乙酸乙酯水解反应条件的探究讨论

乙酸乙酯水解反应条件的探究讨论
乙酸乙酯水解反应条件的探究讨论

乙酸乙酯水解反应条件的探究

高中和中师化学教材中关于乙酸乙酯水解反应的演示实验存在以下几个问题:

1.“6滴乙酸乙酯”相对于“5.5ml蒸馏水”而言用量太少科学数据表明,15℃时乙酸乙酯的溶解度为8.5g/100g水,而乙酸乙酯的密度为0.901g/ml。据此可以推知,6滴乙酸乙酯(每滴约0.1ml)完全可能溶解在5.5ml蒸馏水中。另外,也因为乙酸乙酯只用6滴,反应中其减少的可见度很小,实验只能根据气味变化来判断乙酸乙酯的水解程度,显然让人难以置信。

2.乙酸乙酯的沸点(77.1℃)在70~80℃的水浴温度范围内,在这样的温度条件下加热,乙酸乙酯会因挥发而消失。实验的说服力不强。

3.无机酸或碱的存在能增大乙酸乙酯的水解速率,在没有催化剂时,乙酸乙酯的水解也能进行,只是速率很小,对此实验不能说明。

因此,笔者对乙酸乙酯的水解实验进行了一些改进。

一、操作和现象

1.取型号相同的4支试管,向第1,第2支试管中加入6ml饱和食盐水,向第3支试管中加入5ml饱和食盐水和1ml稀硫酸(1∶5),向第4支试管里加入5ml饱和食盐水和

1ml30%氢氧化钠溶液,再分别向4支试管中各滴入4滴石蕊试液。4支试管里的溶液分别呈紫色、紫色、红色和蓝色。

2.分别向4支试管中加入2ml乙酸乙酯,将第1支试管置于试管架上,然后同时连续振荡另外3支试管1~2min,静置并与第1支试管比较。可以观察到第2支试管中水层呈紫红色,第2,3,4支试管中乙酸乙酯层的高度依次明显减小(约为1.5ml,1ml,0.5ml)。

二、优点

1.以饱和食盐水代替蒸馏水,可以减小乙酸乙酯在水中的溶解度。

2.在水层中滴加石蕊试液能够指示水层的成份,便于观察乙酸乙酯与水之间的界面,并且可以根据第2支试管中水层颜色由紫色变为紫红色判断水解产物乙酸的生成。

3.增加乙酸乙酯的用量,便于从乙酸乙酯体积的明显减小判断其水解程度,从而增强实验结果的说服力。

4.采用连续振荡的方法代替加热,不仅能增加乙酸乙酯与水的接触时间,而且避免了乙酸乙酯受热挥发的可能。

5.通过与第1支试管的比照,不仅能说明无机酸和碱促进乙酸乙酯水解的情况,而且还能说明在没有催化剂存在的条件下乙酸乙酯也能发生微弱的水解。

摘自百度知道-高考网址:

https://www.360docs.net/doc/e010371323.html,/question/79019783.html?fr=qrl&cid=985&index=5&fr2=query

乙酸乙酯水解实验的改进

关于乙酸乙酯水解的实验改进 10101550136 程纯洁 摘要:关于乙酸乙酯水解反应的演示实验在药品试剂的用量上,条件的选择上,现象的描述上,以及利用现象解释反应机理上分别存在以下几处疑惑,可做改进。 关键词:乙酸乙酯水解试验改进 正文:原实验: 乙酸乙酯的水解方程式: CH3COOCH2CH3 + H2O CH3COOH +CH3CH2OH 乙酸乙酯的水解是一个可逆反应。在纯水中即使加热,反应也很慢。而酸和碱对它都有催化作用,酸可加速其达到水解平衡,而碱除了起催化作用外,还能和水解产物中的酸反应而使该反应的平衡向水解方向移动。所以等量的酯在其它条件一致的情况下,用酸或用碱作催化剂,其水解的效果是不同的。 乙酸乙酯为无色透明液体,实验时较难将其与下层的水加以区别。为此实验中分别加入了亚甲基蓝,石蕊试液,甲基橙等进行染色,以区分酯层和水层,增加实验现象的可见度,便于对比观察。 一、实验用品 酒精灯、铁架台、石棉网、火柴、烧杯、试管、胶头滴管 乙酸乙酯、稀硫酸、氢氧化钠溶液、亚甲基蓝试液、石蕊试液、甲基橙试液 二、实验步骤 1、取三支试管,按1、 2、3编号。 2、在三支试管中分别注入2ml蒸馏水,再依次分别加入2ml蒸馏水、2ml硫酸、2ml氢氧化钠溶液。然后再各加入两滴亚甲基蓝试液和1ml乙酸乙酯,振荡后静置。 3、在一烧杯中注入水,置于石棉网上加热,将三支试管插入进行水浴(65℃ -75℃)加热。加热约10分钟后,观察试管中的变化。 4、将步骤2中加入的亚甲基蓝试液换为石蕊试液、甲基橙试液,重复上述步骤。

三、结果与讨论 1、实验现象 染色剂试管号现象 亚甲基蓝 1 水层为蓝色,酯层为紫红色,酯层减少了约一半 2 水层为淡蓝色,酯层为无色,酯层减少很少 3 水层为深蓝色,酯层为棕红色,酯层减少约一半 石蕊 1 水层为紫红色,酯层为无色,酯层减少很少 2 水层为橙红色,酯层为橙色,酯层减少很少 3 水层为蓝色,酯层为无色,酯层减少很多 甲基橙 1 水层为黄色,酯层为无色,酯层减少较少 2 水层为红色,酯层为无色,酯层减少很少 3 水层为黄色,酯层为淡黄色,酯层减少很多,几乎消失 2、结果讨论 (1)在分别用亚甲基蓝试液、石蕊试液、甲基橙试液作染色剂的实验中,未加入催化剂的1号试管酯层都有一定量的减少,甚至减少了很多,这可能 是由于乙酸乙酯沸点较低,受热挥发较快所致。另外,本次实验乙酸乙 酯用量为1ml,且乙酸乙酯微溶于水,10体积的水大约可以溶解1体积乙 酸乙酯,因此实验中会有较多量的酯溶于水中,对实验造成一定的影响。(2)三次实验中,加入酸的2号试管酯层均减少很少,说明乙酸乙酯在酸性条件下水解较慢。而加入碱的3号试管酯层均减少较多,甚至几乎消失,说明乙酸乙酯在碱性条件下水解较快。 (3)在分别用亚甲基蓝试液、石蕊试液、甲基橙试液作染色剂的三次实验中,以加入亚甲基蓝的试管中分层现象最为明显,清晰。加入石蕊的2号试管中水层为橙红色,酯层为橙色,加入甲基橙的3号试管中水层为黄色,酯层为淡黄色,分层都不太明显,较难区分观察。因此,亚甲基蓝是本实 验比较理想的染色剂。 四、实验说明 1、亚甲基蓝是一种氧化还原指示剂, 其水溶液呈蓝色, 不溶于乙酸乙醋。在强

乙酸乙酯皂化反应实验报告

乙酸乙酯皂化反应速度常相数的测定 一、实验目的 1.通过电导法测定乙酸乙酯皂化反应速度常数。 2.求反应的活化能。 3.进一步理解二级反应的特点。 4.掌握电导仪的使用方法。 二、基本原理 乙酸乙酯的皂化反应是一个典型的二级反应: 325325CH COOC H OH CH COO C H OH --+??→+ 设在时间t 时生成浓度为x ,则该反应的动力学方程式为 ()()dx k a x b x dt - =-- (8-1) 式中,a ,b 分别为乙酸乙酯和碱的起始浓度,k 为反应速率常数,若a=b,则(8-1)式变为 2()dx k a x dt =- (8-2) 积分上式得: 1() x k t a a x =?- (8-3) 由实验测的不同t 时的x 值,则可根据式(8-3)计算出不同t 时的k 值。如果k 值为常数,就可证明反应是二级的。通常是作 () x a x -对t 图,如果所的是直线,也可证明反应是二级 反应,并可从直线的斜率求出k 值。 不同时间下生成物的浓度可用化学分析法测定,也可用物理化学分析法测定。本实验用电导法测定x 值,测定的根据是: (1) 溶液中OH -离子的电导率比离子(即3CH COO -)的电导率要大很多。因此,随着反应的进行,OH -离子的浓度不断降低,溶液的电导率就随着下降。 (2) 在稀溶液中,每种强电解质的电导率与其浓度成正比,而且溶液的总电导率

就等于组成溶液的电解质的电导率之和。 依据上述两点,对乙酸乙酯皂化反应来说,反映物和生成物只有NaOH 和NaAc 是 强电解质,乙酸乙酯和乙醇不具有明显的导电性,它们的浓度变化不至于影响电导率的数值。如果是在稀溶液下进行反应,则 01A a κ= 2A a κ∞= 12()t A a x A x κ=-+ 式中:1A ,2A 是与温度、溶剂、电解质NaOH 和NaAc 的性质有关的比例常数; 0κ,κ∞分别为反应开始和终了是溶液的总电导率;t κ为时间t 时溶液的总电导率。由此三 式可以得到: 00( )t x a κκκκ∞ -=- (8-4) 若乙酸乙酯与NaOH 的起始浓度相等,将(8-4)式代入(8-3)式得: 01t t k ta κκκκ∞ -= ?- (8-5) 由上式变换为: 0t t kat κκκκ∞-= + (8-6) 作0~ t t t κκκ-图,由直线的斜率可求k 值,即 1m ka = ,1k ma = 由(8-3)式可知,本反应的半衰期为: 1/21 t ka = (8-7) 可见,两反应物起始浓度相同的二级反应,其半衰期1/2t 与起始浓度成反比,由(8-7)式可知,此处1/2t 亦即作图所得直线之斜率。 若由实验求得两个不同温度下的速度常数k ,则可利用公式(8-8)计算出反应的活化能a E 。

乙酸乙酯的结构特点和主要化学性质

酯 学案 宋清冬 学习目标:乙酸乙酯的结构特点和主要化学性质。乙酸乙酯水解的基本规律。 温故知新:酯的定义。写出乙酸与乙醇反应的方程式。 学习内容: 一、酯 1、酯的一般通式: 。饱和一元羧酸和饱和一元醇形成的酯的分子式为 ,所以这种酯与碳原子数相同的饱和一元羧酸互为同分异构体。 2、酯的通性 物理性质:酯 溶于水,易溶于 ,密度比水 ,低级酯有果香味。这种特殊的性质往往被用来鉴别酯类化合物。 3、酯的命名:酯类化合物是根据生成酯的酸和醇的名称来命名的,例如: 4、酯的化学性质: 乙酸乙酯在 条件下完全水解; 乙酸乙酯在 条件下部分水解; 乙酸乙酯仅在加热的条件下不水解或几乎不水解。 总之在有酸(或碱)存在并加热的条件下,酯类水解生成相应的酸(或盐)和醇。 RCOOR ` + H 2O RCOOR ` + H 2O RCOOH + NaOH → 或合并为 二、酯化反应 1、一元羧酸与一元醇之间的酯化反应 CH 3COOH + HOC 2H 5 2、一元羧酸与多元醇之间的酯化反应 2CH 3COOH + CH 2OH CH 2OH 3、多元羧酸与一元醇之间的酯化反应 COOH COOH + 2CH 3CH 2OH 三、思考交流 1.为什么酒存放时间越久越香? 2.喝醋不能解酒? 3、日常生活中,我们经常使用热的纯碱水溶液(显碱性)洗涤炊具上的油污,分析这是利用了什么原理? 当堂练习 1.下列分子式只能表示一种物质的是 A.C 3H 7Cl B.CH 2Cl 2 C.C 2H 6O D.C 2H 4O 2 2.下列基团:-CH 3、-OH 、-COOH 、-C 6H 5,相互两两组成的有机物有 A.3种 B.4种 C.5种 D.6种 3、尼泊金甲酯可在化妆品中作防腐剂。结构简式为 , 下列说法中不正确的是 A 、该物质属于芳香烃 B 、该物质的分子式为C 8H 8O 3 C 、该物质能够和FeCl 3反应,使溶液呈紫色 D 、在一定条件下,1mol 该物质最多能和2molNaOH 反应 4.下面四种变化中,有一种变化与其他三种变化类型不同的是: A .CH 3CH 2OH + CH 3COOH CH 3COOCH 2CH 3 + H 2O B .CH 3CH 2OH 浓硫酸 170℃ CH 2=CH 2↑+H 2O C .2CH 3CH 2OH 浓硫酸 140℃ CH 3CH 2OCH 2CH 3 + H 2O D. CH 3CH 2OH + HBr CH 3CH 2Br + H 2O 5. 甲组中的 能跟乙组中的所有物质发生反应,乙组中的 也能跟甲组的所有物质发生反应 6、图为实验室制乙酸乙脂的装置。 1)在大试管中配制一定比例的乙醇、乙酸和浓H 2SO 4混合液的方法为: 然后轻轻的振荡试管,使之混合均匀。 2)装置中通蒸汽的导管要插在饱和Na 2CO 3溶液的液面以上,不能插在溶液中,目的是 3)浓H 2SO 4的作用: (1) (2) 4)饱和Na 2CO 3的作用:(1) (2) 5)试管中加入沸石的作用: 6)实验室生成的乙酸乙脂,其密度比水 (填“大”或“小”), 有 的气味。 浓H 2SO 4

乙酸乙酯水解速率常数的测定

新乡医学院物理化学实验课教案首页 授课教师姓名职称:

新乡医学院化学教研室 年 月 日 乙酸乙酯水解速率常数的测定 一、实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.学会用图解法求二级反应的速率常数,并计算该反应的活化能。 二、实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH 3COOC 2H 5+Na ++OH -→CH 3COO -+Na ++C 2H 5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a ,则反应速率表示为 ()2x a k dt dx -= (8-1) 式中,x 为时间t 时反应物消耗掉的浓度,k 为反应速率常数。将上式积分得 () kt x a a x =- (8-2) 起始浓度a 为已知,因此只要由实验测得不同时间t 时的x 值,以 x a x -对t 作图,应得一直线,从直线的斜率m(=ak)便可求出k 值。 乙酸乙酯皂化反应中,参加导电的离子有OH -、Na +和CH 3COO -,由于反应体系是很稀的水溶液,可认为CH 3COONa 是全部电离的,因此,反应前后Na +的浓度不变,随着反应的进行,仅仅是导电能力很强的OH -离子逐渐被导电能力弱的CH 3COO -离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令L 0为t=0时溶液的电导,L t 为时间t 时混合溶液的电导,L ∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO -浓度成正比,设K 为比例常数, 则 t=t 时 x =x x=K (L 0-L t ) (1) 由此可得 t=∞时x →α α=K (L 0-L ∞) α-x =K (L t -L ∞) (2)

乙酸乙酯皂化反应实验报告(详细参考)

浙江万里学院生物与环境学院 化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应 姓名成绩 班级学号 同组姓名实验日期 指导教师签字批改日期年月日

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为 (1)式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时

的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。 乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得: 重新排列得: (3) 因此,只要测不同时间溶液的电导值G t和起始溶液的电导值G0,然后 以G t对作图应得一直线,直线的斜率为,由此便求出某温 度下的反应速率常数k值。由电导与电导率κ的关系式:G=κ代入(3)式得: (4) 通过实验测定不同时间溶液的电导率κt和起始溶液 的电导率κ0,以κt,对作图,也得一直线,从直线的斜率也可求出反应速率数k值。如果知道不同温度下的反应速率常数k(T2)和k(T1),根据Arrhenius公式,可计算出该反应的活化能E和反应半衰期。 (5)

实验2-5 乙酸乙酯的制备及反应条件探究

实验2-5 乙酸乙酯的制备及反应条件探究 1.实验目标 (1)制取乙酸乙酯,初步体验有机物质的制取过程和特点 (2)探究浓硫酸在生成乙酸乙酯反应中的作用 (3)体验通过实验的方法获取知识的过程 2.预习指导 (1)实验原理 乙酸和乙醇在催化剂存在的条件下加热可以发生酯化反应生成乙酸乙酯。反应方程式为: ,H+可以用作酯化反应的催化剂。由于该反应是可逆反应,为了提高乙酸乙酯的产量,必须尽量使化学反应向有利于生成乙酸乙酯的方向进行,所以乙酸乙酯的制备反应常选用浓硫酸做催化剂,浓硫酸除了做酯化反应的催化剂以外还具有吸水性,可以吸收酯化反应中生成的水,使化学平衡向生成物方向进行,更有利于乙酸乙酯的生成。酯化反应中起催化剂作用的浓硫酸量很少,一般只要使硫酸的质量达到乙醇质量的3%就可以,但在实际实验中浓硫酸的用量往往比较多,就是要利用浓硫酸的吸水性。 (2)实验技能 ①反应物的混合。加入试剂顺序为乙醇→浓硫酸→乙酸。由于反应物中有浓硫酸,所以加入3 mL乙醇后要边振荡试管边慢慢加入2 mL浓

硫酸和2 mL乙酸,防止浓硫酸与乙醇、乙酸混合时放出大量热量,造成液体飞溅。浓硫酸不宜最后滴加,以免在滴加浓硫酸的过程中乙酸与乙醇过早发生反应。 ②蒸馏操作。本实验中,制取乙酸乙酯的装臵是一种边反应,边蒸馏的简易装臵,加热应缓慢,反应温度不宜过高,温度过高时会产生乙醚和亚硫酸等杂质,而且会使过多乙醇、乙酸未经反应就脱离反应体系,降低乙酸乙酯的产率。 ③分液操作。反应结束后用直尺测有机层厚度,然后将饱和碳酸钠溶液和蒸出产物导入分液漏斗内分液,取有机层回收。 (3)实验操作要点 ①乙酸、乙醇、乙酸乙酯的沸点分别为117.9 ℃,78.5 ℃,77.1 ℃,而乙酸与乙醇反应的温度实际上只有70~80 ℃,因此开始加热时不要加热到沸腾,先用酒精灯微热(约70~80 ℃)3~5 min,使乙酸和乙醇充分反应。然后加热使之微微沸腾,并持续一段时间,将乙酸乙酯蒸出,当加热反应物的试管中液体剩下约1/3时停止加热。 ②本实验装臵中,收集乙酸乙酯的试管中要预先放入饱和Na2CO3溶液,约占试管容积的1/3。饱和Na2CO3溶液的作用是:冷凝乙酸乙酯;吸收随乙酸乙酯一起蒸发出来的乙酸和乙醇;乙酸乙酯在Na2CO3溶液中的溶解度比在水中更小,容易分层析出,便于分液。 ③本实验装臵中,导出乙酸乙酯的导气管不要伸到饱和Na2CO3溶液中去,应在饱和Na2CO3溶液上方一点,防止由于加热不均匀,造成Na2CO3溶液倒吸入加热反应物的试管中。

乙酸乙酯皂化反应速率常数的测定

乙酸乙酯皂化反应速率常数的测定 一、实验目的 1.学习电导法测定乙酸乙酯皂化反应速率常数的原理和方法以及活化能的测定方法; 2.了解二级反应的特点,学会用图解计算法求二级反应的速率常数; 3.熟悉电导仪的使用。 二、实验原理 (1)速率常数的测定 乙酸乙酯皂化反应时典型的二级反应,其反应式为: CH 3COOC 2H 5+NaOH = CH 3OONa +C 2H 5OH t=0 C 0 C 0 0 0 t=t Ct Ct C 0 - Ct C 0 -Ct t=∞ 0 0 C 0 C 0 速率方程式 2kc dt dc =- ,积分并整理得速率常数k 的表达式为: t 0t 0c c c c t 1k -?= 假定此反应在稀溶液中进行,且CH 3COONa 全部电离。则参加导电离子有Na + 、OH -、CH 3COO -,而Na +反应前后不变,OH -的迁移率远远大于CH 3COO -,随着反 应的进行, OH - 不断减小,CH 3COO -不断增加,所以体系的电导率不断下降,且体系电导率(κ) 的下降和产物CH 3COO -的浓度成正比。 令0κ、t κ和∞κ分别为0、t 和∞时刻的电导率,则: t=t 时,C 0 –Ct=K (0κ-t κ) K 为比例常数 t→∞时,C 0= K (0κ-∞κ) 联立以上式子,整理得:

∞+-?= κκκκt kc 1t 00t 可见,即已知起始浓度C 0,在恒温条件下,测得0κ和t κ,并以t κ对t t 0κκ-作图,可得一直线,则直线斜率0 kc 1 m = ,从而求得此温度下的反应速率常数k 。 (2)活化能的测定原理: )11(k k ln 2 1a 12T T R E -= 因此只要测出两个不同温度对应的速率常数,就可以算出反应的表观活化能。 三、仪器与试剂 电导率仪 1台 铂黑电极 1支 大试管 5支 恒温槽 1台 移液管 3支 氢氧化钠溶液(0.02mol/L ) 乙酸乙酯溶液(0.02mol/L ) 四、实验步骤 1.标定NaOH 溶液及乙酸乙酯溶液的配制 计算标定0.023/dm mol NaOH 溶液所需的草酸二份,放入锥形瓶中,用少量去离子水溶解之,标定溶液。计算出配制与NaOH 等浓度的乙酸乙酯溶液100mL 所需化学纯乙酸乙酯的质量,根据不同温度下乙酸乙酯的密度计算其体积(乙酸乙酯的取样是通过量取一定量的体积),于ml 100容量瓶中加入约3/2容积的去离子水,然后用1mL 移液管吸取所需的乙酸乙酯加入容量瓶中,加水至刻度,摇匀。 2.调节恒温水浴调节恒温水浴温度为30℃1.0±℃。 3.电导率0K 的测定 用mL 20移液管量取去离子水及标定过的NaOH 溶液各mL 20,在干燥的100mL 烧杯中混匀,用少量稀释后的NaOH 溶液淋洗电导电极及电极管3次,装入适量的此NaOH 溶液于电极管中,浸入电导电极并置于恒温水浴中恒温。将

乙酸乙酯水解反应动力学测定

课程名称: 化工专业实验 指导老师: 成绩: 实验名称:乙酸乙酯水解反应动力学测定 实验类型:测定型 同组同学姓名: 一、实验目的和要求(必填)二、实验内容和原理(必填) 三、主要仪器设备四、操作方法与实验步骤 五、实验数据记录和处理六、实验结果与分析(必填) 七、讨论、心得 一、 实验目的和要求 1、 了解和掌握搅拌釜反应器非理想流动产生的原因; 2、 掌握搅拌釜反应器达到全混流状态的判断和操作; 3、了解和掌握在全混釜中连续操作条件下反应器内测定均相反应动力学的原理和方法。 二、 实验内容和原理 在稳定条件下,根据全混釜反应器的物料衡算基础,有 A m A A A m A A A A x C C C C C C V F r ττ0000)1()()=-=-= (- (1) 对于乙酸乙脂水解反应: OH H C COO CH H COOC CH OH 52-3K 523-+?→?+ A B C D 当C A0=C B0,且在等分子流量进料时,其反应速度(-r A )可表示如下形式: 2 20A 20 2 A 02)1))/exp()A A A A A x kC C C C RT E k kC r -=-==(((- (2) 则根据文献(物化实验)的乙酸乙酯动力学方程,由(1),(2)可计算出x A 2 20A m )1A A A x kC x C -=(τ (3) 同时由于C A0∝(L 0-L ∞),C A ∝(L t -L ∞),由实验值得: )()(000∞ --= -L L L L C r t m A A τ (4) 式中:L 0,L ∞——分别为反应初始和反应完全时的电导率 L t ——空时为m τ时的电导率 根据反应溶液的电导率的大小,由(4)式可以直接得到相应的反应转化率,由(3)式计算得到相同条件下的转化率,两者进行比较可知目前反应器的反应结果偏离全混流反应的理论计算值。

乙酸乙酯皂化反应实验报告精选doc

浙江万里学院生物与环境学院化学工程实验技术实验报告 实验名称:乙酸乙酯皂化反应

一、实验预习(30分) 1.实验装置预习(10分)_____年____月____日 指导教师______(签字)成绩 2.实验仿真预习(10分)_____年____月____日 指导教师______(签字)成绩 3.预习报告(10分) 指导教师______(签字)成绩 (1)实验目的 1.用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2.掌握用图解法求二级反应的速率常数,并计算该反应的活化能。 3.学会使用电导率仪和超级恒温水槽。 (2)实验原理 乙酸乙酯皂化反应是个二级反应,其反应方程式为 CH3COOC2H5+Na++OH-→CH3COO-+Na++C2H5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a,则反应速率表示为

(1) 式中,x为时间t时反应物消耗掉的浓度,k为反应速率常数。将上式积分得 (2) 起始浓度a为已知,因此只要由实验测得不同时间t时的x值,以对t作图,应得一直线,从直线的斜率便可求出k值。

乙酸乙酯皂化反应中,参加导电的离子有OH-、Na+和CH3COO-,由于反应体系是很稀的水溶液,可认为CH3COONa是全部电离的,因此,反应前后Na+的浓度不变,随着反应的进行,仅仅是导电能力很强的OH-离子逐渐被导电能力弱的CH3COO-离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G0为t=0时溶液的电导,G t为时间t时混合溶液的电导,G∞为t=∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH3COO-浓度成正比,设K为比例常数,则 由此可得 所以(2)式中的a-x和x可以用溶液相应的电导表示,将其代入(2)式得:

乙酸乙酯皂化反应

乙酸乙酯皂化反应 一、实验目的 1. 用电导法测定乙酸乙酯皂化反应的反应级数、速率常数和活化能 2. 通过实验掌握测量原理和电导率一的使用方法 二、实验原理 1. 乙酸乙酯皂化反应为典型的二级反应,其反应式为: CH3COOC2H5+NaOH→CH3COONa+C2H5OH A B C D 当C A,0=C B,0其速率方程为: -dC A/dt=kC A2 积分得: 由实验测得不同时间t时的C A 值,以1/C A 对t作图,得一直线,从直线斜率便可求出K的值。 2. 反应物浓度CA的分析 不同时间下反应物浓度C A可用化学分析发确定,也可用物理化学分析法确定,本实验采用电导率法测定。 对稀溶液,每种强电解质的电导率与其浓度成正比,对于乙酸乙酯皂化反应来说,溶液的电导率是反应物NaoH与产物CH3CooNa两种电解质的贡献: 式中:Gt—t时刻溶液的电导率;A1,A2—分别为两电解质的电导率与浓度关系的比例系数。反应开始时溶液电导率全由NaOH贡献,反应完毕时全由CH3COONa贡献,因此 代入动力学积分式中得: 由上式可知,以Gt对 作图可得一直线,其斜率等于 ,由此可求得反应速率常数k。

3. 变化皂化反应温度,根据阿雷尼乌斯公式: ,求出该反应的活化能Ea。 三、实验步骤 1. 恒温水浴调至20℃。 2. 反应物溶液的配置: 将盛有实验用乙酸乙酯的磨口三角瓶置入恒温水浴中,恒温10分钟。用带有刻度的移液管吸取V/ml乙酸乙酯,移入预先放有一定量蒸馏水的100毫升容量瓶中,再加蒸馏水稀释至刻度,所吸取乙酸乙酯的体积 V/ml可用下式计算: 式子:M =88.11, =0.9005, 和NaOH见所用药品标签。 3. G0的测定: (1)在一烘干洁净的大试管内,用移液管移入电导水和NaOH溶液(新配置)各15ml,摇匀并插入附有橡皮擦的260型电导电极(插入前应用蒸馏水淋洗,并用滤纸小心吸干,要特别注意切勿触及两电极的铂黑)赛还塞子,将其置入恒温槽中恒温。 (2)开启DDSJ-308A型电导仪电源开关,按下"ON/OFF"键,仪器将显示产标、仪器型号、名称。按“模式”键选择“电导率测量”状态,仪器自动进入上次关机时的测量工作状态,此时仪器采用的参数已设好,可直接进行测量,待样品恒温10分钟后,记录仪器显示的电导率值。 (3)将电导电极取出,用蒸馏水林洗干净后插入盛有蒸馏水的烧杯中,大试管中的溶液保留待用。 4. Gt的测定; (1)取烘干洁净的混合反应器一支,其粗管中用移液管移入15ml新鲜配置的乙酸乙酯溶液,插入已经用蒸馏水淋洗并用滤纸小心吸干(注意:滤纸切勿触及两级的铂黑)带有橡皮塞的电导电极,用另一只移液管于细管移入15ml已知浓度的NaOH溶液,然后将其置于20摄氏度的恒温槽中恒温。 注意:氢氧化钠和乙酸乙酯两种溶液此时不能混合。

11乙酸乙酯皂化反应试题

实验十一乙酸乙酯皂化反应 第一题、填空题 1. 乙酸乙酯溶液应在使用前现配,目的是____________________________。 2. 乙酸乙酯皂化反应中,我们将酯加入到NaOH溶液中,而不是反过来操作,目的是__________________________________________。 3. 二级反应的速度常数有K=1/t(a-b)lnb(a-x)/a(b-x)和K=X/a(a-x)·1/t二种形式,条 件分别为__________________________和______________________________。 4.乙酸乙酯皂化反应,K(G0--G t )可表示________________________________。 5.乙酸乙酯皂化反应中,给出了________________________,测定_________________,用_________________与______________________作图处理,求得反应速度常数。 6. 测定乙酸乙酯皂化反应中的实验用水应为。 7. 常时间放置的去离子水内含有。 8. 测量溶液电导值时,须对其恒温,因为____________________,若温度升高,则电导 值_____________________。 9.乙酸乙酯皂化反应中,以K t对(K0 -K t )/t作图,初期点偏离直线的原因是_________________或__________________所致。 10.电导池常数是法得到的。向电导池内加入溶液的量定量加入,因为 11. 电导测量时须使用____电源,目的是防止____________________。 12.电导法测HAc电离常数时,测量KCI溶液电导的目的是_____________________。 13.电导池常数是____________________________法得到的。 14. 若将15℃下配制的饱和硫酸钡溶液用电导法测其25℃时的Ksp,其结果必然 _________理论值。 15. 电导电极上镀有一层铂黑目的是__________________________________,防止__________________________。 16. 电导测量时,若采用直流电将_________________,若采用低频交流电,会使电极__________。 第二题、选择题 1.若将氢氧化钠加入到乙酸乙酯中一半时作为反应起点,不考虑酯的挥发,对所测结果: 有正误差;有负误差;

实验五乙酸乙酯的制备思考题附答案

实验五乙酸乙酯的制备思 考题附答案 The following text is amended on 12 November 2020.

实验五 乙酸乙酯的制备 一、实验目的 1、通过乙酸乙酯的制备,了解羧酸与醇合成酯的一般原理和方法 2、进一步掌握蒸馏、用分液漏斗萃取,液体干燥等基本操作。 二、实验原理 乙酸和乙醇在浓H 2SO 4催化下生成乙酸乙酯 浓H 2SO 4 CH 3COOH+CH 3CH 2OH CH 3COOCH 2CH 3+H 2O 110~120℃ 温度应控制在110~120℃之间,不宜过高,因为乙醇和乙酸都易挥发。 这是一个可逆反应,生成的乙酸乙酯在同样的条件下又水解成乙酸和乙醇。为了获得较高产率的酯,通常采用增加酸或醇的用量以及不断移去产物中的酯或水的方法来进行。本实验采用回流装置及使用过量的乙醇来增加酯的产率。 反应完成后,没有反应完全的及反应中产生的H 2O 分别用饱和Na 2CO 3,饱和Cacl 2及无水Na 2SO 4(固体)除去。 三、仪器与试剂 1、仪器:铁架台、圆底烧瓶、(带支管)蒸馏烧瓶、球形冷凝管、直形冷凝管、橡皮管、温度计、分液漏斗、小三角烧瓶、烧杯。 2、试剂:冰醋酸、95%乙醇(化学纯)饱和Na 2CO 3 溶液、饱和Nacl 溶液,固体无水Na 2SO 4、沸石、饱和Cacl 2溶液。 四、实验步骤: 用量筒分别量取12ml CH 3COOH 、19ml CH 3CH 2OH 及5ml 浓H 2SO 4,置于圆底烧瓶中,充分混合后,按书中装置装好,再加入几粒沸石,加热前先 通水 →滴的速度即可 控制回流速度以每秒钟加热回流 130分钟 转移圆底烧瓶中液体到蒸馏烧瓶中 于小烧杯中蒸出见实验二采用蒸馏装置 ml 20) (→ → 溶液 饱和加入3210CO Na ml →至分液漏斗转移混合液分去下层水层→溶液饱和加Nacl ml 10分去下层 水层 →溶液饱和加入210Cacl ml 分去下层水层→溶液 饱和 加210Cacl ml 分去水层 小三角烧瓶中上层酯层转移至加入固体

乙酸丁酯碱性水解反应的动力学介质效应

乙酸丁酯碱性水解反应的动力学介质效应 张文红孟鑫孙露露 (中山大学化学学院,2000级,广州510275) 指导老师:陈六平教授 摘要:本文研究了溶剂性质对乙酸丁酯碱性水解反应速率常数的影响。实验结果表明,随DMSO在混合溶剂中所占比例的增加反应速率常数k2线性增加。随DMSO 和C2H5OH(体积比1:1)在溶剂中所占比例的增加反应速率常数k2线性减少。对乙酸丁酯碱性水解反应动力学介质效应的实验结果进行了分析讨论,得出了有意义的规律。 关键词:化学反应动力学,溶剂效应,乙酸丁酯,混合溶剂。 一、引言 在溶液中,溶剂对反应均可能引起离解和传能作用,在电解质溶液中,离子与离子、离子与溶剂分子间的相互作用、溶剂的介电性能等的影响,这属于溶剂的物理效应。溶剂也可以对反应进行催化作用,甚至溶剂本身就可以参加反应,这属于溶剂的化学效应。 动力学溶剂效应是指一些不直接参加反应的溶剂对反应动力学性能的影响。不同溶剂对反应速率的影响差别可以达到109倍。目前,溶液反应动力学作为专门研究溶液反应规律及其影响因素的分支学科不仅具有极为重要的科学意义,而且对工业生产具有指导作用[1]。 有关资料表明,乙酸乙酯的皂化反应是一个二级反应[2-4],与此类似,乙酸丁酯的碱性水解也是二级反应。本实验通过改变溶剂的性质并采用电导法研究了不同类型溶剂对乙酸丁酯皂化反应速率常数的影响,旨在了解溶剂性质对该反应速率的影响,并对测定结果进行分析比较。 结果表明,乙酸丁酯的皂化速率常数与溶剂本身的介电常数有关。 二、实验部分 1、原理 乙酸丁酯皂化反应是二级反应,它是双分子反应,其反应式为: CH3COOC4H9+OH-→ CH3COO-+C4H9OH 此反应在水溶液中进行时,反应过程中各物质的浓度随时间而改变,有的离子数量减少,有的离子数量增加,结果使溶液的电导发生变化。因此,可以通过测量该反应过程中体系电导值随时间的变化,即用电导法来研究该反应的动力学性质。 液相中反应物组分A和B的浓度分别用[A]、[B],而生成物C和D的浓度用[C],[D] 表示,则反应: A 十 B → C 十D 的速率方程为: r = -d[A]/d t = -d[B]/d t = d[C]/d t = d[D]/d t 有 r=k2[A][B] 则反应对A和B物质均为一级,反应的总级数为二,比例系数k2是这一反应的速度常数。 设在时间t时生成物的浓度为x,则反应的动力学方程为: d x/dt=k2(a-x)(b-x) 式中,a和b分别为乙酸丁酯和碱(NaOH)的起始浓度。

乙酸乙酯的制备实验报告

班级:煤化111 姓名:郝海平 学号:10 乙酸乙酯的制备实验报告一.实验目的 1.掌握酯化反应原理以及由乙酸和乙醇制备乙酸乙酯的方法。 2.学会回流反应装置的搭制方法。 3.复习蒸馏、分液漏斗的使用、液体的洗涤与干燥等基本操作。 二.实验原理 本实验用冰醋酸和乙醇为原料,采用乙醇过量、利用浓硫酸的吸水作用使反 应顺利进行。除生成乙酸乙酯的主反应外,还有生成乙醚的副反应。 主反应: 浓H 2S O 4 CH 3COOH +CH 3CH 2OH CH 3COOCH 2CH 3H 2O + 副反应: CH 3CH 2OH H 2 O 浓H S O 170 o C C H 2C H 2+ H 2O (CH 3CH 2)2O 2(CH 3CH 2)2+浓H 2S O 4140 o C 三.仪器与试剂 仪器:100ml 、50ml 圆底烧瓶,冷凝管,温度计,分液漏斗,电热套,分馏柱, 接引管,铁架台,胶管 量筒等。 试剂:无水乙醇 冰醋酸 浓硫酸 碳酸钠 食盐水 氯化钙 硫酸镁 四.实验步骤 1.向烧瓶中加入19ml 无水乙醇和5ml 浓硫酸,向恒压漏斗中加入8ml 冰醋 酸。

2.开始加热,加热电压控制在70V----80V,并冰醋酸缓慢滴入烧瓶,微沸30----40min。 3.蒸馏温度控制在温度严格控制在73-----78℃直至反应结束。 五.产品精制 1.首先加入7ml碳酸钠饱和溶液,用分液漏斗分,目的是离除去冰醋酸。 2.再向分液漏斗上层液中加入7ml饱和食盐水,目的是防止乙酸乙酯水解。 3.加入7ml饱和氯化钙溶液,目的是出去无水乙醇。 4.加入2g MgSO4 固体,目的是除水。 六.数据处理 最后量取乙酸乙酯为。(冰醋酸相对分子质量相对 密度)(乙酸乙酯相对分子质量相对密度) 产率=()//60)X100%=57% 七.讨论 1.浓硫酸加入时会放热,应在摇动中缓慢加入。 2.加入饱和NaCO 3时,应在摇动后放气,以避免产生CO 2 而使分液漏斗内压力过 大。 3.若CO 32-洗涤不完全,加入CaCl 2 时会有CaCO 3 沉淀生成,应加入稀盐酸溶解。 4.干燥时应塞上瓶塞,并间歇振荡。 5.蒸馏时,所有仪器均需烘干。

1乙酸乙酯皂化反应试题

实验一乙酸乙酯皂化反应 简答题 1.在乙酸乙酯皂化反应中,为什么所配NaOH和乙酸乙酯必须是稀溶液? 2.为何乙酸乙酯皂化反应实验要在恒温条件下进行,且氢氧化钠和乙酸乙酯溶液在混合前 还要预先恒温? 3.电导xx常数如何校正? 4.为什么乙酸乙酯皂化反应可用电导结果测其不同时刻的浓度变化?测定时对反应液 的浓度有什么要求?为什么? 5.在乙酸乙酯皂化反应中,若反应起始时间计时不准,对反应速度常数K有何影响?为什么? 6.乙酸乙脂皂化反应中,反应起始时间必须是绝对时间吗?为什么? 7.对乙酸乙酯皂化反应,当a=b时,有x=K(G 0-G t ),c=K(G 0-G ∞)。若[NaOH]≠[酯]时应怎样计算x和c值? 8.某人使用电导率仪时,为快而保险起见老在最大量程处测定,这样做行吗?为什么?测量 水的电导率时,能否选用仪器上ms.cm-1量程来测量,为什么?

9.电导率测量中,由于恒温槽性能不佳,温度逐渐升高,由此导致不同浓度时的K c 值将发生什么变化? 10.在乙酸乙酯造化反应实验过程中,我们先校正电极常数,后测定水以及溶液的电导率,请叙述原因、操作过程以及目的? 11.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的NaOH溶液测得的电导率可以认为是κ 0? 12.在乙酸乙酯皀化实验中为什么由 0.0100mol·dm-3的CH 3COONa溶液测得的电导率可以认为是κ ∞? 13.在乙酸乙酯皀化实验中如果NaOH和乙酸乙酯溶液为浓溶液时,能否用此法求k值,为什么? 14.乙酸乙酯皂化反应实验中,乙酸乙酯溶液应在使用前现配,目的是什么? 15.乙酸乙酯皂化反应实验中,反应体系的电导率随温度变化情况如何? 16.在乙酸乙酯皀化实验中铂电极的电极常数是如何确定的? 17、在乙酸乙酯皀化实验中电导率仪面板上温度补偿旋钮有何用途?怎样使用? 18.乙酸乙酯皂化反应是通过利用测定反应体系在不同时刻的电导或者电导率来跟踪产物和反应物浓度的变化,试问,溶液的电导或者电导率和反应物或者产物的浓度之间是什么样的关系?

实验一--乙酸乙酯的制备

实验一 乙酸乙酯的制备 实验目的 1、熟悉和掌握酯化反应的基本原理和制备方法,掌握可逆反应提高产率的措施; 2、掌握液体有机化合物的精制方法(分馏)。 实验内容 一、实验原理 在少量酸(H 2SO 4或HCl )催化下,羧酸和醇反应生成酯,这个反应叫做酯化反应(Esterification)。该反应通过加成-消去过程。质子活化的羰基被亲核的醇进攻发生加成,在酸作用下脱水成酯。该反应为可逆反应,为了完成反应一般采用大量过量的反应试剂(根据反应物的价格,过量酸或过量醇)。有时可以加入与水恒沸的物质不断从反应体系中带出水移动平衡(即减小产物的浓度)。在实验室中也可以采用分水器来完成。 酯化反应的可能历程为: R C O OH R C OH OH H R'OH R C OH OH OR' H -H R C OH OH OR' R C OH OH OR' H R C OH OH 2 OR' -H 2O R C OH OR' H -R C O OR' 乙酸乙酯的合成方法很多,例如:可由乙酸或其衍生物与乙醇反应制取,也可由乙酸钠与卤乙烷反应来合成等。其中最常用的方法是在酸催化下由乙酸和乙醇直接酯化法。常用浓硫酸、氯化氢、对甲苯磺酸或强酸性阳离子交换树脂等作催化剂。若用浓硫酸作催化剂,其用量是醇的3%即可。其反应为: CH 3COOH +CH 3CH 2OH H 2SO 4 CH 3COOCH 2CH 3H 2O +CH 3CH 2OH 2H 2SO 4 CH 3CH 2OCH 2CH 3H 2O +CH 3CH 2OH H 2SO 4 H 2O +CH 2CH 2主反应:副反应: 酯化反应为可逆反应,提高产率的措施为:一方面加入过量的乙醇,另一方面在反应过程中不断蒸出生成的产物和水,促进平衡向生成酯的方向移动。但是,酯和水或乙醇的共沸物沸点与乙醇接近,为了能蒸出生成的酯和水,又尽量使乙醇少蒸出来,本实验采用了较长的分馏柱进行分馏。 二、实验仪器及所需药品

实验六 乙酸乙酯皂化反应

实验六 乙酸乙酯皂化反应 【目的要求】 1. 用电导率仪测定乙酸乙酯皂化反应进程中的电导率。 2. 学会用图解法求二级反应的速率常数,并计算该反应的活化能。 3. 学会使用电导率仪和恒温水浴。 【实验原理】 乙酸乙酯皂化反应是个二级反应,其反应方程式为: CH 3COOC 2H 5 +Na ++ OH - → CH 3COO - + Na ++C 2H 5OH 当乙酸乙酯与氢氧化钠溶液的起始浓度相同时,如均为a ,则反应速率表示为 2)(d d x a k t x -= (1) 式中,x 为时间t 时反应物消耗掉的浓度,k 为反应速率常数。将上式积分得 kt x a a x =-) ( (2) 起始浓度a 为已知,因此只要由实验测得不同时间t 时的x 值,以x /(a -x )对t 作图,若所得为一直线,证明是二级反应,并可以从直线的斜率求出k 值。 乙酸乙酯皂化反应中,参加导电的离子有OH -、Na +和CH 3COO -,由于反应体系是很稀的水溶液,可认为CH 3COONa 是全部电离的,因此,反应前后Na +的浓度不变,随着反应的进行,仅仅是导电能力很强的OH -离子逐渐被导电能力弱的CH 3COO -离子所取代,致使溶液的电导逐渐减小,因此可用电导率仪测量皂化反应进程中电导率随时间的变化,从而达到跟踪反应物浓度随时间变化的目的。 令G 0为t =0时溶液的电导,G t 为时间t 时混合溶液的电导,G ∞为t = ∞(反应完毕)时溶液的电导。则稀溶液中,电导值的减少量与CH 3COO -浓度成正比,设K 为比例常数,则 t =t 时, x =x , x =K (G 0-G t ) t = ∞时, x →a , a =K (G 0-G ∞) 由此可得: a -x =K (G t -G ∞) 所以a -x 和x 可以用溶液相应的电导表示,将其代入(2)式得: kt G G G G a t t =--∞ 01 重新排列得: ∞+-?=G t G G ak G t t 01 (3)

实验十 二级反应乙酸乙酯皂化反应

实验十 二级反应乙酸乙酯皂化反应 一、实验目的 1.了解二级反应的特点。 2.掌握电导率法测定反应速率常数和活化能。 二、实验原理 乙酸乙酯与碱的反应称为皂化反应,它是一个典型的二级反应。其反应式为: 325325C H C O O C H N aO H C H C O O N a C H O H +→+ 当两种反应物初始浓度相同时 0t =, 0C 0C 0 0 t t =, 0C x - 0C x - x x t =∞ , 0 0 0C 0C 设:两种反应物的起始浓度均为C 0,在时间t 时生成物的浓度为x ,则反应速率方程为: 2 0() dx k C x dt =- (1) 式中:k 为速率常数;t 为时间。 将(1)式积分得: 00() x k tC C x = - (2) 若以00() x C C x -对t 作图,可得一直线,由直线的斜率可求速率常数k 。但由 于难以测定t 时刻的x 值,故本实验采用电导率法测定皂化反应过程中的电导率。由电导率随时间的变化规律来代替浓度的变化。这主要是因为,随着皂化反应的进行,溶液中电导能力强的OH -离子逐渐被导电能力弱的Ac -离子所取代。使溶液的电导率逐渐减小,溶液中CH 3COOC 2H 5和C 2H 5OH 的导电能力都很小,可以忽略不计。因此,溶液电导率的变化是和反应物浓度变化相对应的。 在电解质稀溶液中,可近似认为电导率κ与浓度C 有如下的正比关系,并且溶液的电导率等于各电解质离子电导之和 m C κ=Λ 上式中Λm 为摩尔电导率,Λm 在恒定温度的稀溶液中,可近似看作为一常数,于是可写成κ=fC : 设:0t =, 溶液的电导率 0κ t t =, 溶液的电导率 t κ

相关文档
最新文档