基于角点检测的图像处理方法

基于角点检测的图像处理方法
基于角点检测的图像处理方法

基于角点检测的图像处理方法研究

摘要:本文主要研究了图像的角点检测方法,在计算机视觉中,机器视觉和图像处理后总,特征提取都是一个重要的方向。而角点又是图像的一个重要局部特征,它决定了图像中目标的形状,因此在图像匹配,目标描述与识别及运动估计,目标跟踪等领域,角点提取都具有重要的意义。角点的信息含量很高,可以对图像处理提供足够的约束,减少运算量,极大地提高运算速度。角点检测问题是图像处理领域的一个基础问题,是低层次图像处理的一个重要方法。角点检测的目的是为了匹配,而匹配的效率取决于角点的数量。Harris角点检测原理是对于一副图像,角点于自相关函数的曲率特性有关,自相关函数描述了局部局部图像灰度的变化程度。在角点处,图像窗口的偏移将造成自相关函数(图像灰度的平均变化)的显著变化。harris算子是一种简单的点特征提取算子,这种算子受信号处理中自相关函数的启发,给出与自相关函数相联系的矩阵M。M阵的特征值是自相关函数的一个阶曲率,如果两个曲率值都高,那么久认为该点是特征点。

关键词:角点,角点检测,Harris角点

ABSTRACT

This paper studies the image of the corner detection methods in computer vision, machine vision and image processing general, feature extraction is an important direction. The corner is an important local feature image, which determines the shape of the target image, so the image matching, object description and recognition and motion estimation, target tracking and other fields, corner detection are of great significance. Corner of the information content is high, image processing can provide sufficient constraints to reduce the amount of computation greatly improve the processing speed. Corner detection is a basic image processing problems, low-level image processing is an important way. Corner detection is designed to match the efficiency of the matching depends on the number of corners。Harris corner detection principle is that for an image, corner point on the curvature properties of the autocorrelation function is related to the local auto-correlation function describes the degree of local image intensity changes. In the corner point, the offset will result in the image window autocorrelation function (the average image intensity changes) change significantly. arris operator is a simple point feature extraction operator, this operator by the signal processing in the autocorrelation function of inspiration, given the autocorrelation function associated with the matrix M. Eigenvalues of matrix M is an order autocorrelation function of the curvature, if the two curvature values are high, for so long that the point is the feature points.

Key word: Corner , Corner detection , Harris Corner

目录

第一章绪论 (4)

1.1问题的提出及研究意义 (4)

1.2研究背景 (5)

1.3论文的主要工作 (6)

第二章角点检测 (7)

2.1角点概念及特征. (7)

2.2角点检测的研究意义 (7)

2.3角点检测的研究现状 (8)

2.4 角点检测算法 (8)

第三章角点检测的理论基础 (9)

3.1常用角点检测简介 (9)

3.2角点检测的标准 (9)

3.3基于模板的角点检测 (9)

3.4角点检测原理 (10)

第四章 Harris角点检测算法 (11)

4.1Harris算子特征 (11)

4.2Harris角点检测性质 (11)

4.3Harris角点检测原理 (11)

4.4Harris角点检测算法 (12)

4.5 SUSAN检测算法 (13)

第五章图片实现及结论 (16)

5.1基于Harris角点的图片实现 (16)

5.2基于susan检测实现的图片 (18)

5.3算法比较 (19)

5.4角点检测程序 (21)

第六章结语 (24)

参考文献 (25)

答谢 (26)

第一章绪论

1.1问题的提出及研究意义

人类正在进入信息时代,计算机将越来越广泛的进入几乎所有的领域。一方面是更多未经计算机专业训练的人需要应用计算机,而另一方面是计算机的功能越来越强,使用方法越来越复杂。这就使人在进行交谈和通讯时的灵活性于目前使用计算机时所要求严格和死板之间产生了尖锐的矛盾。为了使更多的人能够使用复杂的计算机,必须改变过去那种让人来适应计算机,来死记硬背计算机使用规则的情况。而是反过来让计算机来适应人的习惯和要求,以人所习惯的方式与人进行信息交换,也就是让计算机具有视觉、听觉、和说话的能力。特征提取是图像分析和图像配准的基础,也是运动物体跟踪的关键步骤之一。图像特征是由于拍摄场景的物理与几何特性使图像中局部的灰度产生明显变化而形成的。

图像特征的获取是顺利进行摄像机标定和立体视觉研究的前提和基础。图像特征主要包括图像边界、边缘点、角点、拐点和纹理等。特征提取的好坏直接影响到后面的标定精度和匹配精度。

图像、音频和视频为主的多媒体信息正在迅速成为信息交流与服务的主流。传统的数据库检索中采用的基于关键词的检索方式已不能满足人们的需要,基于内容的多媒体检索成为一个研究热点。正确的识别图像、音频和视频中的内容是基于内容的多媒体检索的一个前提。

图像角点检测是完成视觉处理的基本任务之一,也是图像处理基本任务。角点特征是影像的重要特征。角点时目标轮廓线上曲率的局部极大点,

对掌握目标的轮廓特征具有约束的作用。角点,作为一幅图像的特征,其数目将远远小于整个图像的像素数目。由于角点具有能够减少参与计算的数据量,同时又不损失影像的重要灰度信息的重要作用,在摄像机标定,匹配和三维重建中使用角点特征可以大大的提高其精度和速率。同时,角点特征是图像的重要特征,由于角点进行匹配能够大大减少计算量,因此角点在图像匹配中有良好的应用价值。尤其在实时处理中有很高的应用价值并且在实现摄影测量自动化和遥感影像匹配中,角点检测也具有重要作用.因此,研究角点检测算法具有重要的理论意义和实用价值。角点对于摄像机标定,匹配和重建具有非常重要的意义,角点检测结果直接影响到标定,匹配和重建的精度。

1.2研究背景

早期的角点检测方法是首先对图像进行区域分割,通过链码提边界,然后再边界上寻找方向变化较快的点,这种方法在很大程度上依赖于图像分割的效果,而后者本身就是一项比较复杂的工作。同时这类算法的计算复杂度很高。由于图像特征的重要性,所以早年在这个方向已经取得了许多研究成果,学术界在最近十余年进行了研究,基于不同的出发点和思路取得了一系列成果,对于不同的问题北京它们都有各自的应用价值。

到目前为止,在计算甲视觉和图像处理领域中关于角点还没有很好的数学定义,存在多种数学描述方法,因而在有关文献中涌现出很多角点检测方法。角点是图像的一种重要局部特征,留了图像中物体的重要特征信息的同时有效地减少了信息的数据量,使得对图像处理时运算量大大减少. 由于角点集中了图像上的很多重要的形状信息,角点具有旋转不变性,因此角点几

乎不受光照条件的影响. 在基于特征的图像配准、图像理解及模式识别等领域中,角点提取具有十分重要的意义. 在基于角点检测的图像配准中的关键技术就是精确的检测出需要配准的每幅图像中的角点,即角点检测技术。1.3论文的主要工作

首先,简单介绍有关角点检测的研究意义与它的背景。这里主要谈了国内外学者对角点检测以及图像处理方法的一些研究成果。

整个论文主要运用Harris和SUSAN两种不同的算法,并对其同一张图像进行不同方法的角点检测,实现被检测的图像,并比较其中的不同,然后得出检测结果,再加以分析两种检测方法的优缺点。

第二章角点检测

2.1角点概念及特征.

目前关于角点的具体定义和描述主要有如下几种:

角点是一阶导数(即灰度的梯度)的局部最大所对应的像素点。

角点是两条及两条以上边缘的交点。

角点指示了物体边缘变化不连续的方向。

角点处得一阶导数最大,二阶导数为零。

角点是指图像中梯度值和梯度方向的变化速率都很高的点。

角点特征是影像的重要特征,在各种影像特征中角点具有旋转不变性和不随光照条件改变而改变的优点.在一些应用中使用角点特征进行处理,可以减少参与计算的数据量,同时又不损失图像的重要灰度信息,利用角点特征进行匹配可以大大提高匹配的速度。

2.2角点检测的研究意义

角点是目标轮廓上曲率的局部极大点,对掌握目标的轮廓特征具有决定作用,一旦找到了目标的轮廓特征也就大致掌握了目标的形状。特征提取在计算机视觉、图像处理和机器视觉中一直是一个重要方向,而角点作为图像的一个重要特征,长期以来备受研究者关注,也取得了很多研究成果。一般认为角点式二维图像亮度变化最剧烈或图像边缘曲线上曲率值最大的像素点,能很好地被区分出来。具有旋转不变和不随光照条件变化而改变的优点,因此在图像匹配、摄像机标定、三维重建、运动物体的跟踪及模式识别等诸多领域有着重要应用。经过三十多年的发展,产生了大量的角点检测算法,

取得了很大的突破和进展,但这方面的研究仍一直在进行中,对存在的各种角点检测算法做一个详尽的综述是非常必要的。

2.3角点检测的研究现状

角点是图像的一种重要局部特征,角点在保留了图像中物体的重要特征

信息的同时有效地减少了信息的数据量,使得对图像处理时运算量大大减少. 由于角点集中了图像上的很多重要的形状信息,角点具有旋转不变性,因此

角点几乎不受光照条件的影响. 在基于特征的图像配准、图像理解及模式识别等领域中,角点提取具有十分重要的意义. 在基于角点检测的图像配准中

的关键技术就是精确的检测出需要配准的每幅图像中的角点,即角点检测技术.其在三维场景重建、运动估计、目标跟踪、目标识别、图像配准与匹配等计算机视觉领域起着非常重要的作用。

2.4 角点检测算法

目前的角点检测算法可归纳为3类:

1.基于灰度图像的角点检测:基于梯度;基于模板;基于模板梯度组合。

2.基于二值图像的角点检测。

3.基于轮廓曲线的角点检测。

第三章角点检测的理论基础

3.1常用角点检测简介

基于边缘的角点检测:基于边缘的方法先提取物体的边缘信息并以链码形式表示,然后寻找具有最大曲率的点作为角点。

这类方法的优点是易于实现, 并能得到角点的顺序关系, 但算法和处

理步骤过于复杂, 且检测结果很大程度上依赖于边缘特征的提取。

基于灰度的角点检测:直接对原图像进行处理, 利用角点本身的特点提取角点。这类算法速度快, 实时性强, 但定位精度不够, 还可能漏掉一些真实的角点。

3.2角点检测的标准

准确性:在角点检测的过程中,可以减小噪声对角点检测的影响,即使细小的角点也可以检测,即漏提取和误提取的角点越少越好。

精确性:在角点检测的过程中,提取到的角点的坐标应尽可能的准确,应尽可能的接近角点的实际位置,即提取到的角点应尽可能是角点的真实位置。

复杂性:角点检测的目的是为匹配和三维重建用的,角点检测的速度关系到后续工作的效率,所以,角点检测算法应简单,程序运行速度越快越好,减少人工干预,提高程序的自动化要求,满足实时性的要求。

3.3基于模板的角点检测

基于模板的角点检测:模板是根据需要建立的一个具有某种特性的小的

二维矩阵,是根据角点在图像边缘中的局部特征来建立的,反映了图像边缘局部点阵组合的特性。该算法具有很好的抗燥能力和鲁棒性。模板的半径越大,能够检测到得角度类型越多,定位越准确,同时计算量也越大。

3.4角点检测原理

角点检测的原理是:确定一个给定的n ×n 模板与

图像中所有n ×n 区域的相关性和相似性.

B retschi 提供了这样一套模板:

??????????-----444454555

在理想的情况下, 运用这套模板能够检测出所有角点,但是因为角点拥有大量的特征(点度、内角度、边缘的梯度) , 因此我们不可能设计出大量模板来匹配所有类型的角点. 所以,当用于角点检测的图像过于复杂, 或是待检测的图像中拥有大量不同种类或形状的角点时, 用这种基于模板的是不可行的,会导致所检测的角点不够全面,以致会影响到下一部的分析结果。

???????

???-----444554554

第四章 Harris角点检测算法

4.1Harris算子特征

Harris 算子是一种有效的点特征提取算子,其优点总结起来有:

①计算简单:Harris 算子中只用到灰度的一阶差分以及滤波,操作简单。

②提取的点特征均匀而且合理:Harris 算子对图像中的每个点都计算其兴趣值,然后在邻域中选择最优点。

③稳定:Harris算子的计算公式中只涉及到一阶导数,因此对图像旋转、灰度变化、噪声影响和视点变换不敏感,它也是比较稳定的一种点特征提取算子。

Harris 算子的局限性有:

①它对尺度很敏感,不具有尺度不变性。

②提取的角点是像素级的H。

4.2Harris角点检测性质

旋转不变性:椭圆转过一定角度但是其形状保持不变(特征是保持不变);

对于图像灰度的仿射变化具有部分的不变性;

对于图像几何尺度变化不具有不变性;

随尺度变化,Harris角点检测的性能下降。

4.3Harris角点检测原理

Harris角点检测原理是对于一副图像,角点于自相关函数的曲率特性有

关,自相关函数描述了局部局部图像灰度的变化程度。在角点处,图像窗口的偏移将造成自相关函数(图像灰度的平均变化)的显著变化。arris 算子是一种简单的点特征提取算子,这种算子受信号处理中自相关函数的启发,给出与自相关函数相联系的矩阵M 。M 阵的特征值是自相关函数的一个阶曲率,如果两个曲率值都高,那么久认为该点是特征点。

4.4Harris 角点检测算法

Harris 算子是是C.Harris 和J.Stephens 在1988 年提出的一种基于信号的点特征提取算法,也称为Plessey 角点检测算法。整个算法是受到信号处理中自相关函数的启发,引入与自相关函数相联系的矩阵M 。该算法通过建立与图像X 方向一阶导数和Y 方向一阶导数自相关函数相联系的对称矩阵M ,求取M 的两个特征值,而M 阵的特征值是自相关函数的一阶曲率,若两个曲率值都很高,则说明自相关函数呈尖顶形,表示该处为图像的角点。 对于一幅图像,角点和自相关函数的曲率特性有关。自相关函数描述了局部图像灰度的变化:

自相关函数如下: E(x,y)=[]????????=-++∑

x y v u V Y U X v u v u M xy I I w 2,,,,

其中矩阵M 为的近似Hessian 矩阵,其表达式如下:

??????=),()

,(),(),(y x B y x C y x C y x A M ),(),(2

y x G I y x A X ?=

),(),(2y x G I y x B Y ?=

)

,(),(y x G I y x C XY ?=

Harris算子R(x,y)定义为:

Harris角点检测只是涉及到简单的矩阵和一阶导数运算,能够根据阈值提取出局部“兴趣点”。

M

=

A

trace+

(B

)

)

(

k通常取0.04~0.06之间。当R(x,y)超过给定的阈值,则认为该点为图像的角点。

假设L1和L2是矩阵M的特征值,可以表示某一点的图像灰度自相关函数的极值曲率,它们成比例关系。若M的特征值L1和L2都相对较大,则证明在该店的图像灰度自相关函数的两个正交方向上的曲率极值比较大,进一步确认该点就是角点。

具体判定方法,可以通过判断特征值L1和L2来确定角点的位置:

1、如果两个曲率值都很小,则证明局部自相关函数很平坦,检测区域为平坦区域;

2、如果两个曲率中一个较大,另一个较小时,则说明E(x,y)垂直山脊的变化很大,而沿着山脊的变化很小,此处为一个边沿,即局部自相关函数呈现山脊状;

3、如果两个曲率都很大,则说明局部自相关函数有一个尖峰,此处为一个角点。

4.5 SUSAN检测算法

直接利用图像灰度相似性的比较,而不需计算梯度,具有算法简单、定位准确、抗噪声能力强等特点。因此,非常适于含噪图像或低对比度灰度图像的边缘检测。无论对直线,还是曲线边缘,SUSAN算法基本上可以检测出

所有的边缘,检测结果较好。虽然实验中没有达到一个象素的精度,但这主要是因为对边缘的两侧都应用了SUSAN算法,对具体的实际应用,可以对背景不再应用SUSAN算法,这样不但可以达到细化边缘的目的,而且运算量也大大减少。

SUSAN算法:

(1)算法描述;

对整幅图像中的所有象素,用圆形模板进行扫描,比较模板内每一象素与中心象素的灰度值,通过与给定的阀值比较,来判别该象素是否属于

USAN区域,如下式:C(r,r

0)=

??

?

?

?

>

-

-

t

r

I

r

I

if

t

r

I

r

I

if

)

(

)

(

)

(

)

(

1

0(1)

式(1)中c(r,r0)为模板内属于USAN区域的象素的判别函数;I(r0)是模板中心象素(核)的灰度值;I(r)为模板内其他任意象素的灰度值;t是灰度差门限。

图像中每一点的USAN区域大小可用下式表示:

n(r

)=∑

∈)

(0

)

,

(

r

D

r

r

r

c (2)

式(2)中D(r0)为以r0为中心的圆形模板区域。得到每个象素的USANn(r0)以后,再与预先设定得门限g进行比较,当n(r0)

(2)模板的选取

由于图像的数字化,实际上无法实现真正的圆形模板,所以都是采用近

似圆代替。但是模板较小时,如果门限选取不恰当,可能会发生边缘点漏检的情况。模板也不宜取得太大,否则会增大运算量大,通常可取5×5或37象素模板[1]。本文实验中均采用的是5×5的模板。

(3)门限t,g的确定

门限g决定了边缘点的USAN区域的最大值,即只要图像中的象素的USAN 值小于g,该点就被判定为边缘点。g过大时,边缘点附近的象素可能作为边缘被提取出来,过小则会漏检部分边缘点。

可以较好地提取出初始边缘点。如果要达到单象素的精度,还需进一步剔除多余象素。

门限t表示所能检测边缘点的最小对比度,也是能忽略的噪声的最大容限。t越小,可从对比度越低的图像中提取特征。因此对于不同对比度和噪声情况的图像,应取不同的t值。

第五章图片实现及结论5.1基于Harris角点的图片实现

图1(harris角点检测)

图2(harris角点检测)

图3(harris角点检测)

检测结果为:

优点:从上图我们可以看到Harris算法直接从原始图像中检测特征点,能够在图像发生灰度变化、旋转、和干扰噪声等情况下检测兴趣点。

缺点:定位性能差,在需要精确定位时不能满足要求。

5.2基于susan检测实现的图片

图4(susan角点检测)

图5(susan角点检测)

图6(susan角点检测)

检测结果为:

优点:基于susan的图片实现是一种直接利用图像灰度信息的检测算法,能够使检测过程不依赖于前期分割结果。不需要取噪处理。

缺点:稳定性差,阈值的选取直接影响到检测的准确性。

5.3算法比较

Moravec角点检测算法是一种比较传统的提取兴趣点的算法,由于该算法是通过计算水平、垂直、对角线、反对角线四个方向上灰度方差检测角点,该算子各项异性。具有思路简单,计算过程易于实现,判断条件少的优点,但其定位准确度不高,抗噪能力较低。

Harris角点检测算法是基于图像的灰度自相关函数的一种算法,该算法直接从原始图像中检测特征点,能够在图像发生灰度变化、旋转、和干扰噪

声等情况下检测兴趣点。相对于Moravec算法,在抗噪能力有了很大提高,

而且兼顾了效率和精度两方面的要求,误检测率低。

SUSAN角点检测算法是一种直接利用图像灰度信息的检测算法,由于不需要进行求导和梯度运算,具有很强的抗干扰能力,能够使检测过程不依赖于前期分割结果。不需要取噪处理,原因是不用计算图像的灰度导数。该算法可以检测出诸如V型、K型、X型、Y型、T型等各种类型的角点。

对前几节常用算法原理的分析,可以总结出各个算法在实际应用中的优点和不足之处,如下:

表I 常用算法分析表:

算法优点不足

Moravec角点检测算法1、算法思路简单,过

程易于实现;

2、判断条件少

1、定位准确度不高

2、抗燥能力较低

Harris角点检测算法1、采用差分求导方

式,计算简单

2、稳定性和鲁班性较

高;

角点提取可靠性高

1、定位性能差,在需要

精确定位时不能满

足要求;

2、阈值、变长量K和高

斯函数方差的数值

没有确定值。

SUSAN角点检测算法1、抗干扰能力强;

2、可以检测任何类型

的角点。

稳定性差,阈值的选取直

接影响到检测的准确性

数字图像处理试题库

试题库的收集: 直接打开百度文库,这样比较全面一些 输入:数字图像处理试题习题 名词解释: 选择题 1、数字图像的______ D___ 。 A 空间坐标离散,灰度连续 B 灰度离散,空间坐标连续 C 两者都是连续的 D 两者都是离散的 2、图像灰度量化用6 比特编码时,量化等级为__________ B A 32 个 B 64 个 C128 个D 256 个 3. 下面说法正确的是:(B ) A、基于像素的图像增强方法是一种线性灰度变换; B、基于像素的图像增强方法是基于空间域的图像增强方法的一种; C、基于频域的图像增强方法由于常用到傅里叶变换和傅里叶反变换,所以总比基于图像域的方法计算复杂较高; D、基于频域的图像增强方法比基于空域的图像增强方法的增强效果好

1、采用幕次变换进行灰度变换时,当幕次取大于1时,该变换是针对如下哪一类图像进行增强。 (B) A图像整体偏暗B图像整体偏亮 C图像细节淹没在暗背景中D图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。(B ) A平均灰度B图像对比度 C图像整体亮度D图像细节 3、计算机显示器主要采用哪一种彩色模型(A ) A、RGB B 、CMY或CMYK C、HSI D、HSV 4、采用模板]-1 1 ] T主要检测(A )方向的边缘。 A. 水平 B.45 C.垂直 D.135 5、下列算法中属于图象锐化处理的是:(C ) A.低通滤波 B.加权平均法 C.高通滤波 D.中值滤波 6、维纳滤波器通常用于(C ) A、去噪 B、减小图像动态范围 C、复原图像 D、平滑图 像 7、彩色图像增强时, C 处理可以采用RGB彩色模型。 A.直方图均衡化 B.同态滤波 C.加权均值滤波 D. 中值滤波 & B.滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A.逆滤波 B.维纳滤波 C.约束最小二乘滤波 D.同态 欢迎下载2

数字图像处理实验五

数字图像处理 实验 实验五:图像增强-空域滤波 学院:信息工程学院 姓名: 学号: 专业及班级: 指导教师:

一、 实验目的 进一步了解MatLab 软件/语言,学会使用MatLab 对图像作滤波处理,使学生有机会掌握滤波算法,体会滤波效果。 了解几种不同滤波方式的使用和使用的场合,培养处理实际图像的能力,并为课堂教学提供配套的实践机会。 二、 实验内容 (1)学生应当完成对于给定图像+噪声,使用平均滤波器、中值滤波器对不同强度的高斯噪声和椒盐噪声,进行滤波处理;能够正确地评价处理的结果;能够从理论上作出合理的解释。 (2)利用MATLAB 软件实现空域滤波的程序: I=imread('electric.tif'); J = imnoise(I,'gauss',0.02); %添加高斯噪声 J = imnoise(I,'salt & pepper',0.02); %添加椒盐噪声 ave1=fspecial('average',3); %产生3×3的均值模版 ave2=fspecial('average',5); %产生5×5的均值模版 K = filter2(ave1,J)/255; %均值滤波3×3 L = filter2(ave2,J)/255; %均值滤波5×5 M = medfilt2(J,[3 3]); %中值滤波3×3模板 N = medfilt2(J,[4 4]); %中值滤波4×4模板 imshow(I); figure,imshow(J); figure,imshow(K); figure,imshow(L); figure,imshow(M); figure,imshow(N); 三、实验具体实现 a) 调入并显示原始图像Sample2-1.jpg 。 b) 利用imnoise 命令在图像Sample2-1.jpg 上加入高斯(gaussian) 噪声 c)利用预定义函数fspecial 命令产生平均(average)滤波器 111191111---????--????---? ? d )分别采用3x3和5x5的模板,分别用平均滤波器以及中值滤波器,对加入噪声的图像进行处理并观察不同噪声水平下,上述滤波器处理的结果; e )选择不同大小的模板,对加入某一固定噪声水平噪声的图像进行处理,观察上述滤波器处理的结果。 f )利用imnoise 命令在图像Sample2-1.jp g 上加入椒盐噪声(salt & pepper)

数字图像处理试题(带答案)

样题: 2002级通信工程专业《数字图像处理》试卷A 卷 课程代码: 考试时间:120分钟 Image ProcessingFinal Exam 1、 Pseudocolor image(5 points> 伪彩色 图像中像素灰度分布的概率密度函数 3、 马赫带:当亮度为阶跃变化时,图像中显示出竖条灰 度梯级图像。已知从每一竖条宽度内反射出来的光强 一、名词解释<2小题,每题5分,共10分)

是均匀的,相邻竖条之间的强度差是常数,但看起来却发现每一竖条内左边比邮编稍亮一些,这种现象称马赫带效应。p1EanqFDPw 4、 C MY 色彩空间 CMY 色彩空间是一个矩形直角空间结构,其三基色分别为青

数字图像处理点运算和直方图处理

实验1 点运算和直方图处理 一、实验目的 1. 掌握利用Matlab图像工具箱显示直方图的方法 2. 掌握运用点操作进行图像处理的基本原理。 3. 进一步理解利用点操作这一方法进行图像处理的特点。 4. 掌握利用Matlab图像工具箱进行直方图均衡化的基本方法。 二、实验的硬件、软件平台 硬件:计算机 软件:操作系统:WINDOWS 7 应用软件:MATLAB 三、实验内容及步骤 1. 了解Matlab图像工具箱的使用。 2. 利用Matlab图像工具箱对图像进行点操作,要求完成下列3个题目中 的至少2个。 ⑴图1灰度范围偏小,且灰度偏低,改正之。 ⑵图2暗处细节分辨不清,使其能看清楚。 ⑶图3亮处细节分辨不清,使其能看清楚。 图1 图2 图3 3. 给出处理前后图像的直方图。 4. 利用MatLab图像处理工具箱中函数对以上图像进行直方图均衡化操 作,观察结果。 四、思考题 1. 点操作能完成哪些图像增强功能? 2. 直方图均衡化后直方图为何并不平坦?为何灰度级会减少? 五、实验报告要求

1.对点操作的原理进行说明。 2.给出程序清单和注释。 3.对处理过程和结果进行分析(包括对处理前后图像的直方图的分析)。 实验代码以及解读 点操作: I = imread('POINT1.BMP')。 %读入图像 j=rgb2gray(I)。%将图像转为灰度图像 INFO=IMFINFO('POINT1.BMP') %获取图片的格式、尺寸、颜色数量、修改时间等信息[l,r]=size(j)。%图片大小 figure。%建立一个图形框 subplot(221) imshow(j) %在两行两列的第一个位置放置图片j title('POINT1.BMP') %给该图片加上标题POINT1.BMP for m=1:l for n=1:r %从第一个像素循环到最后一个像素p1(m,n)=j(m,n)*1.2。%把各点乘上1.2得到p1图 end end for m=1:l for n=1:r p2(m,n)=j(m,n)*2。%%把各点乘上2得到p2图 end end for m=1:l for n=1:r p3(m,n)=j(m,n)*2+50。%把各点乘上2再加50得到p2图 end end subplot(222) imshow(p1) title('j(m,n)*1.2') %p1图放在第二个位置且冠名j(m,n)*1.2 subplot(223) imshow(p2) title('j(m,n)*2') %p1图放在第三个位置且冠名j(m,n)* 2 subplot(224) imshow(p3) title('j(m,n)*2+50') %p1图放在第四个位置且冠名j(m,n)*2+50 figure。%建立一个新的窗口并且依次显示以上四个图的直方图

《数字图像处理》试题及答案.

。中间过程:先补上一圈的 0:解:结果: y ,然后和模板 作卷积,例如 y 中的-4 是这样得到的: -4(即对应元 素相乘相加,其他的数同理。 1、如图为一幅 16 级灰度的图像。请写出均值滤波和中值滤波的 3x3 滤波器;说明这两种滤波器各自的特点;并写出两种滤波器对下图的滤波结果(只处理灰色区域,不处理边界)。(15 分)题5图答:均值滤波:中值滤波:(2 分)(2 分)均值滤波可以去除突然变化的点噪声,从而滤除一定的噪声,但其代价是图像有一定程度的模糊;中值滤波容易去除孤立的点、线噪声,同时保持图像的边缘。(5 分)均值滤波:(3 分)中值滤波:(3 分) 2. 设有编码输入 X={x1,x2,x3,x4,x5,x6}, 其频率分布分别为p(x1=0.4,p(x2=0.3, p(x3=0.1,p(x4=0.1, p(x5=0.06,p(x6=0.04, 现求其最佳霍夫曼编码。 3 对数字图像 f(i,j(图象 1进行以下处理,要求: 1 计算图像 f(i,j的信息量。(10 分) 2 按下式进行二值化,计算二值化图象的欧拉数。 0 0 1 2 3 2 1 3 1 5 6 6 2 6 2 1 3 7 0 7 2 5 3 2 2 6 6 5 7 0 2 3 1 2 1 3 2 2 1 1 3 5 6 5 6 3 2 2 2 7 3 6 1 5 4 0 1 6 1 5 6 2 2 1 解:1统计图象 1 各灰度级出现的频率结果为; 信息量为 )对于二值化图象,若采用 4-连接,则连接成分数为 4,孔数为 1,欧拉数为 4-1=3;若采用 8-连接,则连接成分数为 2,孔数为 2,欧拉数为 2-2=0; 1 给出一维连续图像函数傅里叶变换的定义,并描述空间频率的概念。解:1)一维连续图像函数的傅立叶变换定义为: 2)空间频率是指单位长度内亮度作周期变化的次数,对于傅立叶变换基函数,考虑的最大值直线在坐标轴上的截距为,则 表示空间周期,即为空间频率。 2、试给出把灰度范围(0,10)拉伸为(0,15),把灰度范围(10,20)移到(15,25),并把灰度范围(20,30)压缩为(25,30)的变换方程。解:如图所示,由公式

数字图像处理

院系:计算机科学学院 专业:计算机科学与技术 年级: 09级 课程名称:数字图像处理 组号: 25组 指导教师:孙阳光 学号: 姓名: 2012 年 6 月 13 日

年 级 班号学号 专 业 姓名实 验名称MATLAB图像处理编程基础 实验 类型 设计型综合型创新型 √ 实验目的或要求加深对数字图像处理理论课程的理解,进一步熟悉数字图像处理课程的相关算法和原理选择一副图像,叠加椒盐噪声,分别用邻域平均法和中值滤波法对该图像进行滤波,显示滤波后的图像,比较和分析各滤波器的效果。 选择一副图像,叠加零均值高斯噪声,设计一种处理方法,既能去噪声,又能保持边缘清晰。

实验原理(算法流程图或者含注释的源代码)二、算法原理 平滑滤波器用滤波模板确定的领域内象素的平均灰度值去代替图像中的每一个像素点的值,这种处理减少了图像灰度的“尖锐”变化,常称为邻域平均法。邻域平均法有力地抑制了噪声,同时也引起了模糊,模糊程度与邻域半径成正比。 中值滤波法是一种非线性平滑技术,它将每一象素点的灰度值设置为该点某邻域窗口内的所有象素点灰度值的中值.中值滤波法对消除椒盐噪音非常有效。 图像平滑往往使图像中的边界、轮廓变得模糊,为了减少这类不利效果的影响,这就需要利用图像锐化技术,使图像的边缘变的清晰。图像锐化处理的目的是为了使图像的边缘、轮廓线以及图像的细节变的清晰。 三、Matlab代码 1: I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = filter2(fspecial('average', 3), J); k2 = filter2(fspecial('average', 5), J); k3 = filter2(fspecial('average', 7), J); k4 = filter2(fspecial('average', 9), J); subplot(233); imshow(uint8(k1));title('3×3模板平滑滤波'); subplot(234); imshow(uint8(k2));title('5×5模板平滑滤波'); subplot(235); imshow(uint8(k3));title('7×7模板平滑滤波'); subplot(236); imshow(uint8(k4));title('9×9模板平滑滤波'); I = imread('eight.tif'); J = imnoise(I,'salt & pepper',0.02); subplot(231); imshow(I);title('原图象'); subplot(232); imshow(J);title('添加椒盐噪声图象'); k1 = medfilt2(J); k2 = medfilt2(J,[5,5]); k3 = medfilt2(J,[7,7]); k4 = medfilt2(J,[9,9]); subplot(233); imshow(k1);title('3×3模板中值滤波'); subplot(234); imshow(k2);title('5×5模板中值滤波'); subplot(235); imshow(k3);title('7×7模板中值滤波'); subplot(236); imshow(k4);title('9×9模板中值滤波');

数字图像处理实验5 冈萨雷斯

一、 实验目的: 实验五 彩色图像处理 1、使用 RGB 、Indexed 和 Gray 图像间转换函数 2、掌握彩色图像平滑与锐化的算法 3、彩色图像的分割 二、 实验内容 1、使用 RGB 、Indexed 和 Gray 图像间转换函数 对图像“Fig0630(01)(strawberries_fullcolor).tif ”使用 rgb2ind 分别产生 8 色抖 动和非抖动图像;使用 rgb2gray 实现图像转换,并使用函数 dither 产生其抖 动形式的图像。分别显示如下: 2、彩色图像平滑与锐化 对图像“ F ig0604(a)(iris).tif ” 在 RGB 空 间 实 现 彩色图像的平滑 ( w =ones (25)./(25*25))与锐化(w= [1 1 1 1 1; 1 1 1 1 1; 1 1 -24 1 1 ; 1 1 1 1 1; 1 1 1 1 1];)(函数 imfilter );输出结果分别如下:

在 HSI 空间实现彩色图像的平滑(w=ones (25)./(25*25)),(函数 imfilter, rgb2hsi, cat ),观察仅平滑亮度分量(intensity )和平滑全部三个分量结果的差 别。 3、彩色图像分割 用 colorseg 函 数 实 现 基 于 肤 色 的 人 脸 分 割 。 对 图 像 “'Fig0636(woman_baby_original).tif ”在 HSI 空间,用函数 colorseg 分别用参 数“euclidean ”和“mahalanobis ”实现人脸分割。结果类似如下:

数字图像处理知识点

1、点运算是否会改变图像内像素点之间的空间位置关系? 点运算是一种像素的逐点运算,它与相邻的像素之间没有运算关系,点运算不会改变图像内像素点之间的空间位置关系。 2、对图像灰度的拉伸,非线性拉伸与分段线性拉伸的区别? 非线性拉伸不是通过在不同灰度值区间选择不同的线性方程来实现对不同灰度值区间的扩展与压缩,而是在整个灰度值范围内采用统一的非线性变换函数,利用函数的数学性质实现对不同灰度值区间的扩展与压缩。 3.图像获取即图像的数字化过程,包括扫描、采样和量化。 4.图像获取设备由5个部分组成:采样孔,扫描机构,光传感器,量化器和输出存储体。 5.采样间隔越大,所得图像像素数越少,空间分辨率低,质量差,严重时出现马赛克效应 6.采样间隔越小,所得图像像素数越多,空间分辨率高,图像质量好,但数据量大 7.量化等级越多,所得图像层次越丰富,灰度分辨率高,图像质量好,但数据量大 8.量化等级越少,图像层次欠丰富,灰度分辨率低,会出现假轮廓现象,图像质量变差,但数据量小. 9.三种灰度插值方法—最近邻法、双线性插值法和三次内插法 10.图像增强的目的: 采用某种技术手段,改善图像的视觉效果,或将图像转换成更适合于人眼观察和机器分析识别的形式,以便从图像中获取更有用的信息。 11.空间域平滑滤波器方法分类: 1)局部平滑法 2) 超限像素平滑法 3) 灰度最相近的K个邻点平均法 4) 空间低通滤波法 12.图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。 13.图像恢复和图像增强一样,都是为了改善图像视觉效果,以及便于后续处理。只是图像增强方法更偏向主观判断,而图像恢复则是根据图像畸变或退化原因,进行模型化处理 14. (1)成象系统的象差、畸变、带宽有限等造成图像图像失真; (2)由于成象器件拍摄姿态和扫描非线性引起的图像几何失真; (3)运动模糊,成象传感器与被拍摄景物之间的相对运动,引起所成图像的运动模糊;

数字图像处理题库

[题目] 数字图像 [参考答案] 为了便于用计算机对图像进行处理,通过将二维连续(模拟)图像在空间上离散化,也即采样,并同时将二维连续图像的幅值等间隔地划分成多个等级(层次),也即均匀量化,以此来用二维数字阵列表示其中各个像素的空间位置和每个像素的灰度级数(灰度值)的图像形式称为数字图像。 图像处理 [参考答案] 是指对图像信息进行加工以满足人的视觉或应用需求的行为。 题目] 数字图像处理 [参考答案] 是指利用计算机技术或其他数字技术,对一图像信息进行某此数学运算及各种加工处理,以改善图像的视觉效果和提高图像实用性的技术。 一、绪论(名词解释,易,3分) [题目] 图像 [参考答案] 是指用各种观测系统以不同形式和手段观测客观世界而获得的、可以直接或间接作用于人的视觉系统而产生的视知觉的实体。 一、绪论(简答题,难,6分) [题目] 什么是图像?如何区分数字图像和模拟图像? [参考答案] “图”是物体透射或反射光的分布,是客观存在的。“像”是人的视觉系统对图在大脑中形成的印象或认识,是人的感觉。图像是图和像的有机结合,既反映物体的客观存在,又体现人的心理因素;图像是对客观存在的物体的一种相似性的生动模仿或描述,或者说图像是客观对象的一种可视表示,它包含了被描述对象的有关信息。 模拟图像是空间坐标和亮度(或色彩)都连续变化的图像;数字图像是空间坐标和亮度(或色彩)均不连续的、用离散数字(一般是整数)表示的图像。

[题目] 简述研究图像恢复的基本思路。 [参考答案] 基本思路是,从图像退化的数学或概率模型出发,研究改进图像的外观,从而使恢复以后的图像尽可能地反映原始图像的本来面日,从而获得与景物真实面貌相像的图像。 一、绪论(简答题,易,5分) [题目] 简述研究图像变换的基本思路。 [参考答案] 基本思路是通过数学方法和图像变换算法对图像的某种变换,以便简化图像进一步处理的过程,或在进一步的图像处理中获得更好的处理效果。 一、绪论(简答题,易,5分) [题目] 简述一个你所熟悉的图像处理的应用实例。 [参考答案] 比如,医学上用B超检测仪对人体器官病变的检查和诊断。 一、绪论(简答题,中,5分) [题目] 一般的数字图像处理要经过几个步骤?由哪经内容组成? [参考答案] 数字图像处理的基本步骤包括图像信息的获取、存储、处理、传输、输出和显示。 数字图像处理的内容主要包括图像数字化、图像变换、图像增强、图像恢复(复原)、图像压缩编码、图像分割、图像分析与描述和图像识别分类。 一、绪论(简答题,中,5分) [题目] 图像处理的目的是什么?针对每个目的请举出实际生活中的一个例子。 [参考答案] 图像处理就是对图像信息进行加工处理和分析,以满足人的视觉心旦需要和实际应用或某种目的(如压缩编码或机器识别)的要求。如视频图像的高清晰化处理、医学图像的识别分类及其在疾病断中的应用,就是图像处理这两个目的的实际例子。

数字图像处理

数字图像处理(MATLAB版) 实验指导书 (试用版) 本实验指导书配合教材和课堂笔记中的例题使用 姚天曙编写 安徽农业大学工学院 2009年4月试行

目录 实验一、数字图像获取和格式转换 2 实验二、图像亮度变换和空间滤波 6 实验三、频域处理7 实验四、图像复原9 实验五、彩色图像处理10 实验六、图像压缩11 实验七、图像分割13 教材与参考文献14

《数字图像处理》实验指导书 实验一、数字图像获取和格式转换 一、实验目的 1掌握使用扫描仪、数码相机、数码摄像级机、电脑摄像头等数字化设备以及计算机获取数字图像的方法; 2修改图像的存储格式;并比较不同压缩格式图像的数据量的大小。 二、实验原理 数字图像获取设备的主要性能指标有x、y方向的分辨率、色彩分辨率(色彩位数)、扫描幅面和接口方式等。各类设备都标明了它的光学分辨率和最大分辨率。分辨率的单位是dpi,dpi是英文Dot Per Inch的缩写,意思是每英寸的像素点数。 扫描仪扫描图像的步骤是:首先将欲扫描的原稿正面朝下铺在扫描仪的玻璃板上,原稿可以是文字稿件或者图纸照片;然后启动扫描仪驱动程序后,安装在扫描仪内部的可移动光源开始扫描原稿。为了均匀照亮稿件,扫描仪光源为长条形,并沿y方向扫过整个原稿;照射到原稿上的光线经反射后穿过一个很窄的缝隙,形成沿x方向的光带,又经过一组反光镜,由光学透镜聚焦并进入分光镜,经过棱镜和红绿蓝三色滤色镜得到的RGB三条彩色光带分别照到各自的CCD上,CCD将RGB光带转变为模拟电子信号,此信号又被A/D变换器转变为数字电子信号。至此,反映原稿图像的光信号转变为计算机能够接受的二进制数字电子信号,最后通过串行或者并行等接口送至计算机。扫描仪每扫一行就得到原稿x方向一行的图像信息,随着沿y方向的移动,在计算机内部逐步形成原稿的全图。扫描仪工作原理见图1.1。

数字图像处理实验

(1)矩阵图像的傅里叶变换 f=zeros(30,30); f(5:24,13:17)=1; imshow(f,'notruesize') F=fft2(f); F2=log(abs(F)); figure;imshow(F2,[-1 5],'notruesize');colormap(jet);colorbar;

-0.5 00.5 11.522.533.544.5 (2)图像的傅里叶变换 I=imread('concordorthophoto.png'); imshow(I); B=ffshift(fft2(I)); figure; imshow(log(abs(B)),[]),colorbar;

图像离散余弦变换 RGB=imread('hestain.png'); I=rgb2gray(RGB); imshow(RGB); J=dct2(I); figure,imshow(log(abs(J)),[]),colorbar; J(abs(J)<10)=0; K=idct2(J)/255; figure,imshow(K)

二(1) 直方图均衡化增强图像对比度程序I=imread('trees.tif'); J=imnoise(I,'salt & pepper',0.02); imshow(I);figure,imshow(J) K1=filter2(fspecial('average',3),J)/255; K2=filter2(fspecial('average',5),J)/255; K3=filter2(fspecial('average',7),J)/255; figure,imshow(K1) figure,imshow(K2) figure,imshow(K3)

武汉大学数字图像处理试题

一、 1、中值滤波:中值滤波是对一个滑动窗口内的诸像素灰度值排序,用中值代替窗口中心像素的原来灰度值,因此它是一种非线性的图像平滑法。 2、连接成分:在二值图像中,把互相连接的像素的集合汇集为一组,于是具有若干个0值的像素(0像素)和具有若干个1值的像素(1像素)的组就产生了。把这些组叫做连接成分。 3、图像分割:令集合R代表整个图像区域,对R的分割可看作将R分成N个满足以下五个条件的非空子集(子区域)R1,R2,…,R N: ①; ②对所有的i和j,i≠j,有R i∩R j =Φ; ③对i = 1,2,…,N,有P(R i) = TRUE; ④对i≠j,有P(R i∪R j) = FALSE; ⑤对i =1,2,…,N,R i是连通的区域。 其中P(R i)是对所有在集合R i中元素的逻辑谓词,Φ代表空集。 4、行程编码:通过改变图像的描述方式,来实现压缩。将一行中颜色值相同的相邻像素用一个计数值和该颜色值来代替。 5、模板匹配:模板匹配就是在一幅大图像中搜寻目标,已知 该图中有要找的目标,且该目标同模板有相同的尺寸、方向和图像,通过一定的算法可以

在图中找到目标,确定其坐标位置。 二、 1、简述纹理图像的灰度共生矩阵分析方法 灰度共生矩阵反映了图像灰度关于方向、相邻间隔、变化幅度的综合信息,它可作为分析图像基元和排列结构的信息。 作为纹理分析的特征量,往往不是直接应用计算的灰度共生矩阵,而是在灰度共生矩阵的基础上再提取纹理特征量,称为二次统计量。 一幅图像的灰度级数一般是256,这样计算的灰度共生矩阵太大。为了解决这一问题,在求灰度共生矩阵之前,常压缩为16级。 用灰度共生矩阵提取特征之前,要作正规化处理。 由灰度共生矩阵提取了14种特征。最常用的5个特征是:1)角二阶矩(能量)2)对比度(惯性矩)3)相关 4)熵 5)逆差矩 2、简述空间域图像平滑与锐化的区别与联系 为了抑制噪声改善图像质量所进行的处理称图像平滑或去噪。 在图像的识别中常需要突出边缘和轮廓信息。图像锐化就是增强图像的边缘或轮廓。 图像平滑通过积分过程使得图像边缘模糊,图像锐化则通过微分而使图像边缘突出、清晰。 3、叙述图像逆滤波恢复的方法 (1)对退化图像g(x,y)作二维离散傅立叶变换,得到G(u,v); (2)计算系统点扩散函数h(x,y)的二维傅立叶变换,得到H(u,v); (3)逆滤波计算F(u,v)=G(u,v)/H(u,v); (4)计算F(u,v)的傅里叶逆变换,求得f(u,v)。 4、边缘增强与边缘检测有何区别 边缘增强是将遥感图像(或影像)相邻像元(或区域)的亮度值(或色调)相差较大的边缘(即影像色调突变或地物类型的边界线)处加以突出强调的技术方法。 如果将边缘认为是一定数量点亮度发生变化的地方,那么边缘检测大体上就是计算这个亮度变化的导数。 如有侵权请联系告知删除,感谢你们的配合!

数字图像处理实验

《数字图像处理》 实验报告 学院:信息工程学院 专业:电子信息工程 学号: 姓名: 2015年6月18日

目录 实验一图像的读取、存储和显示 (2) 实验二图像直方图分析 (6) 实验三图像的滤波及增强 (15) 实验四噪声图像的复原 (19) 实验五图像的分割与边缘提取 (23) 附录1MATLAB简介 (27)

实验一图像的读取、存储和显示 一、实验目的与要求 1.熟悉及掌握在MATLAB中能够处理哪些格式图像。 2.熟练掌握在MATLAB中如何读取图像。 3.掌握如何利用MATLAB来获取图像的大小、颜色、高度、宽度等等相关信息。 4.掌握如何在MATLAB中按照指定要求存储一幅图像的方法。 5.图像的显示。 二、实验原理 一幅图像可以被定义为一个二维函数f(x,y),其中x和y是空间(平面)坐标,f 在任何坐标处(x,y)处的振幅称为图像在该点的亮度。灰度是用来表示黑白图像亮度的一个术语,而彩色图像是由单个二维图像组合形成的。例如,在RGB彩色系统中,一幅彩色图像是由三幅独立的分量图像(红、绿、蓝)组成的。因此,许多为黑白图像处理开发的技术适用于彩色图像处理,方法是分别处理三副独立的分量图像即可。图像关于x和y坐标以及振幅连续。要将这样的一幅图像转化为数字形式,就要求数字化坐标和振幅。将坐标值数字化成为取样;将振幅数字化成为量化。采样和量化的过程如图1所示。因此,当f的x、y分量和振幅都是有限且离散的量时,称该图像为数字图像。 三、实验设备 (1) PC计算机 (2) MatLab软件/语言包括图像处理工具箱(Image Processing Toolbox) (3) 实验所需要的图片 四、实验内容及步骤 1.利用imread( )函数读取一幅图像,假设其名为flower.tif,存入一个数组中; 2.利用whos 命令提取该读入图像flower.tif的基本信息; 3.利用imshow()函数来显示这幅图像; 4.利用imfinfo函数来获取图像文件的压缩,颜色等等其他的详细信息; 5.利用imwrite()函数来压缩这幅图象,将其保存为一幅压缩了像素的jpg文件设为flower.jpg语法:imwrite(原图像,新图像,‘quality’,q), q取0-100。 6.同样利用imwrite()函数将最初读入的tif图象另存为一幅bmp图像,设为flower.bmp。 7.用imread()读入图像:Lenna.jpg 和camema.jpg; 8.用imfinfo()获取图像Lenna.jpg和camema.jpg 的大小;

数字图像处理试题及答案61118

数字图像处理 试题卷(A ) 考试形式(开、闭卷):闭卷 答题时间:120 (分钟) 本卷面成绩占课程成绩 80 % 一、填空题(每题1分,共15分) 1、列举数字图像处理的三个应用领域 医学 、天文学 、 军事 2、存储一幅大小为10241024?,256个灰度级的图像,需要 8M bit 。 3、亮度鉴别实验表明,韦伯比越大,则亮度鉴别能力越 差 。 4、直方图均衡化适用于增强直方图呈 尖峰 分布的图像。 5、依据图像的保真度,图像压缩可分为 无损压缩 和 有损压缩 6、图像压缩是建立在图像存在 编码冗余 、 像素间冗余 、 心理视觉冗余 三种冗余基础上。 7、对于彩色图像,通常用以区别颜色的特性是 色调 、 饱和度 亮度 。 8、对于拉普拉斯算子运算过程中图像出现负值的情况,写出一种标定方法: min max min ( (,))*255/()g x y g g g -- 二、选择题(每题2分,共20分) 1、采用幂次变换进行灰度变换时,当幂次取大于1时,该变换是针对如下哪一 类图像进行增强。( B ) A 图像整体偏暗 B 图像整体偏亮 C 图像细节淹没在暗背景中 D 图像同时存在过亮和过暗背景 2、图像灰度方差说明了图像哪一个属性。( B ) A 平均灰度 B 图像对比度 C 图像整体亮度 D 图像细节 姓名: 班级: 学号: 遵 守 考 试 纪 律 注 意 行 为 规 范

3、计算机显示器主要采用哪一种彩色模型( A ) A 、RG B B 、CMY 或CMYK C 、HSI D 、HSV 4、采用模板[-1 1]T 主要检测( A )方向的边缘。 A.水平 B.45? C.垂直 5、下列算法中属于图象锐化处理的是:( C ) A.低通滤波 B.加权平均法 C.高通滤波 D. 中值滤波 6、维纳滤波器通常用于( C ) A 、去噪 B 、减小图像动态范围 C 、复原图像 D 、平滑图像 7、彩色图像增强时, C 处理可以采用RGB 彩色模型。 A. 直方图均衡化 B. 同态滤波 C. 加权均值滤波 D. 中值滤波 8、__B__滤波器在对图像复原过程中需要计算噪声功率谱和图像功率谱。 A. 逆滤波 B. 维纳滤波 C. 约束最小二乘滤波 D. 同态滤波 9、高通滤波后的图像通常较暗,为改善这种情况,将高通滤波器的转移函数加 上一常数量以便引入一些低频分量。这样的滤波器叫 B 。 A. 巴特沃斯高通滤波器 B. 高频提升滤波器 C. 高频加强滤波器 D. 理想高通滤波器 10、图象与灰度直方图间的对应关系是 B __ A.一一对应 B.多对一 C.一对多 D.都不 三、判断题(每题1分,共10分) 1、马赫带效应是指图像不同灰度级条带之间在灰度交界处存在的毛边现象。 ( √ ) 2、高斯低通滤波器在选择小的截止频率时存在振铃效应和模糊现象。( × ) 3、均值平滑滤波器可用于锐化图像边缘。( × ) 4、高频加强滤波器可以有效增强图像边缘和灰度平滑区的对比度。( √ ) 5、图像取反操作适用于增强图像主体灰度偏亮的图像。( × ) 6、彩色图像增强时采用RGB 模型进行直方图均衡化可以在不改变图像颜色的基 础上对图像的亮度进行对比度增强。( × ) 7、变换编码常用于有损压缩。( √ ) 8、同态滤波器可以同时实现动态范围压缩和对比度增强。( √ ) 9、拉普拉斯算子可用于图像的平滑处理。( × ) 10、当计算机显示器显示的颜色偏蓝时,提高红色和绿色分量可以对颜色进行 校正。( √ ) 教研室主任签字: 第1页(共 7 页)

数字图像处理工具箱

1. 图像和图像数据 缺省情况下,MATLAB将图像中的数据存储为双精度类型(double),64位浮点 数,所需存储量很大;MATLAB还支持另一种类型无符号整型(uint8),即图像矩 阵中每个数据占用1个字节。 在使用MATLAB工具箱时,一定要注意函数所要求的参数类型。另外,uint8 与double两种类型数据的值域不同,编程需注意值域转换。 从uint8到double的转换 --------------------------------------------- 图像类型MATLAB语句 --------------------------------------------- 索引色 B=double(A)+1 索引色或真彩色 B=double(A)/255 二值图像 B=double(A) --------------------------------------------- 从double到uint8的转换 --------------------------------------------- 图像类型MATLAB语句 --------------------------------------------- 索引色B=uint8(round(A-1))

索引色或真彩色 B=uint8(round(A*255)) 二值图像B=logical(uint8(round(A))) --------------------------------------------- 2. 图像处理工具箱所支持的图像类型 2.1 真彩色图像 R、G、B三个分量表示一个像素的颜色。如果要读取图像中(100,50)处的像素值, 可查看三元数据(100,50,1:3)。 真彩色图像可用双精度存储,亮度值范围是[0,1];比较符合 习惯的存储方法是用无 符号整型存储,亮度值范围[0,255] 2.2 索引色图像 包含两个结构,一个是调色板,另一个是图像数据矩阵。调色 板是一个有3列和若干行 的色彩映象矩阵,矩阵每行代表一种颜色,3列分别代表红、绿、蓝 色强度的双精度数。 注意:MATLAB中调色板色彩强度[0,1],0代表最暗,1代表最亮。 常用颜色的RGB值 -------------------------------------------- 颜色R G B 颜 色 R G B

数字图像处理实验

研究性实验五 一、实验说明: 一个用瓶子装各种工业化学品的装瓶公司听说你成功解决了成像问题,并雇佣你设计一种检测瓶子未装满的方法。当瓶子在传送带上运动,并通过自动装填机和封盖机进行包装时有如下图所示的情景。当液体平面低于瓶颈底部和瓶子肩部的中间点时,认为瓶子未装满。瓶子的横断面上的倾斜部分及侧面定义为瓶子的肩部。瓶子在不断移动,但公司有一个图像系统,装备了有效捕捉静止图像的前端闪光照明设备。所以你可以得到非常清晰的图像。基于以上你得到的资料,提出一个检测未完全装满的瓶子的解决方案。清楚地表述你做的所有设想和很可能对你提出的解决方案产生影响的假设。 二、实验思路分析: 三、实验步骤 步骤一:读入原始图像

步骤二:将图像进行二值化处理 BW = im2bw(I,0.7); 由于原始图像中白色比较明显,瓶身的颜色和背景比较相近,所以直接进行二值化处理,将未装满液体的信息提取出来。 步骤三:将图像聚类后进行连通域的膨胀。 将图像二值化后发现图中存在噪声,选择将图像进行模糊膨胀后再二值化处理,从而去掉小连通域的干扰。 步骤四:重新二值化膨胀后的图像

步骤五:标记连通域,并统计每个连通域的面积。 经统计得到从左到右的连通域面积分别为3495 4398 11212 4398 2573,限定范围,可知11212对应的连通域所对应的瓶子是不符合要求的。 四、实验代码 功能:找出图像中灌装不合格的瓶子。 说明:(1)输入的图像必须是灰度图,否则需要将之格式转换。 (2)图像处理的步骤是:①对灰度图像glass.jpg进行二值化,②进行形态学处理, ③计算白色连通区域的面积和质心等,④通过判断质心的坐标和未装灌的面积得出是否合格。图像处理后五个白色区域面积为: [2374, 2739, 8381, 2739, 1660;] 五个质心的坐标数据: [20.6251,48.0434,138.6046,46.6575,256.2667,84.9748,376.6046,46.6575,484.6181,47.9084;] 通过没有装灌部分的面积大于2900来判定装灌不合格,两个合格的值为2739,其余未照全的部分判断还可以 根据其质心判断,合格的瓶子为46.6575,坐标过大也不合格,这里取50。 源代码: clear all; close all; T = 200; % 全局阈值200时效果要好一些,手动选出的值 %step1 读取和显示原始图像,显示原始图像的直方图 picOP = imread('glass.jpg'); % 读入图像 figure,imshow(picOP),title('原始灰度图像'); % 显示图像 figure, imhist(picOP), title('原始灰度图像直方图'); % 显示原始图像的直方图 % step2 转化为二值图像 picB = picOP; % 复制灰度图像到picB picBW = im2bw(picB,T/255); % 采用全局阈值进行灰度图像转变为二值图像 figure,imshow(picBW),title('全局阈值下二值图像'); % 显示二值图像 % step3 进行形态学操作,转化为有利于处理的图像 picMORPHOLOGY = picBW ; % 复制准备形态学处理 se = strel('square',10); % 结构化元素 fo = imopen(picMORPHOLOGY,se); % 开操作 figure,imshow(fo),title('开运算之后图像'); % 输出开运算之后图像 % step4 计算出各个白色连通区域(未装灌区域)面积和质心坐标

数字图像处理实验5 图像压缩

实验5 图像压缩 一.实验目的: 1.掌握图像压缩的原理——编码冗余,压缩比C R的计算等。 2.了解并掌握霍夫曼编码的原理、实现步骤。 3.掌握JPEG标准——通用的图像压缩/解压缩编码标准。 二.实验内容: 1.利用已给出的MATLAB自编函数库matlab_function文件夹,实现压缩比的计算。 2.对信号源符进行霍夫曼编码,以消除信源的冗余数据。 3.练习JPEG标准的压缩/解压缩技术。 三.实验原理: 1.图像压缩比C R的计算 函数imratio(f1, f2),计算图像压缩比C R,该函数来自MATLAB自编函数库matlab_function文件夹,语法如下: imratio(imread(‘filename’), ‘filename.jpg’) //第二个参数‘filename.jpg’仅是文件名,实际上是一个结构,内含压缩 //后的各种压缩信息,并不代表图像本身 >>f = imread(‘E:\医学图像处理实验讲义\实验五\car_lady.jpg’) >>imfinfo E:\医学图像处理实验讲义\实验五\car_lady.jpg //查看图像文件的详细信息 >>imwrite(f, ‘car_lady25.jpg’, ‘quality’, 25) //将压缩后的图像存到MATLAB默认路径中 >>imfinfo car_lady25.jpg //可依据图像信息计算出压缩率 >>f25 = imread(‘car_lady25.jpg’) >>Cr = imratio (f25, ‘car_lady25.jpg’) 2.霍夫曼编码 符号概率 a1 0.1875 a2 0.5 a3 0.125 a4 0.1875 函数huffman(p)进行霍夫曼编码,语法: huffman(p) //p为向量符号 >>p = [0.1875 0.5 0.125 0.1875] >>c = huffman(p)

数字图像处理试卷及答案

《数字图像处理》模拟试卷(A 卷) 一、单项选择题(从下列各题四个备选答案中选出一个正确答案,并将其代号填在题前的括号内。答案选错或未作选择者,该题不得分。每小题1分,共10分)( d )1.一幅灰度级均匀分布的图象,其灰度范围在[0,255],则该图象的信息量为: a. 0 b.255 c.6 d.8 ( b )2.图象与灰度直方图间的对应关系是: a.一一对应 b.多对一 c.一对多 d.都不对 ( d )3.下列算法中属于局部处理的是: a.灰度线性变换 b.二值化 c.傅立叶变换 d.中值滤波 ( b )4.下列算法中属于点处理的是: a.梯度锐化 b.二值化 c.傅立叶变换 d.中值滤波 ( d ) 5.一曲线的方向链码为12345,则曲线的长度为 a.5 b.4 c.5.83 d.6.24 ( c )6. 下列算法中属于图象平滑处理的是: a.梯度锐化 b.直方图均衡 c. 中值滤波 https://www.360docs.net/doc/df6404785.html,placian增强 ( b )7.下列图象边缘检测算子中抗噪性能最好的是: a.梯度算子 b.Prewitt算子 c.Roberts算子 d. Laplacian算子 ( c )8.采用模板[-1 1]主要检测____方向的边缘。 a.水平 b.45° c.垂直 d.135° ( d )9.二值图象中分支点的连接数为: a.0 b.1 c.2 d.3 ( a )10.对一幅100′100像元的图象,若每像元用8bit表示其灰度值,经霍夫曼编码后压缩图象的数据量为40000bit,则图象的压缩比为: a.2:1 b.3:1 c.4:1 d.1:2 二、填空题(每空1分,共15分) 1.图像锐化除了在空间域进行外,也可在频率域进行。 2.图像处理中常用的两种邻域是4-邻域和8-邻域。 3.直方图修正法包括直方图均衡和直方图规定化两种方法。 4.常用的灰度内插法有最近邻元法双线性内插法(双)三次内插法 5.多年来建立了许多纹理分析法,这些方法大体可分为统计分析法和结构分析法两大类。 6.低通滤波法是使高频成分受到抑制而让低频成分顺利通过,从而实现图像平滑。 7.检测边缘的Sobel算子对应的模板形式为 和。 8.一般来说,采样间距越大,图象数据量少,质量差;反之亦然。 三、名词解释(每小题3分,共15分) 1.数字图像

相关文档
最新文档