第一章 动量传输基本概念

射频及传输线基础知识

传输线的基本知识 传输射频信号的线缆泛称传输线,常用的有两种:双线与同轴线。频率更高则会用到微带线与波导,虽然结构不同,用途各异,但其基本传输特性都由传输线公式所表征。 不妨先让我们作一个实验,在一台PNA3620上测一段同轴线的输入阻抗。我们会发现在某个频率上同轴线末端开路时其输入阻抗却呈现短路,而末端短路时入端反而呈现开路。通过这个实验可以得到几个结论或想法:首先,这个现象按低频常规电路经验看是想不通的,因此一段线或一个网络必须在使用频率上用射频仪器进行测试才能反映其真实情况。其二,出现这种现象时同轴线的长度为测试频率下的λ/ 4或其奇数倍;因此传输线的特性通常是与长度的波长数有关,让我们习惯用波长数来描述传输线长度,而不是绝对长度,这样作就更通用更广泛一些。最后,这种现象必须通过传输线公式来计算(或阻抗圆图来查出),熟悉传输线公式或圆图是射频、天馈线工作者的基本功。 传输线公式是由著名的电报方程导出的,在这里不作推导而直接引用其公式。对于一般工程技术人员,只需会利用公式或圆图即可。 这里主要讲无耗传输线,有耗的用得较少,就不多提了。 射频器件(包括天线)的性能是与传输线(也称馈线)有关的,射频器件的匹配过程是在传输线上完成的,可以说射频器件是离不开传输线的。先熟悉传输线是合理的,而电路的东西是比较具体的。即使是天线,作者也尽量将其看成是个射频器件来处理,这种作法符合一般基层工作者的实际水平。 1.1 传输线基本公式 1.电报方程 对于一段均匀传输线,在有关书上可 查到,等效电路如图1-1所示。根据线的 微分参数可列出经典的电报方程,解出的 结果为: V 1= 2 1(V 2+I 2Z 0)e гx + 2 1 (V 2-I 2Z 0)e -гx (1-1) I 1= 21Z (V 2+I 2Z 0)e г x - 21Z (V 2-I 2Z 0)e -г x (1-2) 2 x 为距离或长度,由负载端起算,即负载端的x 为0 2г= α+j β, г为传播系数,α为衰减系数, β为相移系数。无耗时г = j β. 一般情况下常用无耗线来进行分析,这样公式简单一些,也明确一些,或者说理想化一些。而这样作实际上是可行的,真要计算衰减时,再把衰减常数加上。 2 Z 0为传输线的特性阻抗。 2 Z i 为源的输出阻抗(或源内阻),通常假定亦为Z 0;若不是Z 0,其数值仅影响线上电压的幅度大小,并不影响其分布曲线形状。

程序设计基础知识点)

第三部分程序设计基础 3.1 程序、程序设计、程序设计语言的定义 ⑴程序:计算机程序,是指为了得到某种结果而可以由计算机等具有信息处理能力的装置执行的代码化指令序列,或者可以被自动转换成代码化指令序列的符号化指令序列或者符号化语句序列。 ⑵程序设计:程序设计是给出解决特定问题程序的过程,是软件构造活动中的重要组成部分。程序设计往往以某种程序设计语言为工具,给出这种语言下的程序。程序设计过程应当包括分析、设计、编码、测试、排错等不同阶段。 ⑶程序设计语言:程序设计语言用于书写计算机程序的语言。语言的基础是一组记号和一组规则。根据规则由记号构成的记号串的总体就是语言。在程序设计语言中,这些记号串就是程序。程序设计语言有3个方面的因素,即语法、语义和语用。 3.2 高级语言和低级语言的概念及区别 ⑴高级语言:高级语言(High-level programming language)是高度封装了的编程语言,与低级语言相对。

它是以人类的日常语言为基础的一种编程语言,使用一般人易于接受的文字来表示(例如汉字、不规则英文或其他外语),从而使程序编写员编写更容易,亦有较高的可读性,以方便对电脑认知较浅的人亦可以大概明白其内容。 ⑵低级语言:低级语言分机器语言(二进制语言)和汇编语言(符号语言),这两种语言都是面向机器的语言,和具体机器的指令系统密切相关。机器语言用指令代码编写程序,而符号语言用指令助记符来编写程序。 ⑶区别: 高级语言:实现效率高,执行效率低,对硬件的可控性弱,目标代码大,可维护性好,可移植性好低级语言:实现效率低,执行效率高,对硬件的可控性强,目标代码小,可维护性差,可移植性差 了解知识:CPU运行的是二进制指令,所有的语言编写的程序最终都要翻译成二进制代码。越低级的语言,形式上越接近机器指令,汇编语言就是与机器指令一一对应的。而越高级的语言,一条语句对应的指令数越多,其中原因就是高级语言对底层操作进行了抽象和封装,

馈线基本概念

馈线(传输线)的基本概念 a) 传输线(天馈线)的基本概念 连接天线和基站输出(或输入)端的导线称为传输线或馈线。传输线的主要任务是有效地传输信号能量。因此它应能将天线接收的信号以最小的损耗传送到接收机输入端,或将发射机发出的信号以最小的损耗传送到发射天线的输入端,同时它本身不应拾取或产生杂散干扰信号。这样,就要求传输线必须屏蔽或平衡。当传输线的几何长度等于或大于所传送信号的波长时就叫做长传输线,简称长线。 b) 传输线的种类、阻抗和馈线衰减常数 超短波段的传输线一般有两种:平行线传输线和同轴电缆传输线(微波传输线有波导和微带等)。平行线传输线通常由两根平行的导线组成。它是对称式或平衡式的传输线。这种馈线损耗大,不能用于UHF频段。同轴电缆传输线的两根导线为芯线和屏蔽铜网,因铜网接地,两根导体对地不对称,因此叫做不对称式或不平衡式传输线。同轴电缆工作频率范围宽,损耗小,对静电耦合有一定的屏蔽作用,但对磁场的干扰却无能为力。使用时切忌与有强电流的线路并行走向,也不能靠近低频信号线路。GSM系统所用天馈为同轴电缆。无限长传输线上各点电压与电流的比值等于特性阻抗,用符号Z。表示。同轴电缆的特 性阻抗Z。=〔138/√εr〕×log(D/d)欧姆。 通常Z。=50欧姆/或75欧姆; D为同轴电缆外导体铜网内径;d为其芯线外径;εr为导体间绝缘介质的相对介电常数。 由上式不难看出,馈线特性阻抗与导体直径、导体间距和导体间介质的介电常数有关,与馈线长短、工作频率以及馈线终端所接负载阻抗大小无关。一般GSM 工程上采用的馈线为口径为7/8 inch;在Alcatl系统的双频小区中DCS1800使用13/8 inch口径的馈线。 信号在馈线里传输,除有导体的电阻损耗外,还有绝缘材料的介质损耗。这两种

数据通讯基本概念

数据通讯基本概念 一、数据及计算机通信术语 ●数据(Data):传递(携带)信息的实体。 ●信息(Information):是数据的内容或解释。 ●信号(Signal):数据的物理量编码(通常为电编码),数据以信号的形式传播。 ●模拟信号与数字信号 ●基带(Base band)与宽带(Broad band) ●信道(Channel):传送信息的线路(或通路) ●比特(bit):信息量的单位。比特率为每秒传输的二进制位个数。 ●码元(Code Cell):时间轴上的一个信号编码单元 ●同步脉冲:用于码元的同步定时,识别码元的开始。同步脉冲也可位于码元的中部,一个码元也可有多个同步脉冲相对应。(如图1所示) ●波特(Baud):码元传输的速率单位。波特率为每秒传送的码元数(即信号传送速率)。 1 Baud = log2M (bit/s) 其中M是信号的编码级数。也可以写成:Rbit = Rbaud log2M 上式中:Rbit-比特率,Rbaud-波特率。 一个信号往往可以携带多个二进制位,所以在固定的信息传输速率下,比特率往往大于波特率。换句话说,一个码元中可以传送多个比特。 例如,M=16,波特率为9600时,数据传输率为38.4kbit/s ●误码率:信道传输可靠性指标,是概率值 信息编码:将信息用二进制数表示的方法。 数据编码:将数据用物理量表示的方法。 例如:字符‘A’的ASCII编码(是信息编码的一种)为01000001 ●带宽:带宽是通信信道的宽度,是信道频率上界与下界之间之差,是介质传输能力的度量,在传统的通信工程中通常以赫兹(Hz)为单位计量。 在计算机网络中,一般使用每秒位数(b/s 或bps) 作为带宽的计量单位。主要单位:Kb/s,Mb/s,Gb/s,一个以太局域网理论上每秒可以传输1千万比特,它的带宽相应为10Mb/s。 ●时延

计算机网络 数据通信基本概念

计算机网络数据通信基本概念 数据通信的目的是传递信息。对于一个完整的数据通信系统,我们不仅需要对产生和发送信息的信源和接收信息的信宿(通信过程中接收和处理信息的设备或计算机。)有一定的了解,还需要了解数据通信系统中信息、数据、信号、信道等一些基本概念。 1.信息 信息是人对客观物质的反映,既可以是对物质的形态、大小、结构、性能等部分或全部特性的描述,也可以是客观物质与外部事物的联系。信息有多种存在形式,如文字、声音、图像等。 2.数据 数据是对客观物质未经加工处理的原始素材,如图形符号、字母、数字等。数据是装载信息的实体,而信息是经过加工处理的数据。数据包括模拟数据和数字数据两种表现形式,其中模拟数据采用连续值,如声音的强度、光的强度都是连续变化;而数字数据采用离散值等。 3.信号 信号是指数据的电磁编码或电编码。它分为模拟信号和数字信号两种。模拟信号是连续变化的电磁波,数字信号则是一串电压脉冲序列。如图3-1所示。 数字信号波形模拟信号波形 图3-1 数字信号和模拟信号 4.信道 信道是信号传输的通道,由传输介质及相应的附属设备组成。信号只有通过信道传输,才能够从信源到达信宿。同一条传输介质上可以同时存在多条信号通道,即一条传输线路上可以有多个信道,实现数据传输。例如,一条光缆可以包含上千个电话信道,供几千人同时通话。 信道的性能决定了信号的传输质量和传输速率,而在数据通信系统中,影响信道性能的因素主要有以下几个: 信道带宽 信道带宽是指信道可传输的信号最高频率与最低频率之差,以Hz为单位。在通信系统中,不同的传输介质具有不同的带宽,并且只能够安全传输其带宽范围之内的信号。如图3-2所示,为不同传输介质的带宽对应关系。

(完整版)《C语言程序设计》基本知识点

《C语言程序设计》教学基本知识点 第一章C语言基本知识 1.C源程序的框架 尽管各个C源程序的功能千变万化,但框架是不变的,主要有:编译预处理、主函数()、函数n()等,主函数的位置不一定在最前面,可以在程序的中部或后面,主函数的名字固定为main。 2.C语言源程序的书写规则: (1)C源程序是由一个主函数和若干个其它函数组成的。 (2)函数名后必须有小括号,函数体放在大括号内。 (3)C程序必须用小写字母书写。 (4)每句的末尾加分号。 (5)可以一行多句。 (6)可以一句多行。 (7)可以在程序的任何位置加注释。 3.语句种类 语句是程序的基本成分,程序的执行就是通过一条条语句的执行而得以实现的,根据表现形式及功能的不同,C语言的基本语句可以分为五大类。 (1)流程控制语句 流程控制语句的功能是控制程序的走向,程序的流程有三种基本结构:顺序结构、分支结构和循环结构,任何复杂的程序都可以由这三种基本结构复合而成。其中后两种结构要用特定的流程控制语句实现。 (2)表达式语句 表达式语句的形式是:表达式;,即表达式后跟一分号“;”,分号是语句结束符,是一个语句必不可少的成分。表达式和表达式语句的区别在于表达式代表的是一个数值,而表达式语句则代表一种动作。最常见的表达式语句是赋值语句。 (3)函数调用语句 函数调用语句实际上也是一种表达式语句,形式为:在一次函数调用的小括号后面加上一个分号。 (4)空语句 空语句的形式就是一个分号,它不代表任何动作,常常作为一个意义转折点使用。 (5)复合语句 复合语句从形式上看是多个语句的组合,但在语法意义上它只相当于一个语句,在任何单一语句存在的地方都可以是复合语句。注意复合语句中最后一个语句末尾的分号不能少。复合语句右大括号后面没有分号。 4.运算符 用来表示数据各种操作的符号称为运算符。运算符实际上代表了一种类型数据的运算规则。不同的运算符具有不同的运算规则,其操作的数据类型必须符合该运算符的要求,运算结果的数据类型也是固定的。 根据参加操作的数据个数多少,可以将C语言的运算符分为单目运算符,双目运算符和三目运算符(三目运算符只有条件运算符一个)。 根据运算对象和运算结果的数据类型可分为算术运算符、关系运算符、逻辑运算符等。 5.表达式 表达式是由常量、变量、函数,通过运算符连接起来而形成的一个算式。一个常量,一个变量或一个函数都可以看成是一个表达式。 表达式的种类有: 算术表达式、关系表达式、逻辑表达式、赋值表达式、字位表达式、强制类型转换表达式、逗号

第三章传输线理论

第三章传输线理论 本章的目的是概述由集总电路向分布电路表示法过度的物理前提。在此过程中,推导出一个最有用的公式:一般的射频传输线结构的空间相关阻抗表示公式。正如我们知道的,频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。本章重点介绍传输线理论,首先介绍传输线理论的实质,再介绍常用的几种传输线,其中重点介绍微带传输线,以及一般的传输线方程及阻抗的一般定义公式。 3.1传输线的基本知识 传输微波能量和信号的线路称为微波传输线。本节主要介绍传输线理论的实质以及理论基础 3.1.1传输线理论的实质 传输线理论是分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。随着工作频率的升高,波长不断减小,当波长可以与电路的几何尺寸相比拟时,传输线上的电压和电流将随着空间位置而变化,使电压和电流呈现波动性,这一点与低频电路完全不同。传输线理论用来分析传输线上电压和电流的分布,以及传输线上阻抗的变化规律。在射频阶段,基尔霍夫定律不再成立,因而必须使用传输线理论取代低频电路理论。 现在举例说明:分析一个简单的电路,该电路由内阻为R1的正弦电压源V1通过1.6cm的铜导线与负载电阻R2组成。电路图如下: 图3.1 简单电路

并且我们假设导线的方向与z轴方向一致,且它们的电阻可以忽略。我们假设振荡器的频率是1MHz,由公式 (3.1) 10m/s, rε=10, rμ=1 因此可以得到波长其中是相速度,=9.49×7 λ=94.86m.连接源和负载的1.6cm长的导线,在如此小的尺度内感受的电压空间变化是不明显的。 但是当频率提高到10GHz时情况就明显的不同了,此时波长降低到λ=p v/10 10=0.949cm,近似为导线长度的2/3,如果沿着1.6cm的导线测量电压,确定信号的相位参考点所在的位置是十分重要的。经过测量得知电压随着相位参考点的不同而发生很大的不同。 现在我们面临着不同的选择,在上图所示的电路中,假设导线的电阻可以忽略,当连接源和负载的导线不存在电压的空间变化时,如低频电路情况,才能有基尔霍夫电压定律进行分析。但是当频率高到必须考虑电压和电流的空间特性时,基尔霍夫电路定律将不能直接用。但是这种情况可以补救,假如该线能再细分为小的线元,在数学上称为无限小长度在该小线元上假定电压和电流保持恒定值。对于每一段小的长度的等效电路为: 图3.2 微带线的等效电路 但是具体到什么时候导线或者分立元件作为传输线处理,这个问题不能用简单的数字还给以确切的回答。从满足基尔霍夫要求的集总电路分析到包含有电压和电流的分布电路理论的过度与波长有关。此过度是在波长变得越来越与电路的平均尺寸可比拟的过程中,逐渐发生。根据一般的科研经验,当分立的电路元件平均尺寸长度大于波长的1/10时,就应该用传输线理论。例如在本例中1.6cm的导线我们能估算出频率为:

第一章 编程的基本概念

第一章,编程的基本概念 首先,作为介绍编程的基础章节,第一点要明白的就是什么是编程。 编程,简单来说就是为了让笨笨的计算机理解我们想让他干什么而编写程序(指令)。如果计算机没有了我们为他设定好的程序,那么它连“吃奶”都不懂得是什么回事,它的最初形态是只认识1和0的怪家伙,傻得很~ 我们通过编程,教会计算机在什么样的情况下应该如何处理问题,教会他1+1的情况是等于2,我们甚至不用跟他说为什么会这样,因为它不需要理解,它只需要按照我们编写的程序去执行,就可以了。 那么如何可以让计算机按照我们所想的去工作呢? 文中红色部分由小甲鱼提供,在此表示感谢。 1.1计算机语言 如果我们现在去百度搜索一下,什么是计算机语言,网上一定会有很多的答案。但是他们无非是介绍一门语言的作用,语法啊,优缺点等等。但是对于没有编程基础的人来说,这些简直就是天书。下面要先介绍一下什么是计算机语言。 首先,我们抛去“计算机语言”中的前三个字,只剩下“语言”。我相信这个词汇一定很熟悉。什么是语言?语言的作用是什么? 像中文,英文,俄文,日文这些都是语言,几乎每个国家或者地区都有自己的语言。语言是用来沟通的,如果我们都会同一门语言,那么我们的交流与沟通是很方便的。但是如果我们使用不同的语言,沟通的难度可想而知。 那么,在刚开始我提到过,计算机只不过是一个很笨的工具,我们需要告诉计算机怎么样去做。可以让计算机明白人的意思的语言便叫计算机语言。 1.2计算机可以“听”的懂什么语言? 和我们学习英语一样,首先要学习字母,然后学习单词,然后学习词组和句子,最后可以用句子来组成文章。通过一篇完成的文章可以表达出我们的意思,别人也可以看的明白。 计算机也是一样,但是计算机不可能像我们人类一样,计算机不可能学习一下汉语来和我们交流。计算机只能识别由1和0组成的二进制代码,也称为机器语言。也就是说,在计算机语言中,字母就是0和1,单词或者词组,就是0和1的各种组合,句子就是更多的0和1的组合所组成的。在计算机语言中,

最新程序设计基本概念

第一章程序设计基本概念 1.1程序和程序设计 程序:连续执行的一条条指令的集合称为“程序”。 对于计算机来说,它不能识别由高级语言编写的程序,它只能接受和处理由0和1的代码构成的二进制指令或数据。由于这种形式的指令是面向机器的,因此也被称为“机器语言”。所以所有由高级语言编写的程序都要经过编译,编译成二进制代码。这种具有翻译功能的软件称为编译程序。 语言有很多种,我们现在要谈论的就是C语言。为什么计算机会能进行各种各样的操作,就是由不同的指令来实现的。而不是只有C语言才可以实现这样的功能。还有其它很多语言。但是我们一般说C语言是其它语言的母语。会了C语言其它的语言在学习的过程就会感到轻松一些。 1.1.2程序设计 1.确定数据结构 2.确定算法 3.编码 4.在计算机上调试程序 5.整理并写出文档资料 1.2算法 定义:是指为了解决某个特定的问题而采取的确定且有限的步骤。 1.有穷性 2.确定性 3.可行性 4.有零个或多个输入 5.有一个或多个输出 1.3结构化程序设计和模块化结构 结构化程序由三种基本结构组成 顺序结构 1. 2.选择结构

3.循环结构

12)计算机能直接执行的程序是(B )。 A)源程序 B)目标程序 C)汇编程序 D)可执行程序 13)以下叙述中正确的是( D ) A)程序设计的任务就是编写程序代码并上机调试 B)程序设计的任务就是确定所用数据结构 C)程序设计的任务就是确定所用算法 D)以上三种说法都不完整 第二章:C程序设计的初步知识 2.1 C语言程序的构成和格式 #include Main() { double a,b,area; a=1.2,b=3.6; /*将矩形的两条边长分别赋给a和b 变量*/ area=a*b; printf(“a=%f,b=%f,area=%f\n”,a,b,area);/*输出矩形的两条边长和面积*/ } #include :每当写一个程序时,第一条语句永远是这个语句,因为一个程序可以没有输入但必须要有输出,而这个语句就是控制输入输出的。所以任何一个程序都必须由这个语句开始。 Main():是一个程序的主函数。一个程序是由多个函数组成的,而任何一个程序都要有一个主函数,有且只有一个。任何程序都是由主函数开始执行的。 {}:它们两个必须要成对出现,它们中的语句是主函数体。包括定义部分和执行部分。它们中的语句,每一条必须由;结束。;是C语句的一个组成部分而不是一个结束标识。 /**/:注释符一定要成对出现,不允许嵌套。两个符号间的语句不被执行。 例年真题: #include

WIFI基本数据传输机制理解要点.doc

802.11基本数据传输机制理解 1. 80 2.11网络基本概念 1.1 80 2.11网络元素 Station (STA): 具有802.11无线网卡的设备,包括手机、笔记本电脑等。 Access Point (AP): 实现无线网络与固定网络连接功能的设备,通常也称作“热点”,它主要完成STA与STA之间数据的转发、STA与骨干网之间数据的转发以及必要的管理工作。 本文中将AP和STA通称为Node(节点)。 Wireless Medium (WM): STA之间以及STA与AP之间传递数据的通道,即无线链路。 无线链路一词相对直观和容易理解,本文中的用无线链路只带WM。 Distribution System (DS): 8023.11中的一个逻辑概念,通常包括两部分:骨干网以及AP的帧分发机制。这里的骨干网指的是连接各AP的固网,通常可以理解为以太网;AP的帧分发机制则完成骨干网与STA、以及STA与STA之间的数据帧转发工作。 1.2 80 2.11组网方式 Independent Basic Service Set (IBSS) —IBSS中只有STA和WM,没有AP和DS —IBSS内的通信只能发生在STA直接通信距离内 —IBSS内STA间的通信都是点到点直接通信,没有转发 图1 IBSS网络结构 Infrastructure Basic Service Set (BSS) —BSS内有STA、AP和WM,但没有DS

—BSS的范围由AP的覆盖范围决定 —BSS内的各STA的通信均由AP中转,不能直接通信 —BSS内STA在通信前必须先与AP进行关联(associate),建立STA-AP的对应绑定关系—STA总是关联的发起方,AP是响应方并决定是否允许STA的加入 —一个STA同一时刻最多只能与一个AP进行关联 —AP的存在使得各STA可以以省电(power-saving: PS) 模式工作 图2 BSS网络结构 Extended Service Set (ESS) —多个BSS串在一起组成一个ESS,同一ESS内的所有AP使用同一个SSID (Service Set Identifier) —一个ESS内的各BSS由DS连接起来 图3 ESS网络结构 2. 802.11数据传输的基本问题及解决方案 2.1 数据传输的可靠性 将数据准确无误地送达目的地是任何通信技术的基本要求。802.11中引入多种机制来保证数据传输的可靠性。

c语言程序设计基本概念考点归纳

第1章程序设计基本概念考点归纳 1.1 C语言的特点 C语言是近年来非常流行的语言,很多人宁愿放弃已经熟悉的其他语言而改用C语言,其原因是C语言有优于其他语言的一系列特点。下面是C语言的主要特点: (1)语言简洁、紧凑,并且使用方便、灵活; (2)运算符丰富; (3)数据结构丰富; (4)具有结构化的控制语句; (5)语法限制不太严格,使程序设计比较自由; (6)C语言允许用户直接访问物理地址,能进行位(bit)操作,可以直接对硬件进行操作。 1.2 源程序的书写规则 C语言的书写规则。C语言书写格式自由,一行内可以写几个语句,一个语句也可以分写在多行上。C程序没有行号,每个语句和数据定义的最后必须有一个分号。C语言中分号是语句中不可少的,即使是程序中的最后一个语句也应该包含分号。C语言中的注释可以用″/*″用″*/″结束,注释可以在任何允许插入空格符地方插入。C语言中注释不允许嵌套,注释可以用西文,也可以用中文。 1.3 C语言的风格 由于C语言对语法限制不太严格,为了保证程序的准确性和可读性,建议在书写程序采用阶梯缩进格式。也就是按如下格式书写C语言程序: **********; *****() { **********;

********; { ******; …… } *********; } 概括起来,C语言程序具有如下的风格: ①C语言程序的函数具体模块结构风格,使得程序整体结构清晰、层次清楚,为模块化程序设计提供了强有力的支持。 ②C语言的源程序的扩展名都是.C。 ③C语言中的注释格式为: /*注释内容*/ /与*之间不允许有空格,注释部分允许出现在程序中的任何位置。 ④C语言中的所有语句都必须以分号“;”结束。 第2章 C程序设计的初步知识考点归纳 2.1 程序的构成 尽管C程序的内容千变万化,但是它们的构成都是一致的,一个完整的C源程序的格式可以如下表示: 编译预处理 主函数() 函数()

52 面向对象程序设计的基本概念

一、教学目标 1、知识与技能 (1)认识面向对象程序设计中对象、类的概念及其特征。 (2)认识面向对象程序设计中类、对象和实例的关系。 2、过程与方法 (1)能够举例说明现实世界与程序世界的对象及其特征。 (2)能够举例说明现实世界与程序世界的类及其特征。。 (3)能够画图表示类、对象和实例三者的关系。 3、情感态度和价值观 (1)能关注面向对象程序设计的基本概念。 (2)能产生对对象、类等的认识的愿望。 (3)能认识到掌握对象、类的概念是学习面向对象程序设计的前提。 二、重点难点 教学重点: (1)对象及其特征。 (2)类及其特征。。 教学难点: (1)类及其特征。 (2)类的继承。 (3)类、对象和实例的关系。 三、教学环境 1、教材处理 教材选自广东教育出版社的信息技术(选修一)《算法与程序设计》第五章第二节,本节以理论为主。面向对象程序设计涉及到一些基本的概念,认识和理解类、对象的基本概念,以及类、对象和实例之间的关系是掌握面向对象程序设计的基础,是进一步学习面向对象功能实现的的前提。内容编排尽量贯彻原教材的意图展开。 教学方法采用讲解、学生自主学习和合作学习相结合的学习方法。 2、预备知识 学生已认识面向对象程序设计的基本思想,初步了解了类、对象等概念,通过比较得知两种程序设计方法的优劣所在。有了这些基础,学习者明显产生了想进一步学习面向对象设计知识的欲望。 3、硬件要求 本节内容是纯理论,可在普通教室上,也可选在多媒体电脑教室中完成,以供学生实践。 4、所需课时:1课时 四、教学过程 导入:1、简要介绍本节课的教学目标:紧密联系现实生活中的实例理解面向对象程序设计中的主要概念如对象、类及其关系,知道这些概念在面向对象思想中的重要性。 2、联系实际生活提问导入:现实生活中我们经常说到“类”这个概念,如人类、花类、鸟类等等。“人类”又可分为黑人、黄种人、白人等小类,这些小类可以具体到某个人如张三、李四、王五等。前面我们提到计算机软件的开发过程就是人们使用计算机语言将现实世界映射到计算机世界的过程。那么这些概念在面向对象程序设计中是采用怎样的机制来实现映射的呢?这节课我们来作充分的探讨。 (一)对象

串行通讯的基本概念

串行通讯的基本概念:与外界的信息交换称为通讯。基本的通讯方式有并行通讯和串行通讯两种。 一条信息的各位数据被同时传送的通讯方式称为并行通讯。并行通讯的特点是:各数据位同时传送,传送速度快、效率高,但有多少数据位就需多少根数据线,因此传送成本高,且只适用于近距离(相距数米)的通讯。 一条信息的各位数据被逐位按顺序传送的通讯方式称为串行通讯。串行通讯的特点是:数据位传送,传按位顺序进行,最少只需一根传输线即可完成,成本低但送速度慢。串行通讯的距离可以从几米到几千米。 根据信息的传送方向,串行通讯可以进一步分为单工、半双工和全双工三种。信息只能单向传送为单工;信息能双向传送但不能同时双向传送称为半双工;信息能够同时双向传送则称为全双工。 串行通讯又分为异步通讯和同步通讯两种方式。在单片机中,主要使用异步通讯方式。 MCS_51单片机有一个全双工串行口。全双工的串行通讯只需要一根输出线和一根输入线。数据的输出又称发送数据(TXD),数据的输入又称接收数据(RXD)。串行通讯中主要有两个技术问题,一个是数据传送、另一个是数据转换。数据传送主要解决传送中的标准、格式及工作方式等问题。数据转换是指数据的串并行转换。具体说,在发送端,要把并行数据转换为串行数据;而在接收端,却要把接收到的串行数据转换为并行数据。 单工、半双工和全双工的定义 如果在通信过程的任意时刻,信息只能由一方A传到另一方B,则称为单工。 如果在任意时刻,信息既可由A传到B,又能由B传A,但只能由一个方向上的传输存在,称为半双工传输。 如果在任意时刻,线路上存在A到B和B到A的双向信号传输,则称为全双工。 电话线就是二线全双工信道。由于采用了回波抵消技术,双向的传输信号不致混淆不清。双工信道有时也将收、发信道分开,采用分离的线路或频带传输相反方向的信号,如回线传输。 --------> <--------> --------> A---------B A----------B A---------B <-------- 单工半双工全双工 串口通讯—全双工和半双工方式 在串行通信中,数据通常是在两个站(如终端和微机)之间进行传送,按照数据流的方向可分成三种基本的传送方式:全双工、半双工、和单工。但单工目前已很少采用,下面仅介绍前两种方式。 1、全双工方式(full duplex)

实验报告-传输线基本概念实验

传输线基本概念实验 当频率高到射频以后,电路元器件的性能发生了变化。甚至于一段线也要用传输线公式来表示,比如说λ/ 4线末端短路时始端等于开路,而末端开路时始端等于短路。这种概念一开始是很难接受的,但是有了PNA362X就可以进行实验验证了。 一实验目的 通过无耗短线的输入阻抗测试,加深对传输线公式与史密斯圆图的理解。 二仪器准备 PNA3620~3623的任一款及其成套附件,另加配保护接头一只。 仪器开机时所显示的主菜单第一项应为《频域》,若为《时域》,则按〖↓〗键使光标移到《时域》下,然后按〖→〗键选择想要的《频域》。 ? ?⑴? 扫频方案设置 ????1.选最小频距, 按〖↓〗键使光标移到《频域》旁边的数值下,按〖→〗在两种最小频距间作出选择(0.1MHz或0.025MHz,通常选0.1 MHz,有特殊要求时才用0.025MHz); 2.BF=30MHz, 按〖↓〗键, 使光标移到《BF》下面, 可按〖→〗〖←〗键对始频进行改动到所需数值为止, 仪器最低频与型号有关; 3.⊿F =30MHz, 按〖↓〗键, 使光标移到《⊿F》下面, 按〖→〗〖←〗键可对频距进行改动, 时域中⊿F不受控; 4.EF =1590MHz。 按〖↓〗键, 使光标移到《EF》下面, 按〖→〗〖←〗键可改变终止频率, 改EF时, 点数N随着变动, 点数N最小为1, 最大为81; EF = BF+(N - 1)⊿F。 注:一次性扫频方案可在主菜单下设置,若常用并需要保留的扫频方案,应按菜单键在扫频方案菜单下设置,应用时选定即可。 M:模式分为《常规》和《精

测》,应选《常规》,《精测》太费时间。 ⑵连接 1.按上图连接, 此时电桥测试端口应接上保护接头,保护接头末端开路作为新的测试端口(注); ??? 2.在主菜单下按〖↓〗键将光标移到《测:A B》下, 按〖→〗或〖←〗键使A下空白,B下为《回损》。 双通道仪器,A口与B口可以互换,连接应与选择相符。单通道机只有A口,所有测试皆由A口完成。 此时屏幕显示如下: 频域0.1 BF:0030.0 MHz ⊿F: 0030.0 MHz EF: 1590.0 MHz N: 053 M:常规 测:A B 回损 ?**************

传输线理论

实验一:传输线理论 * (Transmission Line Theory ) 一. 实验目的: 1. 了解基本传输线、微带线的特性。 2. 利用实验模组实际测量以了解微带线的特性。 3. 利用MICROWA VE 软件进行基本传输线和微带线的电路设计和仿真。 二、预习内容: 1.熟悉微波课程有关传输线的理论知识。 2.熟悉微波课程有关微带线的理论知识。 四、理论分析: (一)基本传输线理论 在传输线上传输波的电压、电流信号会是时间及传输距离的函数。一条单位长度传输线的等效电路可由R 、L 、G 、C 等四个元件来组成,如图1-1所示。 假设波的传播方向为+Z 轴的方向,则由基尔霍夫电压及电流定律可得下列 二个传输线方程式: 此两个方程式的解可写成: 0)()()()() (22 2=+---z V LG RC j z V LC RG dz z V d ωω0)()()()()(2 2 2=+---z I LG RC j z I LC RG dz z I d ωω 图1-1单位长度传输线的等效电路

z z e V e V z V γγ--++=)( (1-1) ,z z e I e I z I γγ--+-=)((1-2) 其中V +,V -,I +,I - 分别是信号的电压及电流振幅常数,而+、-则分别表示+Z ,-Z 的传输方向。γ则是传输系数(propagation coefficient ),其定义如下: ))((C j G L j R ωωγ++= (1-3) 而波在z 上任一点的总电压及电流的关系则可由下列方程式表示: I L j R dz dV ?+-=)(ω V C j G dz dI ?+-=)(ω (1-4) 式(1-1)、(1-2)代入式(1-3)可得: C j G I V ωγ+=++ 一般将上式定义为传输线的特性阻抗(Characteristic Impedance )——Z O : C j G L j R C j G I V I V Z O ωωωγ++=+===--++ 当R=G=0时,传输线没有损耗(Lossless or Loss-free )。因此,一般无耗传 输线的传输系数γ及特性阻抗Z O 分别为: LC j j ωβγ== , C L Z O = 此时传输系数为纯虚数。大多数的射频传输线损耗都很小;亦即R <<ωL 且G <<ωC 。所以R 、G 可以忽略不计,此时传输线的传输系数可写成下列公式: βαωγj C G L R LC LC j +=?? ? ??++≈2 (1-5) 式(1-5)中与在无耗传输线中是一样的,而α定义为传输线的衰减常数(Attenuation Constant ),其公式分别为: LC j ωβ=, )(2 1 2o o GZ RY C G L R LC +=??? ??+= α 其中Y 0定义为传输线的特性导纳(Characteristic Adimttance), 其公式为: L C Z Y O O ==1 (二)负载传输线(Terminated Transmission Line ) (A )无损耗负载传输线(Terminated Lossless Line ) 考虑一段特性阻抗为Zo 的传输线,一端接信号源,另一端则接上负载,如

程序设计的几个基本概念

1、什么是可视化程序设计? 可视化(Visual)程序设计是一种全新的程序设计方法,它主要是让程序设计人员利用软件本身所提供的各种控件,像搭积木式地构造应用程序的各种界面。 2、可视化程序设计有哪些优点? 可视化程序设计最大的优点是设计人员可以不用编写或只需编写很少的程序代码,就能完成应用程序的设计,这样就能极大地提高设计人员的工作效率。 3、能够进行可视化程序设计的语言有哪些? 能进行可视化程序设计的语言很多,比较常用的有微软的Visual Basic、Visual C++、Visu al C#、中文Visual Foxpro、Borland公司的Delphi等。 4、可视化程序设计中有哪些基本概念? 主要的几个基本概念有表单、组件、属性、事件、方法等。 5、什么是表单(Form)? 表单是指进行程序设计时的窗口,我们主要是通过在表单中放置各种部件(如命令按钮、复选框、单选框、滚动条等)来布置应用程序的运行界面。 6、什么是组件? 所谓组件,就是组成程序运行界面的各种部件,如:命令按钮、复选框、单选框、滚动条等。 7、什么是属性? 属性就是组件的性质。它说明组件在程序运行的过程中是如何显示的、组件的大小是多少、显示在何处、是否可见、是否有效…… 8、属性可以分成哪几类? 属性可分成三类,设计属性:是在进行设计时就可发挥作用的属性;运行属性:这是在程序运行过程中才发挥作用的属性;只读属性:是一种只能查看而不能改变的属性。 9、什么是事件? 事件就是对一个组件的操作。如用鼠标点击一个命令按钮,在这里,点击鼠标就称为一个事件(C lick事件)。 10、什么是方法? 方法就是某个事件发生后要执行的具体操作,类似以前的程序。例如当我们用鼠标单击“退出”命令按钮时,程序就会通过执行一条命令而结束运行,命令的执行过程就叫方法。 C++面向对象程序设计基本原理 使用面向对象程序设计的思想和方法进行系统设计和编程,从根本上解决了从现实世界的问题空间到计算机解空间的直接映射,使所设计的系统能更加准确地模拟现实世界;同时面向对象的系统从程序的结构、运行机制上保证了程序的安全性,灵活性;大大提高了程序代码段的复用性,易维护性和易扩展性。因此,面向对象程序设计已经取代了面向过程程序设计成为当前程序设计(特别是复杂大系统的设计、编程)的主流方法,是软件开发人员的必备素质。面向对象程序设计课程主要阐述面向对象技术程序设计的基本原理和基本技术,使学生深刻理解面向对象技术所带来的观念改革,掌握一种面向对象程序设计语言和面向对象设计的思维方式、规则与基本方法,了解面向对象程序设计技术的发展趋势。 第一~五章面向对象程序设计的理论 基础知识:

传输线的基本知识

三维工程技术培训讲义1 传输线及馈线介绍 传输线及馈线技术指标 三维工程技术培训讲义 2 传输线及馈线 三维工程技术培训讲义3 传输线及馈线三维工程技术培训讲义 4 超短波段的传输线一般有两种:平行线传输线和同轴电缆传输线(微波传输线有波导和微带等)。平行线传输线通常由两根平行的导线组成。它是对称式或平衡式的传输线。这种低频信号线路。 传输线的种类 三维工程技术培训讲义5 无限长传输线上各点电压与电流的比值等于特性阻抗,用符号Z。表示。同轴电缆的特性阻抗 传输线的特性阻抗 三维工程技术培训讲义 6 信号在馈线里传输,除有导体的电阻损耗外,还有绝缘材料的介质损耗。这两种损耗随馈线长度的增加和工作10×log(P。/P )(分贝)。 馈线衰减常数

三维工程技术培训讲义7 置。 匹配的概念三维工程技术培训讲义 8 50 ohms 匹配和失配例 三维工程技术培训讲义9当馈线和天线匹配时,高频能量全部被负载吸收,馈线上只有入射波,没有反射波。馈线上反射损耗三维工程技术培训讲义 10 9.5 W 50 ohms 朝前: 10W 返回: 0.5W 这里的反射损耗为10log(10/0.5) = 13dB 反射损耗示例 三维工程技术培训讲义11 在不匹配的情况下,馈线上同时存在入射波和反射波。两者叠加,在入射波和反射波相位相同的地方振幅相加最大,形成波腹;而在入射波和反射波相位相反的地方振幅相减为最小,形成波节。其它各点的振幅则介于波幅与波节之间。这种合成波称为驻波。反射波和入射波幅度之1,匹配也就越好。馈线的电压驻波比 三维工程技术培训讲义 12 驻波比、反射损耗和反射系数

第一章 图的基本概念

第一章图 教学安排的说明 章节题目:§1.1图的概念;§1.2子图;§1.3顶点的度;§1.4道路与连通性;§1.5图的运算 学时分配:共2课时 本章教学目的与要求:会正确表述关于图的一些基本概念(如图、连通图、道路、圈),会进行图的运算,会用图论的方法描述一些简单的实际问题. 其它:由于离散数学中已介绍过相关内容,本章以复习为主

课 堂 教 学 方 案 课程名称:§1.1图的概念;§1.2子图;§1.3顶点的度;§1.4道路与连通性;§1.5图的运算 授课时数:2学时 授课类型:理论课 教学方法与手段:讲授法 教学目的与要求:会正确表述关于图的一些基本概念(如图、连通图、道路、圈), 会进行图的运算,会用图论的方法描述一些简单的实际问题. 教学重点、难点: (1) 理解图、简单图、子图以及图的同构等概念,并能够用图表示简单 的现实问题; (2) 掌握途径、链和道路的概念及其区别; (3) 理解图的连通性概念; (4) 掌握图的四种运算。 教学内容: 第一章 图 §1.1图的概念 引例 例1.下面是五城市之间的航线图,若两城市间有航线,则连线,否则不连如图1.1(a ):由图中可知,北京与广州间没有航线,而大连到上海间有航线 北京 大连 上海 广州 昆明 9 6 4 8 10 (a ) (b ) 图1.1

例2.数4,6,8,10,9五个数,若有公因子则连线,,否则不连,如上图1.1(b) 通常人们认为,过去我们所学的微积分是属于连续数学,而本章所要讨论的图论是离散数学的重要分支. 首先要注意,我们这里所讨论的图论中的“图”,并不是以前学过的通常意义下的几何图形或物体的形状图,也不是工程设计图中的“图”,而是以一种抽象的形式来表达一些确定的对象,以及这些对象之间具有或不具有某种特定关系的一个数学系统.也就是说,几何图形是表述物体的形状和结构,图论中的“图”则描述一些特定的事物和这些事物之间的联系.因此在图论中,顶点之间的距离、弯曲、以及顶点间的位置关系都是无关紧要的,即图的概念是抽象化的,它是数学中经常采用的抽象直观思维方法的典型代表. 下面给出图作为代数结构的一个定义。 图的定义:一个图是一个三元组〈)(G V ,)(G E ,G ?〉,其中)(G V 是一个非空的点集合,)(G E 是有限的边集合,G ?是从边集合E 到点集合V 中的有序偶或无序偶的映射。 例3 图G =〈)(G V ,)(G E ,G ?〉,其中)(G V =},,,{d c b a ,)(G E =},,,,,{654321e e e e e e , ),()(1b a e G =?,),()(2c a e G =?,),()(3d b e G =?,),()(4c b e G =?,),()(5c d e G =?,),()(6d a e G =?。

11个基础知识点了解传输线

11个基础知识点了解传输线 1.什么是传输线? 传输线:用来引导传输电磁波能量和信息的装置。 传输线的基本要求:传输损耗小,传输效率高;工作带宽宽等 低频时,使用普通的双导线就可以完成传输;高频时,因工作频率的升高,导线的趋肤效应和辐射效应的增大,使得在高频和高频以上的必须采用完全不同的传输形式。 2.对传输线的要求? 工作带宽和功率容量满足工作频率的最小要求、稳定性好、损耗小、尺寸小和成本低。 实际工作中:米波或分米波采用双导线或同轴线; 厘米波范围内采用空心金属波导管、微带线或带状线等; 毫米波范围采用空心金属波导管、介质波导、介质镜像线或微带线; 光频段波采用波导(光纤); 3.什么是传输线模型? 以TEM导模的方式传送电磁波能量或信号的行系统。 传输线在电路中相当于一个二端口网络,一个端口连接信号源,通常称为输入端,另一个端口连接负载,称为输出端。 特点:横向尺寸<<工作波长 结构:平行双导线 4.为什么要用传输线理论? 工作在高频时,必须要考虑传输距离对信号幅度相位(频域)和波形时延(时域)的影响。它是相对于场理论,简化了的模型。不包括横向(垂直于传输线的截面)场分布的信息,保留了纵向(沿传输线方向)的波动。对于许多微波工程中各种器件,运用传输线理论这种简单的模型可以进行较有效和简洁的计算,帮助分析工程问题。 A.首先要知道两个概念 长线:指传输线的几何尺寸和工作波长的比值≥0.05; 短线:几何长度与工作波长相比可以忽略不计≤0.05。 长线我们用分布参数来分析;短线我们用集总参数分析。

B.与电路理论和场理论的区别:电路理论<传输线理论<场理论 电路理论:基尔霍夫定律+电路元件 计算速度快;可靠度低,应用范围受限 场理论:麦克斯韦方程组+边界条件 逻辑上严谨,计算复杂,计算速度慢 传输线理论:“化场为路” 分布参数电路理论,它在场分析和基本电路理论之间架起了桥梁。从传输线方程出发,求出满足边界条件的电压、电流的波动方程解,得出沿线等效电压、电流表达式分析其特性。 5.传输线理论包括哪些内容? 频率的提高意味着波长的减小,该结论用于射频电路,就是当波长可与分立的电路元件的几何尺寸相比拟时,电压和电流不再保持空间不变,必须把它们看做是传输的波。因为基尔霍夫电压和电流定律都没有考虑到这些空间的变化,我们必须对普通的集总电路分析进行重大的修改。基本内容包括: A.基本方程:电压、电流的变化规律及其相互关系的微分方程。 传输载体对传输信号的影响,分布参数影响到多样的系统设计。 B.分布参数阻抗(传输线理论的实质) 高频时,传输线的各部分都存在有电容、电感、电阻和电导,也就是说,这个时候传输线和阻抗元件融为一体,他们构成的是分布参数电路,即在传输线上有储能、有损耗。当电流流过导线,导线发热,因此表面导线本身有分布电阻(单位长度的电阻用R 1表示)当电流流过导线,形成磁场,因此导线上存在分布电感的效应(单位长度的电感用L 1表示)两导线间有电压,形成电场,因此导线间存在分布电容的效应(单位长度的电感用C 1表示)材料不能完全绝缘,存在漏电流,因此导线间有分布电导(单位长度分布电导用G 1表示) C.无耗工作状态 当R 1=0、G 1=0时 D.有耗工作状态 E.Smith 圆图 F.阻抗匹配 6.传输线的基本性能参数 特性阻抗Z 0:传输线上导行波的电压与电流之比(与工作频率、本身结构和材料有关) 输入阻抗Z in :传输线上任意一点处的电压与电流之比 传输功率P:表征信号输入与输出的指标 反射系数Γ:反射波电压与入射波电压之比(取值范围0≤|Γ|≤1) 驻波比ρ:传输线上电压(或电流)的最大值和最小值之比(取值范围0≤ρ≤∞) 7.传输线分类? A.双导体传输线,又称横电磁波(TEM 波)传输线 由两根或两根以上平行导体构成,主要包括平行双导线、同轴线、带状线等,常用波段米波、分米波、厘米波。

相关文档
最新文档