體和置換固溶體兩種。 (5)固溶強化:由於溶質原子進入溶劑晶格的間隙或結點,使晶格發生畸變,使固溶體硬度和強度升高,這種現象叫固 溶強化現象。

打印铁碳相图习题参考答案

一、解释下列名词 1 、铁素体:碳溶入α-Fe 中形成的间隙固溶体。奥氏体:碳溶入γ-Fe 中形成的间隙固溶体。渗碳体:铁与碳形成的具有复杂晶体结构的金属化合物。珠光体:铁素体和渗碳体组成的机械混合物。莱氏体:由奥氏体和渗碳体组成的机械混合物。 2 、Fe3C Ⅰ:由液相中直接析出来的渗碳体称为一次渗碳体。Fe3C Ⅱ:从A 中析出的Fe3C 称为二次渗碳体。 Fe3C Ⅲ:从铁素体中析出的Fe3C 称为三次渗碳体。共析Fe3C :经共析反应生成的渗碳体即珠光体中的渗碳体称为共析渗碳体。 共晶Fe3C :经共晶反应生成的渗碳体即莱氏体中的渗碳体称为共晶渗碳体。 3 、钢:含碳量大于0.00218% ,小于 2.11% 的铁碳合金白口铸铁:含碳量大于 2.11% 的铁碳合金。 二、填空题 1 、常温平衡状态下,铁碳合金基本相有铁素体(F)、渗碳体(Fe 3 C)等两个。 2 、Fe-Fe 3C 相图有 4 个单相区,各相区的相分别是液相(L )、δ相、铁素体(F)、奥氏体( A )。 3 、Fe-Fe 3C 相图有三条水平线,即HJB 、ECF 和PSK 线,它们代表的反应分别是包晶反应、共晶反应和共析反应。 4 、工业纯铁的含碳量为≤0.0218% ,室温平衡组织为F+ Fe3C Ⅲ 。 5 、共晶白口铁的含碳量为 4.3% ,室温平衡组织P 占40.37% ,Fe 3 C 共晶占47.82% ,Fe3C Ⅱ占11.81% 。 6 、一钢试样,在室温平衡组织中,珠光体占60% ,铁素体占40% ,该钢的含碳量为0.470 7 。 7 、钢的组织特点是高温组织为奥氏体(A),具有良好的塑、韧性,因而适于热加工成形。 8 、白口铸铁的特点是液态结晶都有共晶转变,室温平衡组织中都有莱氏体,因而适于通过铸造成形。 三、简答题 1 、为什么γ-Fe 和α- Fe 的比容不同?一块质量一定的铁发生(γ-Fe →α-Fe )转变时,其体积如何变化? 答:因为γ-Fe 和α- Fe 原子排列的紧密程度不同,γ-Fe 的致密度为74% ,α- Fe 的致密度为68% ,因此一块质量一定的铁发生(γ-Fe →α-Fe )转变时体积将发生膨胀。 2 、铁素体(F),奥氏体(A),渗碳体(Fe 3C ),珠光体(P ),莱氏体(Ld )的结构、组织形态、性能等各有何特点? 答:铁素体结构为体心立方晶格。由于碳在α-Fe 中的溶解度`很小,它的性能与纯铁相近。塑性、韧性好,强度、硬度低。它在 钢中一般呈块状或片状。 奥氏体(A)结构为面心立方晶格。因其晶格间隙尺寸较大,故碳在γ-Fe 中的溶解度较大。有很好的塑性。 渗碳体(Fe 3C )具有复杂晶格的间隙化合物。渗碳体具有很高的硬度,但塑性很差,延伸率接近于零。在钢中以片状存在或网 络状存在于晶界。在莱氏体中为连续的基体,有时呈鱼骨状。 珠光体(P)为铁素体和渗碳体组成的机械混合物。铁素体和渗碳体呈层片状。珠光体有较高的强度和硬度,但塑性较差。 莱氏体(Ld )为奥氏体和渗碳体组成的机械混合物。在莱氏体中,渗碳体是连续分布的相,奥氏体呈颗粒状分布在渗碳体基体上。由于渗碳体很脆,所以莱氏体是塑性很差的组织。 3 、Fe-Fe 3C 合金相图有何作用?在生产实践中有何指导意义?又有何局限性? 答:⑴碳钢和铸铁都是铁碳合金,是使用最广泛的金属材料。铁碳合金相图是研究铁碳合金的重要工具,了解与掌握铁碳合金相图,

相关文档
最新文档