实验1 基于置乱的信息隐藏算法

实验1 基于置乱的信息隐藏算法
实验1 基于置乱的信息隐藏算法

江 西 理 工 大 学

江 西 理 工 大 学 实 验 报 告 纸

第 1 页/共 2页

一、实验目的

(1)了解信息隐藏基本原理;

(2)理解图像加密技术的基本思想;

(3)掌握Arnold 置乱算法和位平面算法; (4)完成8位BMP 灰度图像的置乱预处理;

(5)将置乱后的秘密图像信息隐藏到载体图像的最低有效位中;

二、实验内容

以8位BMP 灰度图像SecretiveBmp.bmp 为秘密图像,以8位BMP 灰度图像lena.bmp 为载体图像,先用Arnold 变换算法对SecretiveBmp.bmp 进行置乱预处理,然后将置乱后的SecretiveBmp.bmp 结果图像嵌入到lena.bmp 的最低有效位中,实现信息隐藏。(编程语言不限)

三、实验步骤和设计思想

Arnold 变换(Catmapping),俗称 猫脸变换!,是V.J.Arnold 在遍历理论的研究中提出的一类裁剪变换[3],它可以抽象为在平面单位正方形内绘制一个猫脸图像,这个猫脸图像由清晰变模糊。将图像看作平面区域上的二 元函数Z=F(x,y),(x,y)?R,通常区域R 是一个矩形(讨论R 为正方形的情况)。对R 中的任意点(x,y),相对应的函 数值F(x,y)代表图像的信息(如灰度值等)。随着图像的数字化,Z=F(x,y)可看作一个二维离散点阵,其元素所在的行与列对应于自变量进行取值,元素本身代表图像信息。简言之,离散化的数字图像相当于元素之间有相关性的一类特殊矩阵。对这一矩阵进行如下变换可以得到新的矩阵,从而实现图像的置乱处理。 一:置乱前的秘密图像读入并显示 w=imread('D:\matlab\work\lenal.bmp')。

Arnold 图像置乱:1、定义一个零矩阵用于设置每一轮arnold 变换后生成的新图像2、定义arnlod 变换过程中临时存放数据的矩阵Temp 。encryImg 为置乱后的图像。3、逐行扫描水印图像的坐标x,y 所构成的矩阵4、对每个像素的x,y 坐标进行Arnold 变换。

二:将置乱后的秘密图像写入载体的最低有效位,形成伪装载体。

四、程序清单

[filename,pathname]=uigetfile('*.bmp','pick a secretive image file'); fn=[pathname filename]; inImg=imread(fn);

iTimes=input('Please input Arnord scramble times[1]:'); if isempty(iTimes) iTimes=1; end

w=inImg; M=w;

Size_w=size(w); subplot(2,2,1); imshow(w);

title('置乱前的秘密图像'); [c,d,e]=size(w); w1=zeros(c,d,e); Temp=zeros(c,d,e); encryImg=inImg; for k=1:iTimes for i=1:c

for j=1:d

Temp=encryImg; i1=i+j;

j1=i+2*j; i1=mod(i1,c); j1=mod(j1,d);

if((i1~=0)&&(j1~=0)) w1(i1,j1)=Temp(i,j);

信息隐藏技术 实验报告

姓名: 江 西 理 工 大 学 实 验 报 告 纸

第 2 页/共 2页

end end end encryImg=w1; end

subplot(2,2,2); imshow(encryImg);

title('置乱后的秘密图像');

[filename,pathname]=uigetfile('*.bmp','pick a carrier image file'); fn=[pathname filename]; CarrierImg=imread(fn); subplot(2,2,3);

imshow(CarrierImg);

title('需要嵌入秘密消息的载体源图像'); StegoC=bitset(CarrierImg,1,encryImg); subplot(2,2,4); imshow(StegoC);

title('嵌入秘密消息后的伪装载体

');

五、实验调试记录

六、实验结果及其分析

七、实验心得

本次实验主要目的是让我们了解信息隐藏基本原理及图像加密技术的基本思想;掌握Arnold 置乱算法和位平面算法并且完成8位BMP 灰度图像的置乱预处理;最后将置乱后的秘密图像信息隐藏到载体图像的最低有效位中。在实验之前一定要做准备工作,然后用matlab 编写程序,实验开始时还不知道怎么下手,后面在老师的讲解下还是完成了实验,也很好的掌握了Arnold 置换的算法思想。

实验2 空域信息隐藏算法

信息隐藏技术实验报告 一、实验目的 (1)了解信息隐藏算法的分类方式和分类依据 (2)理解空域信息隐藏算法的基本思想 (3)掌握最低有效位算法原理 (4)完成基于LSB的图像信息隐藏 二、实验内容 载体图像为24位真彩色bmp图像Lena.bmp,嵌入的秘密图像为黑白的bmp 图像LSB.bmp,要求采用空域信息隐藏算法,将LSB.bmp嵌入到Lena.bmp的最低有效位中,同屏显示原载体图像、需要嵌入的秘密图像、嵌入了秘密图像的伪装载体、提取的秘密图像。(编程语言不限) 三、实验步骤和设计思想 实现空域图像水印方法中的LSB算法:原始图像选取大小为512*512的elain 图像或者goldhill图像,选择一个LSB水印算法以及适当的水印序列;利用选定的水印嵌入算法将水印信息嵌入到原始图像中。在嵌入水印之后的图像中提取水印,是否可以判定图像中含有水印,同时计算含水印图像的峰值信噪比。将含有水印的图像缩小为256*256之后,再放大为512*512,这时再提取水印,是否可以判定图像中含有水印。 四、程序清单 % LSB 算法: clear; A=imread('elain.bmp'); B=A; message='www`s homework'; m=length(message); n=size(A); k=1; for i=1:n(1) for j=1:n(2) if k<=m %如果消息输入完成则为0

h=bitget(double(message(k)),8:-1:1); else h=[0,0,0,0,0,0,0,0]; end c=bitget(A(i,j),8:-1:1); if mod(j,8) == 0 p=8; else p=mod(j,8); end v=0; for q=1:7 v=xor(v,c(q)); end v=xor(v, h(p) ); B(i,j)=bitset(A(i,j),1,v); if mod(j,8) == 0 k=k+1; end end end % 提取信息 out=char; tmp=0 ; t=1; for i=1:n(1) for j=1:n(2) c=bitget(B(i,j),8:-1:1); v=0; for q=1:8 v=xor(v,c(q)); end if mod(j,8)==0 p=1; else p=9-mod(j,8); end tmp=bitset(tmp,p,v); if mod(j,8)==0 out(t)=char(tmp); t=t+1; tmp=0; end end

信息隐藏实验十LSB信息隐藏的卡方分析教程文件

信息隐藏实验十L SB信息隐藏的卡方 分析

实验十 LSB信息隐藏的卡方分析 一,实验目的: 了解什么是隐写分析,隐写分析与信息隐藏和数字水印的关系。掌握基于 图像的LSB隐写的分析方法,设计并实现一种基于图像的LSB卡方隐写分析方法。 二,实验环境 1, Windows XP 操作系统 2, Matlab软件 3, BMP格式图片文件 三,实验原理 隐写术和隐写分析技术是互相矛盾又是相互促进的,隐写分析是指对可疑 的载体信息进行攻击以达到检测、破坏,甚至提取秘密信息的技术,它的主要 目标是为了揭示媒体中隐蔽信息的存在性,甚至只是指出媒体中存在秘密信息 的可疑性。 图像LSB信息隐藏的方法是用嵌入的秘密信息取代载体图像的最低比特 位,原来图像的7个高位平面与代表秘密信息的最低位平面组成含隐蔽信息的 新图像。虽然LSB 隐写在隐藏大量信息的情况下依然保持良好的视觉隐蔽性, 但使用有效的统计分析工具可判断一幅载体图像中是否含有秘密信息。 目前对于图像LSB信息隐藏主要分析方法有卡方分析、信息量估算法、RS 分析法和GPC分析法等。卡方分析的步骤是:设图像中灰度值为j的象素数为hj,其中0≤j≤255。如果载体图像未经隐写,h2i和h2i+1的值会相差很大。秘密信息在嵌入之前往往经过加密,可以看作是0、1 随机分布的比特流,而

且值为0与1的可能性都是1/2。如果秘密信息完全替代载体图像的最低位,那么h2i 和h2i+1的值会比较接近,可以根据这个性质判断图像是否经过隐写。定量分析载体图像最低位完全嵌入秘密信息的情况:嵌入信息会改变直方图的分布,由差别很大变得近似相等,但是却不会改变 h2i+h2i+1的值,因为 样值要么不改变,要么就在h2i 和h2i+1之间改变。令显然这个值在隐写前后是不会变的。 如果某个样值为2i ,那么它对参数q 的贡献为1/2;如果样值为2i+1 ,对参数q 的贡献为-1/2。载体音频中共有 2h2i*个样点的值为2i 或2i+1,若所有样点都包含1比特的秘密信息,那么每个样点为2i 或2i+1的概率就是0.5。当2h2i*较大时,根据中心极限定理,下式成立: 其中->N(0,1)表示近似服从正态分布 所以服从卡方分布。 上式中,k 等于h2i 和h2i+1所组成数字对的数量, h2i*为0的情况不计在内。r 越小表示载体含有秘密信息的可能性越大。结合卡方分布的密度计算函数计算载体被隐写的可能性为: 如果p 接近于1,则说明载体图像中含有秘密信息。 *22122**222(0,1) 2i i i i i i h h h h N h h *2 22*12()k i i i i h h r h 1121021 1 exp()21 2()2r k k t p t dt k

一种图像置乱算法及其在数字电视中的应用研究

通讯作者:JongWeon KIM ,jwkim@smu.ac.kr 基金项目:2009年度MCST&韩国著作权委员会技术开发项目结果 一种图像置乱算法及其在数字电视中的应用研究 崔基哲 1 张波1 JongWeon KIM 2 1 (延边大学经济管理学院 信息管理与信息系统 延吉 133002) 2 (韩国祥明大学 著作权保护专业 教授 Seoul, KOREA 100080) (cuijizhe@https://www.360docs.net/doc/df4996205.html, ;zhangbo0037@https://www.360docs.net/doc/df4996205.html,; jwkim@smu.ac.kr ) 【摘要】 本文阐述了数字电视加解密原理,并介绍了图像置乱算法及其它在数字电视行业中的应用。我国的数字电视行业已经迈入高清时代,但收费节目的管理、卫星传播与有线传播的协调等问题上,还需要成熟的解决方案。本文提出了基于离散余弦变换的图像置乱算法,可适用于收费电视节目的安全管理。 通过本算法可以简化原数字电视加解密系统的两端间的交互流程,增加CA 共享所带来的安全性。经测试发现,提出的图像置乱算法抑制了其他置乱算法中存在的块效应,算法基本满足数字电视的管理及播放要求,无需增加硬件费用。 【关键词】 图像加密;置乱算法;数字电视;条件接收系统;离散余弦变换 【中图分类号】TN05 【文献标识码】A 【文章登记号】7-16 An Image Scrambling Algorithm and The Application in Digital TV Cui Jizhe 1, JongWeon KIM 2, Zhang Bo 1 1 (College of Economic and Management, Yanbian University , Yanji 133002) 2 (Dept. of Copyright Protection Sangmyung University, Seoul, 110743) Abstract This paper elaborates the theory of encryption and decryption about digital television, then gives an introduction of the image scrambling algorithm and the application in digital television industry. In china, the digital TV has stepped into the high definition age, while there also need the mature solution in the management of fee programmers, as well as the balance of satellite transmission and cable transmission. This paper puts forward to the image scrambling based on the Discrete Cosine Transform (DCT), it can be used in managing the security of fee-TV programmers. By means of this algorithm, it can simplify the Interactive process between original digital TV encryption and decryption, and increase the security bringing by CA share. By test, it is founded that the image scrambling algorithm promoted by this paper restrain blocking effects existing in other scrambling algorithm. The algorithm can content the demand of managing and playing of digital TV , dispense with increasing the hardware costs. Keywords Image encryption; Image Scrambling; Digital TV; CAS ;Discrete Cosine Transform 1 引言 2009年8月,广电总局发布促进高清电视发展的《通知》,要求现阶段要采取高清、标清同播过度发射,并要求卫星传输的高清节目必须进行加密[1] 。相继CCTV1等九套高清同播节目上星播出,标志着我国电视播出进入高清时代[2]。 数字电视是将传统的模拟信号经过采样、量化和编码等过程转化为数字信号,然后进行各种 功能的端到端的系统。数字电视不仅包括数字电视接收机、电视台,还包括信号的产生、处理、传输、接收和重现的全过程。在数字电视网上还可以接入电视会议、可视电话、视频点播、按次付费、网络游戏等传统业务外的增值业务。为了确保增值业务的实现,除安全可控的综合管理业务平台之外还需要条件接收系统,简称为CAS(Conditional Access System)。 为防止未授权的用户违法窃取业务,在数字电视传播过程中需要对数据进行加密。图像或视频信息的

LSB信息隐藏实验报告

C entr al South University 信息隐藏 实验报告 学院: 信息科学与工程学院 班级:信息安全1201 学号:0909121724 姓名:吕秋言 时间: 2018年6 月 实验一:基于图像的LSB 信息隐藏 一、 实验目的 该实验为验证性实验。目的是通过实验使学生掌握经典信息隐藏算法,在Matlab 环境下,编写基于图像的LSB 信息隐藏算法程序。用Matlab 函数实现LSB 信息隐藏及提取,并进行分析。b5E2RGbCAP 二、 实验要求 1、实验前要做好充分准备,包括:复习实验所涉及的知识点,掌握Matlab 编程语言和调试环境。 2、实验时注意记录实验过程中产生的数据、出现的问题及解决问题的方法。

3、理论联系实际,认真分析实验结果,回答思考题。 4、实验后完成实验报告,并附相关截图。 三、实验环境 计算机<安装Visual C++ 6.0和Matlab 6.5以上版本) 四、实验原理 隐秘算法核心是将我们选取的像素点的最不重要位依次替换成秘密信息,以达到信息隐秘的目的。嵌入过程包括选择一个图像载体像素点的子集{j1,…,jl(m>},然后在子集上执行替换操作像素 cji←→mi,即把cji的LSB与秘密信息mi进行交换(mi可以是1或0>。一个替换系统也可以修改载体图像像素点的多个比特,例如,在一个载体元素的两个最低比特位隐藏两比特、三比特信息,可以使得信息嵌入量大大增加但同时将破坏载体图像的质量。在提取过程中,找出被选择载体图像的像素序列,将LSB(最不重要位>排列起来重构秘密信息,算法描述如下:p1EanqFDPw 嵌入过程:for(i=1。i<=像素序列个数。i++> si←ci for(i=1。i<=秘密消息长度。i++> //将选取的像素点的最不重要位依次替换成秘密信息 sji←cji←→mi 提取过程:for(i=1。i<=秘密消息长度。i++> { i←→ji//序选取 mi←LSB(cji>

不同小波基的图像信息隐藏算法的抗攻击性Word版

不同小波基图像信息隐藏算法的抗攻击性 0 引言 图像信息隐藏技术作为一个新兴的研究领域,横跨数字信号处理、图像处理、语音处理、模式识别、数字通信、多媒体技术、密码学等多个学科。它把一个有意义的信息通过某种嵌入算法隐藏到载体信息中,从而得到隐密载体,非法者不知道这个载体信息中是否隐藏了其它的信息,而且即使知道,也难以提取或去除隐藏的信息。隐密载体通过信道到达接收方后,接收方通过检测器利用密钥从中恢复或检测出隐藏的秘密信息。小波分析是图像信息隐藏中非常重要的一个图像处理工具,是图像从时域变换到频域的重要手段。在小波变换中,小波基的选择是非常重要的,可以影响算法的稳定性、安全性和鲁棒性等性能。 1 基于空域的图像信息隐藏 朱冰连【1】等人,针对图像空域最低有效位(LSB)隐藏算法隐藏位置不可靠、健壮性差、实用性不强等问题,充分利用彩色静止图像的多通道特性,以及图像最高有效位(MsB)隐藏信息健壮性强的优势,结合人眼视觉特性提出了一种基于MsB的抗裁剪信息隐藏算法。实验证明,此算法不仅对一般的噪声攻击具有较强的健壮性,而且能有效抵抗裁剪攻击。通过对人眼视觉系统的研究,对于三原色R、G、B,人眼对绿色最敏感,对蓝色最不敏感。据此,作者利用人眼视觉系统特性在RGB图像蓝色分量的MsB隐藏信息。在嵌入前一般要对秘密图像进行预处理。图像置乱是对秘密图像预处理最常用的手段。它主要有两个作用:1)改变秘密图像的统计特性,增强秘密图像隐藏后的不可见性;2)起到对秘密图像加密的作用,在对手不知道置乱密钥的情况下,即使提取出嵌入比特也不能正确恢复秘密信息。,本文提出的嵌人算法不仅具有大的信息隐藏容量,而且信息隐藏后的不可见性好,对常见的高斯噪声攻击和一定的裁剪攻击也具有较强的抵抗能力,具有一定的实用价值。但由于算法本身是建立在图像空间域上的,也不可

图像置乱

数字图像置乱技术研究 6.3.1图像置乱原理 图像置乱技术属于图像加密技术,它通过对图像像素矩阵的重排,破坏了图像矩阵的相关性,以此实现信息的加密,达到安全传输图像的目的。 图像置乱的实质是破坏相邻像素点间的相关性,使图像“面目全非”,看上去如同一幅没有意义的噪声图像。单纯使用位置空间的变换来置乱图像,像素的灰度值不会改变,直方图不变,只是几何位置发生了变换。置乱算法的实现过程可以看做是构造映射的过程,该映射是原图的置乱图像的一一映射,如果重复使用此映射,就构成了多次迭代置乱。 我们假设原始图像为0A ,映射关系用字母σ表示,得到的置乱图像为1A ,则原图到置乱图像的关系,可简单的表示为: 1 0A A ?→?σ 例如:原始图像用矩阵0A 表示,置乱后的图像为1A , ij a 代表坐标为(),x y 的像素点的灰度: ? ? ?? ?? ??????=3332 31 30 2322212013121110 03020100 0a a a a a a a a a a a a a a a a A ???? ? ???????=1200 21 33 112010 023******* 312322131a a a a a a a a a a a a a a a a A (6.3.1) 置乱映射σ的元素存在两种形式:一种是序号形式,用()j width i +*表示图像中像素的排列序号;一种是坐标形式,()j i ,表示第i 行第j 列。则相应的置乱映射σ可表示如下: ? ? ??? ???????=1253720131011511948614σ或者() () ()()() ()()()()()()()()()() ()????? ????? ??0,31,13,03,12,00,01,32,21,03,33,21,20,10,22,12,3 (6.3.2) 映射τ中的元素表示:原图中该点元素在置乱后图像中的位置。比如坐标为(0,1)的像素点最后变换到(1,2)这个位置上。因此使用置乱映射σ进行迭代置乱,原图0A 应用映射τ迭代适当的次数后,能够得到理想置乱图像。对1A 应用逆置乱映射,还原得到原始图像0A :

北邮信息隐藏数字隐藏期末模拟试题

1概论 1、基于信息隐藏的保密通信的安全性依赖于秘密信息不可懂(F)。 答:基于信息隐藏的保密通信的安全性依赖于秘密信息不可见。 2、卡登格子是意大利数学家提出的一种信息隐藏技术,请问,它属于以下哪一 类古典信息隐藏技术() A.技术型 B. 语言学型 C.版权保护型 D. 艺术作品型 答:A 3、现代信息隐藏技术在哪个时期得到快速发展() A.480 B.C. B. 19世纪70年代 C. 20世纪90年代 D. 4、信息隐藏的研究分支不包括:() A.隐写术 B. 数字水印 C. 隐蔽信道 D. 信息分存 E. 图像取证 F.感知哈希 G. 流密码 答:G 5、数字水印的应用不包括:( ) A.版权保护 B.广播监控 C.盗版追踪 D.内容认证 E.拷贝控制 F.设备控制 G.标注 H.保密通信 答:H 2数字信号处理基础 每秒种观察信号大小的次数,称为采样频率,或采样率。(T) 音频通常分为单声道和双声道两类,单声道音频能产生立体声效果。(F) 人耳对声音强度的主观感受称为响度。 响度的单位为方,定义为1000Hz,10dB纯音的声强级。(T) MOS通常用3级评分标准来评价载体的质量。(F) 客观上相同的亮度,当平均亮度不同时,主观感觉的亮度仍然相同。(F) 修改高频系数导致的失真很容易被感知。(F) 已知图像分辨率为1024*768,则图像每行有 1024 个像素,每列有 768 个像素。 MOS是一种音频或图像质量主观评价方法,其英文全名为 Mean Opinion Score 。 常见图像包括二值图像,灰度图像,真彩色图像,和调色板图像。 人由亮处走到暗处时的视觉适应过程,称为暗适应。人由暗处走到亮处时的视觉适应过程,称为亮适应。 已知原始音频部分样点值如下: :10, 12, 14, 8, 6, 8 隐藏信息后,该音频相应像点值变化为:

信息隐藏 实验四 二值图像信息隐藏

实验四二值图像信息隐藏 一、实验目的 了解二值图像的特点,掌握基于二值图像的信息隐藏原理,读懂两种基于二值图像的信息隐藏方法,并自己设计另一种二值信息隐藏的方法。 二,实验环境 (1)Windows XP操作系统; (2)MATLAB 7.2版本软件; (3)二值图像文件。 三、实验原理 二值图像又称为单色图像或黑白图像,一般用1或0表示黑色或白色像素点,利用二值图像信息隐藏的方法主要是根据图像中黑白像素数量的比较来隐藏信息。 方法一:把一个二值图像分成一系列矩形图像区域B,某个图像区域B中黑色像素的个数大于一半,则表示嵌入0;如果白色像素的个数大于一半,则表示嵌入1。但是当需要嵌入的比特与所选区域的黑白像素的比例不一致时,为了达到希望的像素关系,则需要修改一些像素的颜色。 方法二:采用游程编码方法在二值图像中隐藏信息。秘密信息嵌入时修改二值图像的游程长度,如果秘密信息位是0,则修改该游程长度为偶数;如果为1,则修改游程长度为奇数;如果秘密信息的取值与游程长度的奇偶性相匹配,则不改变游程长度。 方法三:将二值图像分块,使用一个与图像块大小相同的密钥二值图像块,与每一个图像块按像素进行“与”运算,“与”运算的结果可以确定是否在该块中嵌入数据,或嵌入怎样的数据。 四,实验步骤 下面以方法三为原理,进行实验。 1.嵌入秘密信息 主要思想:首先将载体图像分块,块数为秘密信息的二进制码个数,分块大小为载体图像的长和宽分别除以块数;设定一个与图像块大小相同的密钥二值图

像块,具体为一个8×8的数组,其中前4行全为1,后4行全为0;将载体图像块与密钥二值图像块进行“与”运算。经过运算后,参与统计的像素变为前4行。接下来统计“有效”像素黑白的个数,某个图像区域B中黑色像素的个数大于“有效”像素一半,则表示嵌入0;如果白色像素的个数大于“有效”像素一半,则表示嵌入1。但是当需要嵌入的比特与所选区域的黑白像素的比例不一致时,为了达到希望的像素关系,则需要修改一些像素的颜色。 Matlab代码如下: msgfid=fopen('hidden.txt','r');%打开秘密文件 [msg,count]=fread(msgfid); fclose(msgfid); msg = str2bit(msg); msg = msg'; count=count*8; io=imread('hunter.bmp');%读入载体图像 watermarklen=count;%嵌入水印信息长度,也就是载体图像分块的数量值 [row col]=size(io); l1=floor(row/watermarklen);%载体图像分块后的长度 l2=floor(col/watermarklen);%载体图像分块后的宽度 pixelcount=l1*l2;%每个分块总像素的数量值 miyue=[ones(6,8);zeros(2,8)];%密钥二值图像块 percent=24; iw=io; in=io;%存放与运算后的图像信息 %将原图像块与密钥块进行与运算 m=1; while m<=watermarklen i=1; j=1; in(i:(i+l1-1),j:(j+l2-1))=io(i:(i+l1-1),j:(j+l2-1)) & miyue; i=i+8; j=j+8; m=m+1; end inblack(1,watermarklen)=0;%某一个分块中黑色像素的个数 inwhite(1,watermarklen)=0;%某一个分块中白色像素的个数 n=1; while n<=watermarklen for i=l1*(n-1)+1:(l1*n-2) %只计算有效前4行的黑白个数

基于LSB的信息隐藏算法

《信息隐藏技术》实验 实验三:基于LSB的信息隐藏算法 学生姓名:学号: 学院: 计算机学院 专业: 信息安全 班级: 指导教师: 2015年 12 月 16 日

目录 1 实验目的 (2) 2 实验环境及内容 (2) 3 实验原理 (2) 4 实验步骤 (3) 5 实验思考和总结 (12)

1实验目的 该实验为验证性实验。目的是通过实验使学生掌握经典隐藏算法,在MATLAB环境下,编写基于图像的LSB信息隐藏算法程序。用MATLAB 函数实现LSB信息隐藏,并进行分析。 2实验环境及内容 ●实验环境 安装MATLAB7.0的计算机 ●实验内容 首先学会提取图片的八个位平面,然后再将信息隐藏在最低位平面中。 3实验原理 LSB(least significant bit)算法是最早提出的一种典型的空间域信息隐藏算法。它使用特定的密钥通过伪随机序列发生器产生随机信号,然后按一定的规则排列成二维水印信号,并逐一插到原始图像相应像素值的最低几位。由于水印信号隐藏在最低位,相当于叠加了一个能量微弱的信号,因此在视觉和听觉上很难察觉。作为大数据量的信息隐藏方法,LSB在隐藏通信中仍占据相当重要的地位。 隐秘算法核心是将我们选取的像素点的最不重要位依次替换成秘密信息,以达到信息隐秘的目的。嵌入过程包括选择一个图像载体像

素点的子集{j1,…,jl(m)},然后在子集上执行替换操作像素cji←→mi,即把cji的LSB与秘密信息mi进行交换(mi可以是1或0)。一个替换系统也可以修改载体图像像素点的多个比特,例如,在一个载体元素的两个最低比特位隐藏两比特、三比特信息,可以使得信息嵌入量大大增加但同时将破坏载体图像的质量。在提取过程中,找出被选择载体图像的像素序列,将LSB(最不重要位)排列起来重构秘密信息,算法描述如下: 嵌入过程:for(i=1;i<=像素序列个数;i++) si←ci for(i=1;i<=秘密消息长度;i++) //将选取的像素点的最不重要位依次替换成秘密信息 sji←cji←→mi 4实验步骤 提取位平面源代码 a = imread('1.jpg'); b = rgb2gray(a); %将彩色图像转换为灰度图像 c = bitand(b, 1); figure(1); imshow(c); d = bitand(b, 2);

基于Matlab的LSB信息隐藏技术

摘要 随着科技的发展,信息安全技术已经成为不可忽略的因素。而网络的普及及应用,让多媒体技术得到了广泛的发展,因此图像及视频的安全变得越来越重要。本文正是在这种时代背景下,介绍一种关于图像处理的信息隐藏技术。 用于进行隐蔽通信的图像信息隐藏算法可以分为两大类:基于空域的信息隐藏算法和基于变换域的信息隐藏算法。基于空域信息隐藏算法中的典型算法是LSB算法,该算法的主要特点是在载体图像中嵌入的隐藏信息数据量大,但是嵌入位置固定,安全性差,嵌入的隐藏信息易被破坏,鲁棒性不高;基于变换域信息隐藏算法中的典型算法是离散余弦变换域的信息隐藏算法,该算法嵌入信息能够抵御多种攻击,具有较好的鲁棒性,并且嵌入方式多种多样,增加了攻击者提取的难度,具有一定的安全性,但是该类算法嵌入的隐藏信息数据量较小,不适合于进行大数据量的隐蔽通信。 下面对LSB算法原理及LSB算法实现进行了介绍,最后使用MATLAB 对其隐藏过程进行了仿真。 [关键词]信息安全隐藏嵌入信息 I

目录 一、设计要求 (3) 二、设计的目的 (3) 三、设计的具体实现 (3) 3.1 信息隐藏及时空域信息隐藏概述 (3) 3.2 LSB上的信息隐秘 (4) 3.2.1 LSB上信息隐秘的原理 (4) 3.2.2 LSB上的信息隐秘的过程 (5) 3.3运用LSB实现秘密消息的隐藏 (6) 3.4运用LSB实现秘密消息的差异对比 (9) 3.5运用LSB实现秘密消息的提取 (12) 3.6信息隐藏的拓展 (15) 四、心得体会 (16) 五、参考文献 (16)

一、设计要求 1.复习《信息安全技术导论》中有关LSB的相关知识。 2.对其算法进行详细研究与理论分析。 3.利用MATLAB编写程序并仿真结果。 4.设计报告中应包括具体设计原理、设计的详细说明书以 及最终结果。 二、设计的目的 1.了解并掌握LSB信息隐藏和提取的方法,具备初步的独 立分析和设计能力; 2.提高综合应用所学的理论知识和方法独立分析和解决问 题的能力; 3.训练用MATLAB软件编写程序并仿真。 三、设计的具体实现 3.1 信息隐藏及时空域信息隐藏概述 信息隐藏技术主要由下述两部分组成: (1)信息嵌入算法,它利用密钥来实现秘密信息的隐藏。 (2)隐蔽信息检测/提取算法(检测器),它利用密钥从隐蔽载体中检测/恢复出秘密信息。在密钥未知的前提下,第三者很难从隐秘载体中得到或删除,甚至发现秘密信息。 空域隐藏技术是指将秘密信息嵌入数字图像的空间域中,即对像素灰度值进行修改以隐藏秘密信息。 时空域信息隐藏分为:LSB与MSB,LSB对应的中文意思是:最不重要位,有时也称为最低有效位或简称最低位。MSB,

基于同态公钥加密系统的图像可逆信息隐藏算法

软件学报ISSN 1000-9825, CODEN RUXUEW E-mail: jos@https://www.360docs.net/doc/df4996205.html, Journal of Software, 2016,27(6):a20 [doi: 10.13328/https://www.360docs.net/doc/df4996205.html,ki.jos.005007] https://www.360docs.net/doc/df4996205.html, ?中国科学院软件研究所版权所有. Tel: +86-10-62562563 基于同态公钥加密系统的图像可逆信息隐藏算法? 项世军, 罗欣荣 (暨南大学信息科学技术学院电子工程系,广州 510632) 通讯作者: 项世军, E-mail: Shijun_Xiang@https://www.360docs.net/doc/df4996205.html, 摘要: 同态加密技术在加密信息、对信息进行隐私保护的同时,还允许密文数据进行相应的算术运算(如云端可直接对同态加密后的企业经营数据进行统计分析),已成为云计算领域的一个研究热点.然而,由于云存在多种安全威胁,加密后信息的安全保护和完整性认证问题仍然突出.另外,信息在加密后丢失了很多特性,密文检索成为了云计算需要攻克的关键技术.为了实现对加密图像的有效管理及其安全保护,本文提出了一种基于同态加密系统的图像可逆信息隐藏算法.该算法首先在加密前根据密钥选择目标像素,并利用差分扩展DE(Difference Expansion)的方法将目标像素的各比特数据嵌入到其它像素中.然后,利用Paillier同态加密系统对图像进行加密得到密文图像.在加密域中,利用待嵌入信息组成伪像素,加密后替换目标像素,完成额外信息的嵌入.当拥有相应的密钥时,接收方可以分别在密文图像或明文图像中提取出已嵌入的信息.当图像解密后,通过提取出自嵌入目标像素的各比特数据来恢复原始图像.实验仿真结果表明,该算法能够在数据量保持不变的前提下完成同态加密域中额外信息的嵌入,信息嵌入快速高效,并可分别从加密域和明文域中提取出嵌入的信息. 关键词: 可逆信息隐藏;图像加密;同态加密系统;图像安全保护;云计算 中图法分类号: TP309 中文引用格式: 项世军,罗欣荣.基于同态公钥加密系统的图像可逆信息隐藏算法.软件学报, 2016,27(6):a20. http:// https://www.360docs.net/doc/df4996205.html,/1000-9825/5007.htm 英文引用格式: Xiang SJ, Luo XR.Reversible data hiding in encrypted image based on homomorphic public key cryptosystem. Ruan Jian Xue Bao/Journal of Software, 2016,27(6):a20 (in Chinese).https://www.360docs.net/doc/df4996205.html,/1000-9825/5007.htm Reversible Data Hiding in Encrypted Image based on Homomorphic Public Key Cryptosystem XIANG Shi-Jun, LOU Xin-Rong (Department of Electronic Engineering, School of Information Science and Technology, Jinan University, Guangzhou 510632, China) Abstract: Homomorphic encryption, which protects privacy effectively and allows algebraic operations directly in the ciphertext, has been a hot spot in the study of cloud computing. Due to security threats in cloud computing, the security protection and integrity authentication of encrypted data remain grave problems. Besides, the challenge lies in how to retrieve the encrypted data. To achieve more effective management and security protection of encrypted images on-line, this paper proposes a reversible data hiding scheme for ciphertext based on the public key cryptosystems with homomorphic and probabilistic properties. In the proposed scheme, partial pixels are selected as target pixels by a secret key and all bits of the target pixels are embedded into the other pixels with difference expansion (DE) to vacate room before encryption. As a bonus, secret data can be embedded directly in homomorphic encrypted domain by altering the target pixels with the fake pixels which are comprised of secret data. With the legal key, the receiver can extract the embedded data from the encrypted image and the directly decrypted image. Furthermore, he/she can recover the original image perfectly after decryption and data extraction. Finally, experimental results show that extra data can be embedded more efficiently in homomorphic encrypted domain while keeping the quantity of data unchanged. Besides, the embedded data can be extracted in both ciphertext and plaintext. Key words: reversible data hiding; image encryption; homomorphic cryptosystem; image security protection; cloud computing ?基金项目: 国家自然科学基金(61272414). Foundation item: National Natural Science Foundation of China (61272414) 收稿时间: 2015-08-15; 修改时间: 2015-10-09; 采用时间: 2015-12-05; jos在线出版时间: 2016-01-21 CNKI网络优先出版: 2016-01-22 11:20:08, https://www.360docs.net/doc/df4996205.html,/kcms/detail/11.2560.TP.20160122.1120.017.html

基于混沌理论的图像置乱算法

龙源期刊网 https://www.360docs.net/doc/df4996205.html, 基于混沌理论的图像置乱算法 作者:杨勃葛学锋解海燕 来源:《电子技术与软件工程》2017年第23期 摘要图像置乱技术作为一种图像加密处理的方法,越来越多的应用于图像在网络的传播当中。本文分析了置乱算法的研究现状,对Logistic混沌算法进行了研究,并通过MATLAB 仿真实验对该算法进行了验证分析。 【关键词】图像加密图像置乱 Logistic混沌算法 1 引言 随着“互联网+”时代的来临,越来越多的图像信息在网络中进行着传播。这些图像信息有可能涉及到个人隐私或者是商业机密甚至是国家安全问题,所以如何保证这些信息的安全,越来越多的受到了人们的关注。图像置乱技术作为一种有效的保护图像安全传输的方法被专家学者们所研究。 2 图像置乱技术研究现状 图像置乱技术是通过相关算法将图像的空间域或频率域进行改变,从而达到图像加密目的的一种有效的加密方式。目前经过专家学者们的研究,图像置乱技术主要为基于空间域的置乱和基于频率域的置乱。基于空间域的置乱方法是通过某种算法将图像的像素坐标位置进行改变,从而改变图像的样貌,达到置乱的效果。此方法只是将图像的像素坐标位置进行了打乱,并没有改变图像的信息(直方图),所以容易被破解,安全性低。常见的算法有Arnold 变换、Hilbert 曲线变换和Fibonacci变换等。基于频率域的置乱方法是通过相关算法将图像的像素值进行改变,从而达到置乱效果。该方法不仅改变了图像的样子,还改变了图像的信息,所以加密效果更好,安全性更高。常见的算法有混沌变换、Gray 码变换。 3 混沌理论 混沌是曲线性稳定运动中的一类看似没有稳定运动轨迹可循的、看似随机的现象。混沌理论具有非线性特性、不确定性、不可重复、不可预测、对初始条件敏感等特性,对于需要加密文件的处理有很好的应用,所以混沌理论被越来越多的运用到图像置乱算法中。由于混沌理论的复杂性和不确定性,所以至今还没有一个标准的定义被所有人所公认,每位专家学者都有自己对于混沌的定义。Logistic混沌映射定义是由R·May于1976年提出的,因其表达式简单且 性能优良,被广泛运用到混沌映射中。Logistic混沌映射定义为: f(x)=μx(1-x),x∈[0,1] (1) 公式(1)中μ是分支参数,取值范围:0≤μ≤4,x为初始值,取值范围0≤x≤1。

常见信息隐藏技术..

编号:10013210439 南阳师范学院2014届毕业生 毕业论文 题目:常见信息隐藏技术的研究 完成人:刘豪一 班级:2010-04 学制:4年 专业:软件工程 指导教师:李争艳 完成日期:2014-03-15

目录 摘要 (1) 0引言 (1) 1信息隐藏技术的概念及特征 (1) 1.1信息隐藏技术的概念 (1) 1.2信息隐藏技术的特征 (2) 1.3信息隐藏的分类 (3) 2常见信息隐藏技术介绍 (3) 2.1隐写术 (3) 2.2数字水印技术 (4) 2.3可视密码技术 (5) 3常见信息隐藏技术算法实现 (5) 3.1隐写术算法概述 (5) 3.1.1时空域算法 (6) 3.1.2变换域算法 (6) 3.1.3压缩域算法 (7) 3.2数字水印技术算法介绍 (8) 3.2.1空域算法 (8) 3.2.2 Patchwork算法 (8) 3.2.3变换域算法 (8) 3.2.4压缩域算法 (9) 3.2.5 NEC算法 (10) 3.2.6生理模型算法 (10) 3.3可视密码技术实现方法 (10) 3.3.1(k,k)可视密码基本矩阵的构造 (10) 3.3.2(k,n)可视密码基本矩阵的构造 (11)

4信息隐藏技术的应用 (11) 4.1数字知识产权保护 (11) 4.2数据完整性鉴定 (12) 4.3数据保密 (12) 4.4资料不可抵赖性的确认 (13) 5信息隐藏技术的发展和未来趋势 (13) 6总结 (13) 参考文献 (14) Abstract (15)

常见信息隐藏技术的研究 作者:刘豪一 指导老师:李争艳 摘要:在信息化时代,随着计算机网络的迅猛发展,信息安全保密工作面临着动态变化的新形势和问题。本文主要介绍了信息隐藏的基本概念,主要特征,研究方法,技术分类等;研究了各种信息隐藏技术的算法实现;对信息隐藏技术的发展及未来趋势进行了分析和评述。 关键字:信息隐藏技术;数字水印;可视密码技术;隐写术 0引言 信息是人类社会和国家发展的重要战略资源。随着科学技术的快速发展,传统媒体内容正在向数字化转变。数据的交换与传输也变得更加快捷。但随之而来的日益严重的知识产权侵犯行为和基于加密的安全措施面临的严峻挑战,使得信息隐藏技术重新焕发活力。信息隐藏是与数学、密码学、信息论、计算机视觉以及其他计算机应用技术等多学科交叉的学科,是各国研究者所关注和研究的热点[1]。在信息隐藏研究中,可以分为基础理论研究、应用基础研究和应用研究。其中基础理论研究是建立图像信息隐藏的理论框架和若干理论模型,解决安全性度量、通信量分析等基本理论问题,以揭示信息隐藏中若干基本矛盾。信息隐藏的应用基础研究主要针对典型应用需求,研究各种信息隐藏算法和评估体系。信息隐藏的应用研究以图像信息隐藏技术的实用化为目的,研究针对各种应用的实用系统。本文通过对信息隐藏的理论研究学习,浅谈下常见信息隐藏技术的应用。 1 信息隐藏技术的概念及特征 1.1 信息隐藏技术的概念 信息隐藏主要研究如何将某一机密信息秘密隐藏于另一公开的信息(载体)中,然后通过公开信息的传输来传递机密信息。第三方则难以从公开信息中判断机密信息是否存在,难以截获机密信息,从而

信息隐藏实验十一LSB信息隐藏的RS分析

LSB 信息隐藏的RS 分析 一, 实验目的: 了解RS 隐写分析的原理,掌握一种图像LSB 隐写算法的分析方法,设计并实现一种基于图像的LSB 隐写的RS 隐写分析算法。 二, 实验环境 (1)Windows 7操作系统; (2)MATLAB R2012b 版本软件; (3)图像文件lena.bmp ; (4)S-Tools 工具; 三, 实验原理 1. RS 隐写分析原理 RS 主要是针对采用伪随机LSB 嵌入算法进行攻击的一种方法。RS 方法不但能检测出图像是否隐藏信息,而且还能比较准确地估算出隐藏的信息长度。 RS 隐写分析算法考虑图像各个位平面之间具有一定的非线性相关性,当利用LSB 隐写算法隐藏秘密信息后,这种相关性就会破坏。只要能找出衡量这一相关性的方法,并对隐藏秘密信息前后的情况加以对比,就有可能设计出隐写分析方法。 RS 隐写分析方法的理论核心是:任何经过LSB 隐写的图像,其最低比特位分布满足随机性,即0、1的取值概率均为1/2,而未经过隐写的图像不存在此特性。对于一个M N ?像素的图片,设各个像素的值取自集合P ,例如一个8bit 的灰度图像,{0,1,2, ,255}P =。将这些像素分为有着n 个相邻像素的子集,例 如n 可以取值为4,记为1234(,,,)G x x x x =。进一步利用如下函数表示图像块的空间相关性,即 1 12311 (,,, ,)n n i i i f x x x x x x -+==-∑ (1) 函数f 使得每一个集合G 都对应一个实数。G 中的噪声越大,函数f 的值越大。f 的值越小,说明图像相邻像素之间的起伏越小,而图像块的空间相关性越强。然后,定义集合P 上的3个函数:

相关文档
最新文档