照相机成像原理

照相机成像原理
照相机成像原理

照相机成像原理

自动对焦原理分析:

术语:

焦点:凸透镜轴心以外无论什么方向来的光线,在通过凸透镜后,都会被折射,并交汇于一点,而光线的交会点称为焦点

焦平面:通常将能够清晰成像位置上所有点组成的平面叫做焦平面。

对焦:调整镜头与感光元件之间的距离使被摄物能清晰成像的过程我们称之为对焦。有些相机的对焦是通过镜片位置的变化实现。

自动对焦技术(Auto Focus:当相机对准被摄物体后,相机的聚焦系统就会自动测量其距离,并通过内部智能芯片处理,带动电动对焦装置进行对焦

超焦距:对于人眼来说“清晰”并不是一种绝对的概念,对焦点前后一定距离内的景物的成像都可以认为是清晰的,因此,人们称对焦点前后的能清晰成像的距离为超焦距

一款照相机/拍照手机在拍摄功能方面的改进包括像素指标以及一些特殊功能,比如Auto Focus自动对焦功能。这些功能的原理?

我们先来认识相机对焦的过程。在描述相机镜头结构时我们经常用到多少枚多少组镜片的表述方式,但无论镜头结构多么复杂,实际上都可以被视为一片凸透镜。基本的光学原理告诉我们,凸透镜轴心以外无论什么方向来的光线,在通过凸透镜后,都会被折射,并交汇于一点,而光线的交会点称为焦点,通常将能够清晰成像位置上所有点组成的平面叫做焦平面。处在焦平面的物体,相机都能清晰的拍摄下来,而离焦平面前后越远的景物,成像就越模糊。

图为:拍照原理图

然而在实际拍摄的时候,被摄物体与相机之间的相对距离,总是会发生变化的。为了使不同距离的被摄物体能够在焦平面上清晰成像,我们必须随时调整镜头与感光元件之间的距离。而调整镜头与感光元件之间的距离使被摄物能清晰成像的过程我们称之为对焦。一般来说,在数码相机或手机里的感光元件(CCD或COMS)的位置是固定的,因此对焦实际上就是通过镜片位置的变化实现的。

而自动对焦技术(Auto Focus,简称AF)就是当相机对准被摄物体后,相机的聚焦系统就会自动测量其距离,并通过内部智能芯片处理,带动电动对焦装置进行对焦。自动对焦技术的诞生使对焦更精确,让摄影变得简单。

图为:拍照原理图

看到这里大家可能会产生这样的疑问:某些低档相机并不具备任何对焦功能,但同样能在大多数情况下拍摄出清晰的图像,这是为什么呢?因为对于人眼来说“清晰”并不是一种绝对的概念,所以,对焦点前后一定距离内的景物的成像都可以认为是清晰的,人们称对焦点前后的能清晰成像的距离为超焦距。通常小光圈、短焦距和较远的拍摄距离能获得较大的超焦距,因此相机一般都有最近拍摄距离,当实际拍摄距离少于其最近拍摄距离时影像就会模糊。

拍照原理图

照相机成像原理和构造

照相机成像原理和构造 光博会后看到照相机后的观后感,了解照相机原理及构造,以下资料来自专业人士介绍以及所学工程光学教材知识。 照相机的镜头是一个凸透镜,来自物体的光经过凸透镜后,在胶卷上形成一个缩小、倒立的实像。 胶卷上涂着一层感光物质,它能把这个像记录下来,经过显影、定影后成为 底片,用底片洗印就得到相片。 照相时,物体离照相机镜头比较远,像是倒立、缩小的。 照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。

最早的照相机结构十分简单,仅包括暗箱、镜头和感光材料。现代照相机比较复杂,具有镜头、光圈、快门、测距、取景、测光、输片、计数、自拍等系统,是一种结合光学、精密机械、电子技术和化学等技术的复杂产品。 1550年,意大利的卡尔达诺将双凸透镜置于原来的针孔位置上,映像的效果比暗箱更为明亮清晰;1558年,意大利的巴尔巴罗又在卡尔达诺的装置上加上光圈,使成像清晰度大为提高;1665年,德国僧侣约翰章设计制作了一种小型的可携带的单镜头反光映像暗箱,因为当时没有感光材料,这种暗箱只能用于绘画。 1822年,法国的涅普斯在感光材料上制出了世界上第一张照片,但成像不太清晰,而且需要八个小时的曝光。1826年,他又在涂有感光性沥青的锡基底版上,通过暗箱拍摄了一张照片。 1839年,法国的达盖尔制成了第一台实用的银版照相机,它是由两个木箱组成,把一个木箱插入另一个木箱中进行调焦,用镜头盖作为快门,来控制长达三十分钟的曝光时间,能拍摄出清晰的图像。 1860年,英国的萨顿设计出带有可转动的反光镜取景器的原始的单镜头反光照相机;1862年,法国的德特里把两只照相机叠在一起,一只取景,一只照相,构成了双镜头照相机的原始形式;1880年,英国的贝克制成了双镜头的反光照相机。 随着感光材料的发展,1871年,出现了用溴化银感光材料涂制的干版,1884年,又出现了用硝酸纤维(赛璐珞)做基片的胶卷。 随着放大技术和微粒胶卷的出现,镜头的质量也相应地提高了。1902年,德国的鲁道夫利用赛得尔于1855年建立的三级像差理论,和1881年阿贝研究成功的高折射率低色散光学玻璃,制成了著名的“天塞”镜头,由于各种像差的降低,使得成像质量大为提高。在此基础上,1913年德国的巴纳克设计制作了使用底片上打有小孔的、35毫米胶卷的小型莱卡照相机。 不过这一时期的35毫米照相机均采用不带测距器的透视式取景器。1930年制成彩色胶卷;1931年,德国的康泰克斯照相机已装有运用三角测距原理的双像重合测距器,提高了调焦准确度,并首先采用了铝合金压铸的机身帘快门。

相机工作原理

工作原理 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图像信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 单反相机取景器 单反相机的取景器称为TTL(Through The Lens)单反取景器。这是专业相机上必备的取景方式,也是真正没有误差、通过镜头的光学取景器。这种取景器的取景范围可达实拍画面的95%。惟一缺点就是如果镜头过小,取景器会很暗淡,影响手动对焦。不过现在都具备自动对焦,这一点已无大碍。当然,如用了TTL单反取景器,为了不使取景器过暗,厂家自会用大口径高级镜头,所以目前单反相机的镜头普遍较大,就是这个因素造成的。从取景器中看到的影响是通过:一次反射(面镜)、二次全反射(五菱镜)CCD获取图象信息是当拍摄的瞬间面镜弹起来,然后打开快门暴光的。 反光镜的翻起动作带来了一些问题: 拍摄照片的瞬间,取景器会被挡住。由于被遮挡的时间只是刹那间的事情,因此这对于立即复位的反光镜来说并不是什么主要问题。但是,又引出了一些偶然性问题。例如,在使用频闪光拍摄时,将不能通过取景器看到频闪装置是否闪光正常。 反光镜运动的噪声。这在需要安静的场所这可能会成为重要问题。由于测距取景式照相机中没有突然阻挡光路的移动反光镜,所以不会产生这种噪声。 相机的震动,即由反光镜的翻起动作所造成的照相机整体的运动。假设用1/500秒的快门速度进行拍摄,那么不必担心。这种震动不至被察觉。但是,如果以较低的快门速度拍摄一幅精确照片的话,比如在微弱的光线下使用远摄镜头进行拍摄时,这种震动对成像就可能很成问题。 使用SLR取景还存在另一个问题。比如我们想使用f/32这样的小光圈进行拍摄,而光圈f/32允许进入镜头的光线是非常微弱的,这会导致取景器中看到的影像也很暗淡,可能会难以聚焦。 单反相机主要特点 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 单反就是指光线直接照到取景器上,而不用通过棱镜的反射! 光线损失的少!

照相机的组成及工作原理

本文摘自再生资源回收-变宝网(https://www.360docs.net/doc/df6444532.html,)照相机的组成及工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。 一、照相机的组成 镜头 取景器 快门和光圈 输片计数机构 机身 二、照相机的工作原理 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。 三、照相机的分类划分 1、照相机根据其成像介质的不同

可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性

多光谱相机原理及组成

多光谱相机原理及组成 多光谱成像技术自从面世以来,便被应用于空间遥感领域。而随着搭载平台的小型化和野外应用的需求,光谱成像仪在农业、林业、军事、医药、科研等领域的需求也越来越大。而在此之前成像技术并没有那么高,只能对特定的单一的谱段进行成像。虽然分辨率高但是数据量大难以进行分析、存储、检索,而多光谱成像是将所有的信息结合在一起,这不仅仅是二维空间信息,同时也把光谱的辐射信息也包含在内,从而在更宽的谱段范围内成像。 多光谱相机的基本构成 1.光学系统 可以在各个谱段内范围内成像,可以很好的的控制杂散光,是多光谱相机最重要的部分,对工作谱段范围和分辨能力起了决定性的作用,还可以设定工作焦距视场角大小等 2.控制和信息处理器 控制监督多光谱相机的整个工作过程,并收集图像数据,并进行储存。 3.热控装置 由温度控制器、隔热材料、散热器、热控涂层等组成 4.其他结构 物镜、电路系统、探测器及其他零配件 多光谱相机的工作谱段范围 人眼所能能识别的光谱区间为可见光区间,波长从400nm到700nm;普通数码相机的光谱响应区间与人眼识别的光谱区间相同,包含蓝、绿、红、三个波段;而多光谱相机的工作谱段范围在其基础上,可以分可见光、近红外光、紫外光等每台多光谱相机的分辨率不同,所应用的领域也不同 就比如说我们在做植被调查的时候,植被的可见光波段对绿色比较敏感对红色和蓝色反射较弱。相对于可见光波段,植被在近红外波段具有很强的反射特性,多数植被在可见光波段的光谱差异很小。而在近红外波段的光谱差异更大,光谱差异越明显越有利于分类。 光谱特性 我们知道像素运用复杂的大气准则来,复原反射光谱和辐射光谱所的到的数据分析,得到不同物质的反射率不同,称之为光谱特征。如果有足够的光谱特证,可用于识别场景中的专用材质,其中包括光谱范围、宽度、分辨率。范围是指相机获取图像来自的光谱段,谱段的宽度反映了谱段设置的要求、通过努力衡量大气中物质的光谱特性还有传感器的光谱响应,就要考虑大气中的吸收和散射。多光谱相机的光学系统 光学系统是指由透镜、反射镜、棱镜和光阑等多种光学元件按一定次序组合成的系统。通常用来成像或做光学信息处理。曲率中心在同一直线上的两个或两个以上折射(或反射)球面组成的光学系统称为共轴球面系统,曲率中心所在的那条直线称为光轴。其中参数包括焦距、视场角、相对孔径等。 多光谱相机的反射光学系统 如果光学系统中的光学镜片为反射镜,则此系统称之为反射系统,反射式光学系统最大的优势就在于其光谱范围很大,对各个谱段都适用,并且不需要矫正二级光谱,但是因选用的是非球面镜片,会使系统的加工和装配变得十分困难,增加制作工艺难度

数码相机的成像原理

1.1 数码相机的成像原理 在对数码相机的特点和基本组件了解之前,下面来了解一下数码相机是如何工作的,这有利于更好地理解和掌握相机的各项关键参数,深入了解相机的性能。 当打开相机的电源开关后,主控程序芯片开始检查整个相机,确定各个部件是否处于可工作状态。如果一切正常,相机将处于待命状态;若某一部分出现故障,LCD屏上会显示一个错误信息,并使相机完全停止工作。 当用户对准拍摄目标,并将快门按下一半时,相机内的微处理器开始工作,以确定对焦距离、快门的速度和光圈的大小。当按下快门后,光学镜头可将光线聚焦到影像传感器上,这种CCD/CMOS半导体器件代替了传统相机中胶卷的位置,它可将捕捉到的景物光信号转换为电信号。 此时就得到了对应于拍摄景物的电子图像,由于这时图像文件还是模拟信号,还不能被计算机识别,所以需要通过A/D(模/数转换器)转换成数字信号,然后才能以数据方式进行储存。接下来微处理器对数字信号进行压缩,并转换为特定的图像格式,常用的用于描述二维图像的文件格式包括Tag TIFF(Image File Format)、RAW(Raw data Format)、FPX(Flash Pix)、JFIF(JPEG File Interchange Format)等,最后以数字信号存在的图像文件会以指定的格式存储到内置存储器中,那么一张数码相片就完成拍摄了,此时通过LCD(液晶显示器)可以查看所拍摄到的照片。 前面只是简单介绍了其大致的过程,下面结合图1-1来详细地介绍相片成像的整个过程。 图1-1 成像原理示意图 (1)当使用数码相机拍摄景物时,景物反射的光线通过数码相机的镜头透射到CD上。 (2)当CCD曝光后,光电二极管受到光线的激发而释放出电荷,生成感光元件的电信号。 (3)CCD控制芯片利用感光元件中的控制信号线路对发光二极管产生的电流进行控制,由电流传输电路输出,CCD会将一次成像产生的电信号收集起来,统一输出到放大器。 (4)经过放大和滤波后的电信号被传送到ADC,由ADC将电信号(模拟信号)转换为数字信号,数值的大小和电信号的强度与电压的高低成正比,这些数值其实也就是图像的数据。 (5)此时这些图像数据还不能直接生成图像,还要输出到DSP(数字信号处理器)中,在DSP中,将会对这些图像数据进行色彩校正、白平衡处理,并编码为数码相机所支持的图像格式、分辨率,然后才会被存储为图像文件。 (6)当完成上述步骤后,图像文件就会被保存到存储器上,我们就可以欣赏了。 1.2 数码相机的基本部件 无论是哪种款式的数码相机,大都包括图1-2、图1-3出示的基本组件。

照相机原理和构造56701

一、人眼成像的原理 摄影又称摄影术,就是人们通使用照相机把反射在景物上的光线,通过镜头在感光材料上感光而形成影像的过程。所以有些国家把照相机称为“照光机”,这是比较准确的,也就是说,摄影的过程并不是把景物摄录下来,而是把景物反射出的光线记录在感光材料上,形成的影像本不是景物的影像,而是光线在感光材料上形成了潜影。 照相机最早是谁发明的已无从查考,但第一个在底片的银盐上成像的是法国人达盖尔,就是今天的数码成像也是在达盖尔的银盐成像的基础上发展起来的,成像的原理一直不变。 归根结底,照相机是对人眼的仿生,照相机成像的原理与人眼看到景物在视网膜上成像的原理也是一样的——当然人眼比世界上最先进的照相机都更为先进,结构也更为复杂。下图就是人眼接受外界光线而成像的结构图。(这可是UU比照着生物老师的教科书画的,差点累死) 图(1)简约眼视网膜像的形成图

从上图我们可以看出,人眼中的晶状体就如同一个凸透镜,物体AB经过晶体透过节点后,会在视网膜上形成像ab,当然进入眼中的光线还必须通过瞳孔而到达后主焦点,而瞳孔则会根据光线的强弱自动调节其开孔大小。 眼睛之所以能看见周围的各种物体,一是必须有光,二是眼球内可以成像的构造。当我们睁开眼睛,从周围物体发射或反射而来的光,穿过瞳孔和晶状体,聚集在眼睛后面的视网膜上,形成这些物体的图像。连接视网膜的视神经立即把这些信息传送到大脑,所以我们就能看到这些物体。人以左右眼看同样的对象,两眼所见角度不同,在视网膜上形成的像并不完全相同,这两个像经过大脑综合以后就能区分物体的前后、远近,从而产生立体视觉。当然就这一点而言,照相机只相当于人的一只眼,不可能产生立体的感觉了。 二、照相机的工作原理 明白了以上的道理,我们就很容易理解照相机的成像原理了。下图是简易照相机的成像光路图。

单反相机的原理和结构

一单反相机的原理和结构 銅峰电子刘根 数码单反相机的全称是数码单镜头反光相机(Digital single lens reflex),缩写为DSLR。数码单反相机专指使用单镜头取景方式对景物进行拍摄的一种照相机,拍摄者使用相机背后的光学取景框进行观察,通过观察安装在相机前段的镜头所提供的视觉角度的大小进行拍摄。 在单反相机的结构中,作为重要的是照相的反光镜和相机上端圆拱结构内安装的五面镜或五棱镜。拍摄者正是使用这种结构从取景器中直接观察到镜头的影像。由单镜头反光相机的构造图可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏,并结成影像,透过接目镜和五棱镜,拍摄者就可以在取景器中看到外面的景物。这个过程有点像人们透过窗户看到外面的世界,窗户的大小便是人们看到外面景物的范围。

当拍摄者看到自己满意的角度和拍摄内容的时候,既可以按动快门。按动快门的过程就是一个拍摄和成像的过程,术语称为曝光。不管是胶片单反相机还是数码单反相机,曝光原理是完全相同的。在按下快门的瞬间,反光镜向上弹起,胶片前面的快门幕帘同时打开,通过镜头的光线(影像)投射到感光部件上,使胶片或数码相机的感光元件曝光。在按下快门的这一瞬间,光学取景器中会出现黑屏的情况(黑屏的时间根据快门的快慢而不同),之后反光镜立即恢复原状,取景器中再次可以看到影像(此时已经完成了一次曝光)。

单反相机的这种构造,决定了镜头在相机的结构中占有相当重要的地位。使用这种相机的最大优势是摄影师在光学取景器中看到的取景范围和感光元件的影像实际拍摄范围基本一致。摄影师使用不同的镜头配置可以达到很好的拍摄效果,从具有冲击力的7.5mm鱼眼镜头到长达1600mm以上的超级远摄远镜头,都可以安装在同一台相机上,从而拍摄出效果迥异的图片。此外,单反相机在一定程度上消除了旁轴相机的取景视觉差异,使摄影师可以更精确地控制取景范围,选择最完美的拍摄角度。

照相机的工作原理

照相机的工作原理 照相机简称相机,是一种利用光学成像原理形成影像并使用底片记录影像的设备。很多可以记录影像设备都具备照相机的特征。医学成像设备、天文观测设备等等。照相机是用于摄影的光学器械。被摄景物反射出的光线通过照相镜头(摄景物镜)和控制曝光量的快门聚焦后,被摄景物在暗箱内的感光材料上形成潜像,经冲洗处理(即显影、定影)构成永久性的影像,这种技术称为摄影术。分为一般的照相与专业的摄像。 照相机品种繁多,按用途可分为风光摄影照相机、印刷制版照相机、数码照相机 文献缩微照相机、显微照相机、水下照相机、航空照相机、高速照相机等;按照相胶片尺寸,可分为110照相机(画面13×17毫米)、126照相机(画面28×28毫米)、135照相机(画面24×18,24×36毫米)、127照相机(画面45x45毫米)、120照相机(包括220照相机,画面60×45,60×60,60×90毫米)、圆盘照相机(画面8.2x10.6毫米);按取景方式分为透视取景照相机、双镜头反光照相机、单镜头反光照相机。

任何一种分类方法都不能包括所有的照相机,对某一照相机又可分为若干类别,例如135照相机按其取景、快门、测光、输片、曝光、闪光灯、调焦、自拍等方式的不同,就构成一个复杂的型谱。 照相机利用光的直线传播性质和光的折射与反射规律,以光子为载体,把某一瞬间的被摄景物的光信息量,以能量方式经照相镜头传递给感光材料,最终成为可视的影像。照相机的光学成像系统是按照几何光学原理设计的,并通过镜头,把景物影像通过光线的直线传播、折射或反射准确地聚焦在像平面上。摄影时,必须控制合适的曝光量,也就是控制到达感光材料上的合适的光子量。因为银盐感光材料接收光子量的多少有一限定范围,光子量过少形不成潜影核,光子量过多形成过曝,图像又不能分辨。照相机是用光圈改变镜头通光口径大小,来控制单位时间到达感光材料的光子量,同时用改变快门的开闭时间来控制曝光时间的长短。 从完成摄影的功能来说,照相机大致

数码相机的原理与结构

数码相机的原理与结构 数码相机是由镜头、CCD、A/D(模/数转换器)、MPU(微处理器)、内置存储器、LCD (液晶显示器)、PC卡(可移动存储器)和接口(计算机接口、电视机接口)等部分组成,通常它们都安装在数码相机的内部,当然也有一些数码相机的液晶显示器与相机机身分离.数码相机中只有镜头的作用与普通相机相同,它将光线会聚到感光器件CCD(电荷耦合器件)上, CCD是半导体器件,它代替了普通相机中胶卷的位置,它的功能是把光信号转变为电信号.这样,我们就得到了对应于拍摄景物的电子图像,但是它还不能马上被送去计算机处理,还需要按照计算机的要求进行从模拟信号到数字信号的转换,ADC(模数转换器)器件用来执行这项工作.接下来MPU(微处理器)对数字信号进行压缩并转化为特定的图像格式,例如JPEG格式.最后,图像文件被存储在内置存储器中.至此,数码相机的主要工作已经完成,剩下要做的是通过LCD(液晶显示器)查看拍摄到的照片.有一些数码相机为扩大存储容量而使用可移动存储器,如PC卡或者软盘.此外,还提供了连接到计算机和电视机的接口. 几乎所有的数码相机镜头的焦距都比较短,当你观察数码相机镜头上的标识时也许会发现类似"f=6mm"的字样,它的焦距仅为6毫米,这不是鱼眼镜头吗?答案是否定的.说明书中明确地指出f=6mm相当于普通相机的50mm镜头(因相机不同而不同).这是怎么回事呢?原来我们印象中的标准镜头、广角镜头、长焦镜头以及鱼眼镜头都是针对35mm普通相机而言的.它们分别用于一般摄影、风景摄影、人物摄影和特殊摄影.各种镜头的焦距不同使得拍摄的视角不同,而视角不同产生的拍摄效果也不相同.但是焦距决定视角的一个条件是成像的尺寸,35mm普通相机成像尺寸是24mm×36mm(胶卷),而数码相机中CCD的成像尺寸小于这个值两倍甚至十倍,在成像尺寸变小焦距也变小的情况下,就有可能得到相同的视角.所以说上面提及的6mm镜头相当普通相机50mm焦距镜头.因此在选购数码相机时,我们不用关心数码相机的实际焦距是多少,而只要参考换算到35毫数码相机使用CCD 代替传统相机的胶卷,因此CCD技术成为数码相机的关键技术,CCD的分辨率被作为评价数码相机档次的重要依据.CCD是Charge Couple Device的缩写,被称为光电荷耦合器件,它是利用微电子技术制成的表面光电器件,可以实现光电转换功能.在摄像机、数码相机和扫描仪中被广泛使用.摄像机中使用的是点阵CCD,扫描仪中使用的是线阵CCD,而数码相机中既有使用点阵CCD的又有使用线阵CCD的,而一般数码相机都使用点阵CCD,专门拍摄静态物体的扫描式数码相机使用线阵CCD,它牺牲了时间换取可与传统胶卷相媲美的极高分辨率(可高达8400×6000).CCD器件上有许多光敏单元,它们可以将光线转换成电荷,从而形成对应于景物的电子图像,每一个光敏单元对应图像中的一个像素,像素越多图像越清晰,如果我们想增加图像的清晰度,就必须增加CCD的光敏单元的数量.数码相机的指标中常常同时给出多个分辨率,例如640×480和1024×768.其中,最高分辨率的乘积为786432(1024×768),它是CCD光敏单元85万像素的近似数.因此当我们看到"85万像素CCD"的字样,就可以估算该数码相机的最大分辨率. 许多早期的数码相机都采用上述的分辨率,它们可为计算机显示的图片提供足够多的像素,因为大多数计算机显卡的分辨率是640×480、800×600、1024×768、1152×864等.CCD 本身不能分辨色彩,它仅仅是光电转换器.实现彩色摄影的方法有多种,包括给CCD器件表面加以CFA(Color Filter Array,彩色滤镜阵列),或者使用分光系统将光线分为红、绿、蓝三色,分别用3片CCD接收,例如美能达RD-175单反数码相机就采用3CCD方式. A/D转换器又叫做ADC(Analog Digital Converter),即模拟数字转换器.它是将模拟电信号转换为数字电信号的器件.A/D转换器的主要指标是转换速度和量化精度.转换速度是指将模拟信号转换为数字信号所用的时间,由于高分辨率图像的像素数量庞大,因此对转换速度要求很高,当然高速芯片的价格也相应较高.量化精度是指可以将模拟信号分成多少个等级.如果说CCD是将实际景物在X和Y的方向上量化为若干像素,那么A/D转换器则是将每一个像素的亮度或色彩值量化为若干个等级.这个等级在数码相机中叫做色彩深度.数码相机的技术指标中无一例外地给出了色彩深度值,那么色彩深度对拍摄的效果有多大的影响呢?其实色彩深度就是色彩位数,它以二进制的位(bit)为单位,用位的多少表示色彩数的多少.常见的有24位、30位和36位.具体来说,一般中低档数码相机中每种基色采用8位或10位表示,高档相机采用12位.三种基色红、绿、蓝总的色彩深度为基色位数乘

工业相机原理

工作原理: 在单反数码相机的工作系统中,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。与此相对的,一般数码相机只能通过LCD屏或者电子取景器(EVF)看到所拍摄的影像。显然直接看到的影像比通过处理看到的影像更利于拍摄。 在DSLR拍摄时,当按下快门钮,反光镜便会往上弹起,感光元件(CCD或CMOS)前面的快门幕帘便同时打开,通过镜头的光线便投影到感光原件上感光,然后后反光镜便立即恢复原状,观景窗中再次可以看到影像。单镜头反光相机的这种构造,确定了它是完全透过镜头对焦拍摄的,它能使观景窗中所看到的影像和胶片上永远一样,它的取景范围和实际拍摄范围基本上一致,十分有利于直观地取景构图。 主要特点: 单反数码相机的一个很大的特点就是可以交换不同规格的镜头,这是单反相机天生的优点,是普通数码相机不能比拟的。 另外,现在单反数码相机都定位于数码相机中的高端产品,因此在关系数码相机摄影质量的感光元件(CCD或CMOS)的面积上,单反数码的面积远远大于普通数码相机,这使得单反数码相机的每个像素点的感光面积也远远大于普通数码相机,因此每个像素点也就能表现出更加细致的亮度和色彩范围,使单反数码相机的摄影质量明显高于普通数码相机。 感光器件 提到数码相机,不得不说到就是数码相机的心脏——感光器件。与传统相机相比,传统相机使用“胶卷”作为其记录信息的载体,而数码相机的“胶卷”就是其成像感光器件,而且是与相机一体的,是数码相机的心脏。感光器是数码相机的核心,也是最关键的技术。数码相机的发展道路,可以说就是感光器的发展道路。目前数码相机的核心成像部件有两种:一种是广泛使用的CCD(电荷藕合)元件;另一种是CMOS(互补金属氧化物导体)器件。 电荷藕合器件图像传感器CCD(Charge Coupled Device),它使用一种高感光度的半导体材料制成,能把光线转变成电荷,通过模数转换器芯片转换成数字信号,数字信号经过压缩以后由相机内部的闪速存储器或内置硬盘卡保存,因而可以轻而易举地把数据传输给计算机,并借助于计算机的处理手段,根据需要和想像来修改图像。CCD由许多感光单位组成,通常以百万像素为单位。当CCD表面受到光线照射时,每个感光单位会将电荷反映在组件上,所有的感光单位所产生的信号加在一起,就构成了一幅完整的画面。

数码相机成像的具体步骤详细讲解!

数码相机成像的具体步骤详细讲解! 数码相机成像的具体步骤详细讲解!电子元件知识10月7日讯,到目前为止,人们对数字相机性能的关注大部分集中在所摄图片的像素高低上。像素的高低直接取决于数字相机图像传感器的尺寸和密度。图像传感器是数字相机的核心结构,主要分为CCD(Charge-CoupledDevice)光电荷耦合器件和CMOS(ComplementaryMetalOxideSemiconductor)互补金属氧化物半导体集成电路两种。图像传感器由具有光传感单元和光敏二极管列阵硅芯片制成。这些光传感单元与像素高低直接相关,它们能够与撞击到上面的光脉冲相作用,并将其转换成电荷信号。 图像传感器上的光敏单元数目(像素)有两种表示方法。一是用X/Y轴方向(即传感器的宽度和高度方向)数目乘积表示,如640480;另一种是用光敏单元总数来表示,如一百万像素。 制造商通常对于给定的图像传感器会给出两个像素数目指标。第一个数字是传感器上所有的像素数目,如三百三十四万像素或者写为3.34MegaPixels。第二个数字是传感器上真正用于捕捉图像的光敏单元(激活像素)数目。第二个数字一般比第一个小5%左右。 在超净环境中生产数字相机 造成这5%差别的原因有很多。在目前的传感器制作工艺中,生产一个100%完美毫无缺陷的产品几乎是不可能的,我们通常把图像传感器生产过程中出现的有缺陷光敏单元称为暗像素或者缺陷像素。还有部分像素被用于其它方面,例如用于从传感器读取数据时的校准过程,或者为了保证图像比例而故意不使用。很小的一部分处在传感器边缘区域的像素被人为遮蔽,避免接受外来光线,而是用于检测CCD背景所产生的噪声,以便在实际图像数据中将背景噪声加以扣除。 需要技术的像素数与CCD尺寸关系不是线性的,从三百万像素提高到四百万像素像素数

数码相机电源电路工作原理

数码相机电源电路工作原理 从目前公司使用的电源部分主要可以分为以4.5V供电、3V供电和锂电池供电几种形式。下面将不同的供电形式之电路作说明: 一:DC4.5V供电: 1.电子线路图: D6 IN5819/NC 图一 U10 GND 图二

0.1uF C0402 GND 图三 图四 GND L9U7 EUP3406C560.1u C0402 图五

GND GND 图六 System Power 3.3V U6 VCC3 3.1V LDO for A/D PD 图七 工作原理: 当VBAT 接通DC4.5V 或VUSB 接通USB 5V 时,产生一个VIN-A 电压(如图一),一路经过电源稳压IC U10输出复位电压RTC-VDD (图二),此电压经过电阻R79,R83分压后加到DSP 复位脚123脚(如图三).另一路经过电源管理IC U5(AIC1555)工作,通过R33与R35取样电路从第8脚通过L3后输出基准电压VCC3(如图六).此电压直接加到场效应管Q6第2脚.当按下S1POWER 键时相机分为两路工作,一路使Q6第1脚通过网络PWRON 接地,此时Q6导通,电压通过Q6后产生电压V33V 。(如图四、图七) 当松开POWER 键时Q6第1脚高电平Q6截止.另一路到经过网络PWR_KEY 加到DSP ,DSP 检查所有电路,如果电路都正常,则DSP 输出高电平PD 信号通过R42使Q7导通将Q6第1脚持续低电平,V33V 电压始终保持。(如图四、图七) V33V 电压给整个系统各个部份(DSP ,SDRAM ,F/W ,KEY 电路,SENSOR 电路,TFT 电路,DSP 复位电路,SD 卡座电路等)供电. 一路经过电源IC U7降压后输出V18V ,为DSP 供电,另V18V 经过U4转换为SV1.2V 给SENSOR 供电。(如图五) V33V 经过电源稳压IC U6稳压后输出V31V 通过R39 10UH 电感输出V31A 电压持续给整个系统的数据处理提供电压.当DSP 检测各路电压都正常后,12M 晶振起振,然后复位电路动作,IC U12给DSP 一个RESET 信号。相机开始工作,各部份电路工作正常。

光学和数码变焦的原理

光学和数码变焦的原理

光学和数码变焦的原理 在我们接触数码相机时,许多机型都会出现光学变焦以及数码变焦的概念。对于刚刚接触数码相机,并准备作出选购的消费者来说,往往只是看到两者均能够将远处物体放大,而无法具体的分辨出两者的实质区别。这样往往导致具体选购的抉择出现失误。事实上,光学变焦是数码相机镜头的一个极为重要的参数,它和数码变焦存在着本质上的区别。 两者的区别不但体现出它们的工作原理上,在最终的成像效果上,两者也会有明显的差别。单单从成像质量来说,光学变焦比数码变焦优秀很多。但是数码变焦由于成本低廉,也广泛配备在消费级数码相机中。而且,随着图象处理技术的提高,数码变焦的效果也有所改善,例如索尼SmartZoom数码变焦技术,就是一个较为实用的数码变焦技术。 在面临着众多的技术信息,消费者选购起来也更加棘手,到底在光学变焦与数码变焦之间该如何作出选择呢?下面我们就对两者的区别、实

用性以及具体的选购等问题做些简单陈述,希望能给大家的选购提供些建议。 光学变焦与数码变焦的各自原理 光学变焦 要了解光学变焦的原理,首先我们来看看镜头成像的过程。在我们的初中物理课上,老师都会给我们做放大镜成像的试验,燃烧的蜡烛通过放大镜会在白板上清晰地投影出来,同时随着放大镜的前后移动,燃烧的蜡烛在白板上影像的大小会发生变化。这既是相机成像的原理,也是光学变焦的原理所在。相机的光学变焦就是通过改变镜头中焦点的位置,来改变进入镜头光线的角度,从而使同一距离的被摄物体在感光元件上变得更大,或者让更远的物体能够更清晰得聚焦在感光元件上。

上面是相机成像简单的平面图,光学变焦就是通过移动镜头内部镜片来改变焦点的位置,改变镜头焦距的长短,并改变镜头的视角大小,从而实现影像的放大与缩小。上图中,红色三角形较长的直角边就是相机的焦距。当改变焦点的位置时,焦距也会发生变化。例如将焦点向成像面反方向移动,则焦距会变长,图中的视角也会变小。这样,视角范围内的景物在成像面上会变得更大。这就是光学变焦的原理。 我们平时接触的数码相机光学变焦的焦距,它实际上就是上图中焦距的长度。例如佳能A95的3倍光学变焦镜头,它的焦距为7.8-23.4mm,指的就是焦距长度能够变化的范围,实际上也就是被摄物体能够放大的范围。而等效焦长是将上述焦距换算为传统35mm相机的焦距,从而变得更加直观,这个问题就不在我们的讨论范围了。数码变焦 数码变焦在原理上理解起来就比较复杂一些。就现在的主流技术来看,数码变焦是利用影像处理器将感光元件中某一区域的感光单元所 获得的图象信息进行单独的放大。但是,这种单

数码相机工作原理

数码相机工作原理 在过去二十年里,消费电子产品的大多数重要技术突破实 际上可归结于一项更大意义上的突破。仔细观察就会发 现,CD 、DVD 、高清电视、MP3和DVR 其实都是基于相同的原理,即:将传统的模拟信息(用起伏波表示)转变为数 字信息(用1和0,或比特表示)。这一技术上的根本转 变完全改变了我们处理图像和声音信息的方式,使许多事 情成为可能。 数码相机的出现是这一转变最显著的例子——它与传统 相机存在本质上的差异。传统相机完全依赖化学和机械工 艺——你甚至不需要用电来操作相机。而所有数码相机都 内置有计算机,并且都以电子形式记录图像。 这种新方法已经获得巨大成功。由于目前胶卷提供的照片质量仍然高于数码相机,因此数码相机还没有完全取代传统相机。但是,随着数字图像技术的进步,数码相机已经迅速超越传统相机,将变得更加普及。 在这篇文章中,我们将一起了解这类神奇数码装置的具体工作原理。 了解基本原理 假设你想拍一张照片并通过电子邮件发送给朋友。要实现这 一点,你必须借助计算机能够识别的语言来表示这个图像, 即比特和字节。数字图像本质上仅仅是由1和0组成的长字 串,1和0可用来表示微小的色点(或像素),所有色点(或像素)共同组成图像。(有关数据的取样及数字化表示方面 的信息,请参见对声波数字化进行的说明。光波数字化的原 理与此类似。) 如果你希望将一张照片转变成数字形式,可以采用两种方法: ? 第一种方法是先使用传统胶卷相机拍摄一张照片,然后通过化学方式处理胶卷,并将其打印在相纸上,然后使用数字扫描仪对打印照片进行取样(将光图记录为一系列的像素值)。 ? 第二种方法是可以直接对拍摄对象所反射的原始光进行采样,直接将光图分解为一系列像素值。换句话说,你可以使用数码相机。 从最根本来说,这正是数码相机要实现的功能。数码相机也和传统相机一样,包含一系列镜片,使光线聚焦、景物成像。但是,数码相机不是使光线聚焦在胶卷上,而是聚焦在能够借助电子形式记录光的半导体装置中,然后通过计算机将这种电子信息分解为数字数据。数码相机正是因为这一过程而变得好玩和有趣。 尼康数码相机 数码相机工作原理

数码相机成像过程

数码相机成像过程 1.经过镜头光聚焦在CCD或CMOS上 2.CCD或CMOS将光转换成电信号 3.经处理器加工,记录在相机的内存上 4.通过电脑处理和显示器的电光转换,或经打印机打印便形成影象。具体过程: 照相机的工作原理(4张) 对胶片相机而言,景物的反射光线经过镜头的会聚,在胶片上形成潜应影,这个潜影是光和胶片上的乳剂产生化学反应的结果。再经过显影和定影处理就形成了影像。 数码相机是通过光学系统将影像聚焦在成像元件CCD/ CMOS 上,通过A/D转换器将每个像素上光电信号转变成数码信号,再经DSP处理成数码图像,存储到存储介质当中。 光线从镜头进入相机,CCD进行滤色、感光(光电转化),按照一定的排列方式将拍摄物体“分解”成了一个一个的像素点,这些像素点以模拟图像信号的形式转移到“模数转换器”上,转换成数字信号,传送到图像处理器上,处理成真正的图像,之后压缩存储到存储介质中。 编辑本段分类划分 照相机一般可按其使用技术特征如:画幅大小、取景方式、快门形式、测光方式来分类,也可按照相机的外形和结构来分类。具体分类情况如下:

汤姆900照相机 1、照相机根据其成像介质的不同 可以分为胶片相机与数码照相机以及宝丽来相机。胶片相机主要是指通过镜头成像并应用胶片记录影像的设备。而数码照相机则是应用半导体光电耦合器件和数字存储方法记录影像的摄影设备,有使用方便,照片传输方便,保存方便等特点。宝丽来相机又称一次成像相机,是将影象直接感光在特种像纸上,可在一分钟内看到照片,合适留念照等。 2.按照相机使用的胶片和画幅尺寸 可分为35mm照相机(常称135照相机)、120照相机、110照相机、126照相机、中幅照相机、大幅照相机、APS相机、微型相机等。135照相机使用35mm胶片,其所拍摄的标准画幅为24mm X 36mm,一般每个胶卷可拍照36张或24张。 3.按照相机的外型和结构 可分为平视取景照相机(VIEWFINDER)和单镜头反光照相机(单反相机)。此外还有折叠式照相机、双镜头反光相机、平视测距器相机(RANGFINDER)、转机、座机等等。 4.按照相机的快门形式 可分为镜头快门照相机(又称中心快门照相机)、焦平面快门照相机、程序快门照相机等。 5.按照相机具有的功能和技术特性 可分为自动调焦照相机,电测光手控曝光照相机,电测光自动曝光照相机等。此外还有快门优先式、光圈优先式、程序控制式、双优先式、电动卷片(自动卷片、倒片)照相机,自动对焦(AF)照相机,日期后背照相机,内装闪光灯照相机等。 有时也可按照相机的用途来分,如专业相机和消费类相机(傻瓜相机)、一步成象照相机、立体照相机;有时也可按镜头的特性分为变焦或双焦点照相机。实际上一架现代照相机往往具有多方面的特征,因此应以综合性的方式来定义。

数码摄像机与数码相机成像原理

浅谈数码摄像机与数码相机的成像原理的区别 最近有网友提到数码摄像机与数码相机成像的区别问题。这个问题也对打算选购一款适合自己的DV的一些网友产生了困惑。我想就这个问题谈点看法,作引玉之砖,也希望得到专家和高手的帮助。 在上个世纪电视刚诞生的时候,由于技术和成本的原因,对电视的拍摄和重现的标准经过多国有关专家的共同努力,形成了符合当时实际需要的电视标准,并产生了三种格式。即PAL、NTSL和SECANG。虽然这三种格式互不兼容,但是在拍摄原理上是一样的。都是采用扫描的方式把通过镜头会聚的景物拍摄成25(PAL制)或29(N制式)祯图像,利用人眼的视觉暂留原理得到活动图像。早期的模拟电视机都是采用阴极射线的显像管,(现在还有很大拥有量,但是我国计划在2015年停止播出模拟电视,它们将陆续退出历史舞台)。我们现在看电视时,还可以看到图像上会有一条条的扫描线。扫描线是由安装在显像管后面的偏转线圈提供的(分别为水平扫描线圈和场扫描线圈,如果没有扫描线圈,或者线圈不工作,则显像管上就只有一个亮点)。为了保证显示的图像与拍摄的图像完全一致,所以在摄像机和电视机中有两个非常重要的电路,即产生行同步信号和祯同步信号的扫描电路。电视机的行扫描部分出现故障时图像会水平滚动,电视机的祯扫描部分出现故障时图像会上下滚动。从这里,我们已经可以初步看出摄像机与普通照相机在产生图像时是不同的,一个是活动图像,一个是静止图像。

随着科技的进步,逐步出现了平板电视机。显像管已经不再风光,但是在平板电视机中仍然有扫描线,只不过取消了偏转线圈,而改成由集成电路控制的扫描线。 大规模集成电路的出现使电视由模拟转化成数字变成了可能。优质的模数(A/D)转换电路,能在瞬间将模拟信号变成数字信号。这使得电视事业发生了翻天覆地的变化。先来看拍摄部分的变化,由阴极射线的摄像管变成了CCD或者CMOS,拍摄的景物直接变成了数字信号被记录在介质上。数码摄像机出现了。数码摄像机比起模拟摄像机有着无可比拟的优越性。过去的模拟摄像机使用的是模拟录像带,我们学校就有一台松下的VHS摄像机,从八十年代末到九十年代上半期拍摄了不少录像带,由于保管原因,有的磁带已经播放不出来了,后来赶紧将其余磁带在电脑城翻录成VCD保存。 在数码摄像机发展到今天时,不少机型增加了拍照功能,给使用者带来一定的方便。但是,现在所有的摄像机所拍摄的照片都不能和普通的数码照相机相比。原因还是在摄像机本身。数码摄像机的感光元件CCD或者CMOS的尺寸比DC要小得多。生成静态图像的处理方式与DC完全不同。普通家用数码摄像机可以分为高、中、低档,但作为日常拍摄是没有问题的的,其定位是满足家庭的一般使用。摄像机生产厂家在设计一款新机型投放市场之前,一定要考虑将来消费者的接受能力和实际使用效果,而大部分1/6英寸CCD的DV能达到广大使用者的基本要求。从市场销售的情况来看,高、中、低档的数码

单反相机及成像原理讲解

单反相机成像原理 数码单镜头反光DSLR(Digital Single L ens R eflex)照相机,简称数码单反相机。在这种系统中,反光镜和棱镜的独到设计使得摄影者可以从取景器中直接观察到通过镜头的影像。单镜头反光照相机的构造图中可以看到,光线透过镜头到达反光镜后,折射到上面的对焦屏并结成影像,透过接目镜和五棱镜,我们可以在观景窗中看到外面的景物。 光通过透镜(1),被反光镜(2)反射到磨砂取景屏(5)中。通过一块凸透镜(6) 并在五棱镜(7)中反射,最终图像出现在取景框(8)中。当按下快门,反光镜沿箭头所示方向移动,反光镜(2) 被拾起,图像被被摄在CCD(4)上,与取景屏上所看到的一致。 数码单镜头反光照相机的优势: ·不存在视差 ·精确的取景和对焦。这一点对于微距和远距摄影很重要 ·广泛的可更换镜头 ·常见的单反镜头比固定镜头相机提供了更广泛的光圈范围,尤其是增加了最大光圈 数码单镜头反光照相机的劣势: ·体积大 ·在小光圈的情况下,取景器很暗

单反数码相机和普通数码相机的区别 1、结构不同 单反数码相机与我们接触较多的普通消费数码相机是完全不同的两个系统,这里说的不同主要体现在两者的内部结构上,和传统单反相机一样采用了特殊的构造,数码单反相机根本上解决了象差的问题,就是说从取景器内部看到的就是将要暴光在胶片上的图像,普通数码相机由于采用了CCD感光模式,大家在LCD上看到的就是CCD感受到的图像,也就是说拍摄者在液晶屏上看到的也是大家将要拍摄的图像,也不存在像差问题,所以普通数码相机也能拍摄好微距!所以从这点来说,单反相机不占优势。 2、快门问题 普通数码相机对于普通用户拍摄到此一游的照片已经足够,但是它的快门速度对有较高要求的要适应恶劣拍摄环境的摄影者来说却是极为重要的,在普通数码相机中最快快门速度极为重要维持在1/1000秒左右,而单反数码相机的最快快门速度轻松就能达到1/10000秒左右,这么快的快门速度让普通数码相机望尘莫及,非常适合拍摄生态环境。 3、镜头不同 提到单反数码相机很多人都会津津乐道它拥有多种可支持的镜头,也有人认为单反数码相机与普通数码相机最大的区别就在于一个可更换镜头另一个则不可以,乍一听好像很有道理,仔细想想其实不然。比如Olympus的E20P就是一部不可换镜头的单反数码相机,当然市场上绝大多数单反数码相机背后都有配套的镜头群的支持。在拍摄活动中我们可以更换不同的特效镜头,通过取景器便可以查看不同的特殊效果,最终选择合适的镜头尝试拍摄。 单反数码相机不单支持的配套镜头多,更重要的是在镜头指标上也有普通数码相机达不到的高度。首先如广角端的拍摄效果,普通数码相机大都坚守35mm~38mm的阵地,少数高端机型的镜头支持到28mm广角,但是单反数码相机通常情况下使用原配镜头就可以拍摄出令人欣慰的广

相关文档
最新文档